Age | Commit message (Collapse) | Author | Files | Lines |
|
commit 0ba3c026e685573bd3534c17e27da7c505ac99c4 upstream.
skcipher_walk_done may be called with an error by internal or
external callers. For those internal callers we shouldn't unmap
pages but for external callers we must unmap any pages that are
in use.
This patch distinguishes between the two cases by checking whether
walk->nbytes is zero or not. For internal callers, we now set
walk->nbytes to zero prior to the call. For external callers,
walk->nbytes has always been non-zero (as zero is used to indicate
the termination of a walk).
Reported-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Fixes: 5cde0af2a982 ("[CRYPTO] cipher: Added block cipher type")
Cc: <stable@vger.kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 7545b6c2087f4ef0287c8c9b7eba6a728c67ff8e upstream.
Clear the CRYPTO_TFM_REQ_MAY_SLEEP flag when the chacha20poly1305
operation is being continued from an async completion callback, since
sleeping may not be allowed in that context.
This is basically the same bug that was recently fixed in the xts and
lrw templates. But, it's always been broken in chacha20poly1305 too.
This was found using syzkaller in combination with the updated crypto
self-tests which actually test the MAY_SLEEP flag now.
Reproducer:
python -c 'import socket; socket.socket(socket.AF_ALG, 5, 0).bind(
("aead", "rfc7539(cryptd(chacha20-generic),poly1305-generic)"))'
Kernel output:
BUG: sleeping function called from invalid context at include/crypto/algapi.h:426
in_atomic(): 1, irqs_disabled(): 0, pid: 1001, name: kworker/2:2
[...]
CPU: 2 PID: 1001 Comm: kworker/2:2 Not tainted 5.2.0-rc2 #5
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-20181126_142135-anatol 04/01/2014
Workqueue: crypto cryptd_queue_worker
Call Trace:
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x4d/0x6a lib/dump_stack.c:113
___might_sleep kernel/sched/core.c:6138 [inline]
___might_sleep.cold.19+0x8e/0x9f kernel/sched/core.c:6095
crypto_yield include/crypto/algapi.h:426 [inline]
crypto_hash_walk_done+0xd6/0x100 crypto/ahash.c:113
shash_ahash_update+0x41/0x60 crypto/shash.c:251
shash_async_update+0xd/0x10 crypto/shash.c:260
crypto_ahash_update include/crypto/hash.h:539 [inline]
poly_setkey+0xf6/0x130 crypto/chacha20poly1305.c:337
poly_init+0x51/0x60 crypto/chacha20poly1305.c:364
async_done_continue crypto/chacha20poly1305.c:78 [inline]
poly_genkey_done+0x15/0x30 crypto/chacha20poly1305.c:369
cryptd_skcipher_complete+0x29/0x70 crypto/cryptd.c:279
cryptd_skcipher_decrypt+0xcd/0x110 crypto/cryptd.c:339
cryptd_queue_worker+0x70/0xa0 crypto/cryptd.c:184
process_one_work+0x1ed/0x420 kernel/workqueue.c:2269
worker_thread+0x3e/0x3a0 kernel/workqueue.c:2415
kthread+0x11f/0x140 kernel/kthread.c:255
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:352
Fixes: 71ebc4d1b27d ("crypto: chacha20poly1305 - Add a ChaCha20-Poly1305 AEAD construction, RFC7539")
Cc: <stable@vger.kernel.org> # v4.2+
Cc: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 5c6bc4dfa515738149998bb0db2481a4fdead979 upstream.
Changing ghash_mod_init() to be subsys_initcall made it start running
before the alignment fault handler has been installed on ARM. In kernel
builds where the keys in the ghash test vectors happened to be
misaligned in the kernel image, this exposed the longstanding bug that
ghash_setkey() is incorrectly casting the key buffer (which can have any
alignment) to be128 for passing to gf128mul_init_4k_lle().
Fix this by memcpy()ing the key to a temporary buffer.
Don't fix it by setting an alignmask on the algorithm instead because
that would unnecessarily force alignment of the data too.
Fixes: 2cdc6899a88e ("crypto: ghash - Add GHASH digest algorithm for GCM")
Reported-by: Peter Robinson <pbrobinson@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Tested-by: Peter Robinson <pbrobinson@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 90acc0653d2bee203174e66d519fbaaa513502de ]
Build testing with some core crypto options disabled revealed
a few modules that are missing CRYPTO_HASH:
crypto/asymmetric_keys/x509_public_key.o: In function `x509_get_sig_params':
x509_public_key.c:(.text+0x4c7): undefined reference to `crypto_alloc_shash'
x509_public_key.c:(.text+0x5e5): undefined reference to `crypto_shash_digest'
crypto/asymmetric_keys/pkcs7_verify.o: In function `pkcs7_digest.isra.0':
pkcs7_verify.c:(.text+0xab): undefined reference to `crypto_alloc_shash'
pkcs7_verify.c:(.text+0x1b2): undefined reference to `crypto_shash_digest'
pkcs7_verify.c:(.text+0x3c1): undefined reference to `crypto_shash_update'
pkcs7_verify.c:(.text+0x411): undefined reference to `crypto_shash_finup'
This normally doesn't show up in randconfig tests because there is
a large number of other options that select CRYPTO_HASH.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 473971187d6727609951858c63bf12b0307ef015 ]
The same bug that gcc hit in the past is apparently now showing
up with clang, which decides to inline __serpent_setkey_sbox:
crypto/serpent_generic.c:268:5: error: stack frame size of 2112 bytes in function '__serpent_setkey' [-Werror,-Wframe-larger-than=]
Marking it 'noinline' reduces the stack usage from 2112 bytes to
192 and 96 bytes, respectively, and seems to generate more
useful object code.
Fixes: c871c10e4ea7 ("crypto: serpent - improve __serpent_setkey with UBSAN")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Eric Biggers <ebiggers@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 1a0fad630e0b7cff38e7691b28b0517cfbb0633f upstream.
cryptd_skcipher_free() fails to free the struct skcipher_instance
allocated in cryptd_create_skcipher(), leading to a memory leak. This
is detected by kmemleak on bootup on ARM64 platforms:
unreferenced object 0xffff80003377b180 (size 1024):
comm "cryptomgr_probe", pid 822, jiffies 4294894830 (age 52.760s)
backtrace:
kmem_cache_alloc_trace+0x270/0x2d0
cryptd_create+0x990/0x124c
cryptomgr_probe+0x5c/0x1e8
kthread+0x258/0x318
ret_from_fork+0x10/0x1c
Fixes: 4e0958d19bd8 ("crypto: cryptd - Add support for skcipher")
Cc: <stable@vger.kernel.org>
Signed-off-by: Vincent Whitchurch <vincent.whitchurch@axis.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 21d4120ec6f5b5992b01b96ac484701163917b63 upstream.
Michal Suchanek reported [1] that running the pcrypt_aead01 test from
LTP [2] in a loop and holding Ctrl-C causes a NULL dereference of
alg->cra_users.next in crypto_remove_spawns(), via crypto_del_alg().
The test repeatedly uses CRYPTO_MSG_NEWALG and CRYPTO_MSG_DELALG.
The crash occurs when the instance that CRYPTO_MSG_DELALG is trying to
unregister isn't a real registered algorithm, but rather is a "test
larval", which is a special "algorithm" added to the algorithms list
while the real algorithm is still being tested. Larvals don't have
initialized cra_users, so that causes the crash. Normally pcrypt_aead01
doesn't trigger this because CRYPTO_MSG_NEWALG waits for the algorithm
to be tested; however, CRYPTO_MSG_NEWALG returns early when interrupted.
Everything else in the "crypto user configuration" API has this same bug
too, i.e. it inappropriately allows operating on larval algorithms
(though it doesn't look like the other cases can cause a crash).
Fix this by making crypto_alg_match() exclude larval algorithms.
[1] https://lkml.kernel.org/r/20190625071624.27039-1-msuchanek@suse.de
[2] https://github.com/linux-test-project/ltp/blob/20190517/testcases/kernel/crypto/pcrypt_aead01.c
Reported-by: Michal Suchanek <msuchanek@suse.de>
Fixes: a38f7907b926 ("crypto: Add userspace configuration API")
Cc: <stable@vger.kernel.org> # v3.2+
Cc: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 6a1faa4a43f5fabf9cbeaa742d916e7b5e73120f upstream.
CCM instances can be created by either the "ccm" template, which only
allows choosing the block cipher, e.g. "ccm(aes)"; or by "ccm_base",
which allows choosing the ctr and cbcmac implementations, e.g.
"ccm_base(ctr(aes-generic),cbcmac(aes-generic))".
However, a "ccm_base" instance prevents a "ccm" instance from being
registered using the same implementations. Nor will the instance be
found by lookups of "ccm". This can be used as a denial of service.
Moreover, "ccm_base" instances are never tested by the crypto
self-tests, even if there are compatible "ccm" tests.
The root cause of these problems is that instances of the two templates
use different cra_names. Therefore, fix these problems by making
"ccm_base" instances set the same cra_name as "ccm" instances, e.g.
"ccm(aes)" instead of "ccm_base(ctr(aes-generic),cbcmac(aes-generic))".
This requires extracting the block cipher name from the name of the ctr
and cbcmac algorithms. It also requires starting to verify that the
algorithms are really ctr and cbcmac using the same block cipher, not
something else entirely. But it would be bizarre if anyone were
actually using non-ccm-compatible algorithms with ccm_base, so this
shouldn't break anyone in practice.
Fixes: 4a49b499dfa0 ("[CRYPTO] ccm: Added CCM mode")
Cc: stable@vger.kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit edaf28e996af69222b2cb40455dbb5459c2b875a upstream.
If the user-provided IV needs to be aligned to the algorithm's
alignmask, then skcipher_walk_virt() copies the IV into a new aligned
buffer walk.iv. But skcipher_walk_virt() can fail afterwards, and then
if the caller unconditionally accesses walk.iv, it's a use-after-free.
salsa20-generic doesn't set an alignmask, so currently it isn't affected
by this despite unconditionally accessing walk.iv. However this is more
subtle than desired, and it was actually broken prior to the alignmask
being removed by commit b62b3db76f73 ("crypto: salsa20-generic - cleanup
and convert to skcipher API").
Since salsa20-generic does not update the IV and does not need any IV
alignment, update it to use req->iv instead of walk.iv.
Fixes: 2407d60872dd ("[CRYPTO] salsa20: Salsa20 stream cipher")
Cc: stable@vger.kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f699594d436960160f6d5ba84ed4a222f20d11cd upstream.
GCM instances can be created by either the "gcm" template, which only
allows choosing the block cipher, e.g. "gcm(aes)"; or by "gcm_base",
which allows choosing the ctr and ghash implementations, e.g.
"gcm_base(ctr(aes-generic),ghash-generic)".
However, a "gcm_base" instance prevents a "gcm" instance from being
registered using the same implementations. Nor will the instance be
found by lookups of "gcm". This can be used as a denial of service.
Moreover, "gcm_base" instances are never tested by the crypto
self-tests, even if there are compatible "gcm" tests.
The root cause of these problems is that instances of the two templates
use different cra_names. Therefore, fix these problems by making
"gcm_base" instances set the same cra_name as "gcm" instances, e.g.
"gcm(aes)" instead of "gcm_base(ctr(aes-generic),ghash-generic)".
This requires extracting the block cipher name from the name of the ctr
algorithm. It also requires starting to verify that the algorithms are
really ctr and ghash, not something else entirely. But it would be
bizarre if anyone were actually using non-gcm-compatible algorithms with
gcm_base, so this shouldn't break anyone in practice.
Fixes: d00aa19b507b ("[CRYPTO] gcm: Allow block cipher parameter")
Cc: stable@vger.kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 307508d1072979f4435416f87936f87eaeb82054 upstream.
The ->digest() method of crct10dif-generic reads the current CRC value
from the shash_desc context. But this value is uninitialized, causing
crypto_shash_digest() to compute the wrong result. Fix it.
Probably this wasn't noticed before because lib/crc-t10dif.c only uses
crypto_shash_update(), not crypto_shash_digest(). Likewise,
crypto_shash_digest() is not yet tested by the crypto self-tests because
those only test the ahash API which only uses shash init/update/final.
This bug was detected by my patches that improve testmgr to fuzz
algorithms against their generic implementation.
Fixes: 2d31e518a428 ("crypto: crct10dif - Wrap crc_t10dif function all to use crypto transform framework")
Cc: <stable@vger.kernel.org> # v3.11+
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit dcaca01a42cc2c425154a13412b4124293a6e11e upstream.
skcipher_walk_done() assumes it's a bug if, after the "slow" path is
executed where the next chunk of data is processed via a bounce buffer,
the algorithm says it didn't process all bytes. Thus it WARNs on this.
However, this can happen legitimately when the message needs to be
evenly divisible into "blocks" but isn't, and the algorithm has a
'walksize' greater than the block size. For example, ecb-aes-neonbs
sets 'walksize' to 128 bytes and only supports messages evenly divisible
into 16-byte blocks. If, say, 17 message bytes remain but they straddle
scatterlist elements, the skcipher_walk code will take the "slow" path
and pass the algorithm all 17 bytes in the bounce buffer. But the
algorithm will only be able to process 16 bytes, triggering the WARN.
Fix this by just removing the WARN_ON(). Returning -EINVAL, as the code
already does, is the right behavior.
This bug was detected by my patches that improve testmgr to fuzz
algorithms against their generic implementation.
Fixes: b286d8b1a690 ("crypto: skcipher - Add skcipher walk interface")
Cc: <stable@vger.kernel.org> # v4.10+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 5e27f38f1f3f45a0c938299c3a34a2d2db77165a upstream.
If the rfc7539 template is instantiated with specific implementations,
e.g. "rfc7539(chacha20-generic,poly1305-generic)" rather than
"rfc7539(chacha20,poly1305)", then the implementation names end up
included in the instance's cra_name. This is incorrect because it then
prevents all users from allocating "rfc7539(chacha20,poly1305)", if the
highest priority implementations of chacha20 and poly1305 were selected.
Also, the self-tests aren't run on an instance allocated in this way.
Fix it by setting the instance's cra_name from the underlying
algorithms' actual cra_names, rather than from the requested names.
This matches what other templates do.
Fixes: 71ebc4d1b27d ("crypto: chacha20poly1305 - Add a ChaCha20-Poly1305 AEAD construction, RFC7539")
Cc: <stable@vger.kernel.org> # v4.2+
Cc: Martin Willi <martin@strongswan.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 678cce4019d746da6c680c48ba9e6d417803e127 upstream.
The x86_64 implementation of Poly1305 produces the wrong result on some
inputs because poly1305_4block_avx2() incorrectly assumes that when
partially reducing the accumulator, the bits carried from limb 'd4' to
limb 'h0' fit in a 32-bit integer. This is true for poly1305-generic
which processes only one block at a time. However, it's not true for
the AVX2 implementation, which processes 4 blocks at a time and
therefore can produce intermediate limbs about 4x larger.
Fix it by making the relevant calculations use 64-bit arithmetic rather
than 32-bit. Note that most of the carries already used 64-bit
arithmetic, but the d4 -> h0 carry was different for some reason.
To be safe I also made the same change to the corresponding SSE2 code,
though that only operates on 1 or 2 blocks at a time. I don't think
it's really needed for poly1305_block_sse2(), but it doesn't hurt
because it's already x86_64 code. It *might* be needed for
poly1305_2block_sse2(), but overflows aren't easy to reproduce there.
This bug was originally detected by my patches that improve testmgr to
fuzz algorithms against their generic implementation. But also add a
test vector which reproduces it directly (in the AVX2 case).
Fixes: b1ccc8f4b631 ("crypto: poly1305 - Add a four block AVX2 variant for x86_64")
Fixes: c70f4abef07a ("crypto: poly1305 - Add a SSE2 SIMD variant for x86_64")
Cc: <stable@vger.kernel.org> # v4.3+
Cc: Martin Willi <martin@strongswan.org>
Cc: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 251b7aea34ba3c4d4fdfa9447695642eb8b8b098 upstream.
The memcpy()s in the PCBC implementation use walk->iv as both the source
and destination, which has undefined behavior. These memcpy()'s are
actually unneeded, because walk->iv is already used to hold the previous
plaintext block XOR'd with the previous ciphertext block. Thus,
walk->iv is already updated to its final value.
So remove the broken and unnecessary memcpy()s.
Fixes: 91652be5d1b9 ("[CRYPTO] pcbc: Add Propagated CBC template")
Cc: <stable@vger.kernel.org> # v2.6.21+
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Maxim Zhukov <mussitantesmortem@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit eb5e6730db98fcc4b51148b4a819fa4bf864ae54 upstream.
Instantiating "cryptd(crc32c)" causes a crypto self-test failure because
the crypto_alloc_shash() in alg_test_crc32c() fails. This is because
cryptd(crc32c) is an ahash algorithm, not a shash algorithm; so it can
only be accessed through the ahash API, unlike shash algorithms which
can be accessed through both the ahash and shash APIs.
As the test is testing the shash descriptor format which is only
applicable to shash algorithms, skip it for ahash algorithms.
(Note that it's still important to fix crypto self-test failures even
for weird algorithm instantiations like cryptd(crc32c) that no one
would really use; in fips_enabled mode unprivileged users can use them
to panic the kernel, and also they prevent treating a crypto self-test
failure as a bug when fuzzing the kernel.)
Fixes: 8e3ee85e68c5 ("crypto: crc32c - Test descriptor context format")
Cc: stable@vger.kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ba7d7433a0e998c902132bd47330e355a1eaa894 upstream.
Some algorithms have a ->setkey() method that is not atomic, in the
sense that setting a key can fail after changes were already made to the
tfm context. In this case, if a key was already set the tfm can end up
in a state that corresponds to neither the old key nor the new key.
It's not feasible to make all ->setkey() methods atomic, especially ones
that have to key multiple sub-tfms. Therefore, make the crypto API set
CRYPTO_TFM_NEED_KEY if ->setkey() fails and the algorithm requires a
key, to prevent the tfm from being used until a new key is set.
Note: we can't set CRYPTO_TFM_NEED_KEY for OPTIONAL_KEY algorithms, so
->setkey() for those must nevertheless be atomic. That's fine for now
since only the crc32 and crc32c algorithms set OPTIONAL_KEY, and it's
not intended that OPTIONAL_KEY be used much.
[Cc stable mainly because when introducing the NEED_KEY flag I changed
AF_ALG to rely on it; and unlike in-kernel crypto API users, AF_ALG
previously didn't have this problem. So these "incompletely keyed"
states became theoretically accessible via AF_ALG -- though, the
opportunities for causing real mischief seem pretty limited.]
Fixes: 9fa68f620041 ("crypto: hash - prevent using keyed hashes without setting key")
Cc: stable@vger.kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 77568e535af7c4f97eaef1e555bf0af83772456c upstream.
Hash algorithms with an alignmask set, e.g. "xcbc(aes-aesni)" and
"michael_mic", fail the improved hash tests because they sometimes
produce the wrong digest. The bug is that in the case where a
scatterlist element crosses pages, not all the data is actually hashed
because the scatterlist walk terminates too early. This happens because
the 'nbytes' variable in crypto_hash_walk_done() is assigned the number
of bytes remaining in the page, then later interpreted as the number of
bytes remaining in the scatterlist element. Fix it.
Fixes: 900a081f6912 ("crypto: ahash - Fix early termination in hash walk")
Cc: stable@vger.kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 9060cb719e61b685ec0102574e10337fa5f445ea ]
KASAN has found use-after-free in sockfs_setattr.
The existed commit 6d8c50dcb029 ("socket: close race condition between sock_close()
and sockfs_setattr()") is to fix this simillar issue, but it seems to ignore
that crypto module forgets to set the sk to NULL after af_alg_release.
KASAN report details as below:
BUG: KASAN: use-after-free in sockfs_setattr+0x120/0x150
Write of size 4 at addr ffff88837b956128 by task syz-executor0/4186
CPU: 2 PID: 4186 Comm: syz-executor0 Not tainted xxx + #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.10.2-1ubuntu1 04/01/2014
Call Trace:
dump_stack+0xca/0x13e
print_address_description+0x79/0x330
? vprintk_func+0x5e/0xf0
kasan_report+0x18a/0x2e0
? sockfs_setattr+0x120/0x150
sockfs_setattr+0x120/0x150
? sock_register+0x2d0/0x2d0
notify_change+0x90c/0xd40
? chown_common+0x2ef/0x510
chown_common+0x2ef/0x510
? chmod_common+0x3b0/0x3b0
? __lock_is_held+0xbc/0x160
? __sb_start_write+0x13d/0x2b0
? __mnt_want_write+0x19a/0x250
do_fchownat+0x15c/0x190
? __ia32_sys_chmod+0x80/0x80
? trace_hardirqs_on_thunk+0x1a/0x1c
__x64_sys_fchownat+0xbf/0x160
? lockdep_hardirqs_on+0x39a/0x5e0
do_syscall_64+0xc8/0x580
entry_SYSCALL_64_after_hwframe+0x49/0xbe
RIP: 0033:0x462589
Code: f7 d8 64 89 02 b8 ff ff ff ff c3 66 0f 1f 44 00 00 48 89 f8 48 89
f7 48 89 d6 48 89
ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3
48 c7 c1 bc ff ff
ff f7 d8 64 89 01 48
RSP: 002b:00007fb4b2c83c58 EFLAGS: 00000246 ORIG_RAX: 0000000000000104
RAX: ffffffffffffffda RBX: 000000000072bfa0 RCX: 0000000000462589
RDX: 0000000000000000 RSI: 00000000200000c0 RDI: 0000000000000007
RBP: 0000000000000005 R08: 0000000000001000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 00007fb4b2c846bc
R13: 00000000004bc733 R14: 00000000006f5138 R15: 00000000ffffffff
Allocated by task 4185:
kasan_kmalloc+0xa0/0xd0
__kmalloc+0x14a/0x350
sk_prot_alloc+0xf6/0x290
sk_alloc+0x3d/0xc00
af_alg_accept+0x9e/0x670
hash_accept+0x4a3/0x650
__sys_accept4+0x306/0x5c0
__x64_sys_accept4+0x98/0x100
do_syscall_64+0xc8/0x580
entry_SYSCALL_64_after_hwframe+0x49/0xbe
Freed by task 4184:
__kasan_slab_free+0x12e/0x180
kfree+0xeb/0x2f0
__sk_destruct+0x4e6/0x6a0
sk_destruct+0x48/0x70
__sk_free+0xa9/0x270
sk_free+0x2a/0x30
af_alg_release+0x5c/0x70
__sock_release+0xd3/0x280
sock_close+0x1a/0x20
__fput+0x27f/0x7f0
task_work_run+0x136/0x1b0
exit_to_usermode_loop+0x1a7/0x1d0
do_syscall_64+0x461/0x580
entry_SYSCALL_64_after_hwframe+0x49/0xbe
Syzkaller reproducer:
r0 = perf_event_open(&(0x7f0000000000)={0x0, 0x70, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, @perf_config_ext}, 0x0, 0x0,
0xffffffffffffffff, 0x0)
r1 = socket$alg(0x26, 0x5, 0x0)
getrusage(0x0, 0x0)
bind(r1, &(0x7f00000001c0)=@alg={0x26, 'hash\x00', 0x0, 0x0,
'sha256-ssse3\x00'}, 0x80)
r2 = accept(r1, 0x0, 0x0)
r3 = accept4$unix(r2, 0x0, 0x0, 0x0)
r4 = dup3(r3, r0, 0x0)
fchownat(r4, &(0x7f00000000c0)='\x00', 0x0, 0x0, 0x1000)
Fixes: 6d8c50dcb029 ("socket: close race condition between sock_close() and sockfs_setattr()")
Signed-off-by: Mao Wenan <maowenan@huawei.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 0a6a40c2a8c184a2fb467efacfb1cd338d719e0b ]
In the "aes-fixed-time" AES implementation, disable interrupts while
accessing the S-box, in order to make cache-timing attacks more
difficult. Previously it was possible for the CPU to be interrupted
while the S-box was loaded into L1 cache, potentially evicting the
cachelines and causing later table lookups to be time-variant.
In tests I did on x86 and ARM, this doesn't affect performance
significantly. Responsiveness is potentially a concern, but interrupts
are only disabled for a single AES block.
Note that even after this change, the implementation still isn't
necessarily guaranteed to be constant-time; see
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf for a discussion
of the many difficulties involved in writing truly constant-time AES
software. But it's valuable to make such attacks more difficult.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 8f9c469348487844328e162db57112f7d347c49f upstream.
Keys for "authenc" AEADs are formatted as an rtattr containing a 4-byte
'enckeylen', followed by an authentication key and an encryption key.
crypto_authenc_extractkeys() parses the key to find the inner keys.
However, it fails to consider the case where the rtattr's payload is
longer than 4 bytes but not 4-byte aligned, and where the key ends
before the next 4-byte aligned boundary. In this case, 'keylen -=
RTA_ALIGN(rta->rta_len);' underflows to a value near UINT_MAX. This
causes a buffer overread and crash during crypto_ahash_setkey().
Fix it by restricting the rtattr payload to the expected size.
Reproducer using AF_ALG:
#include <linux/if_alg.h>
#include <linux/rtnetlink.h>
#include <sys/socket.h>
int main()
{
int fd;
struct sockaddr_alg addr = {
.salg_type = "aead",
.salg_name = "authenc(hmac(sha256),cbc(aes))",
};
struct {
struct rtattr attr;
__be32 enckeylen;
char keys[1];
} __attribute__((packed)) key = {
.attr.rta_len = sizeof(key),
.attr.rta_type = 1 /* CRYPTO_AUTHENC_KEYA_PARAM */,
};
fd = socket(AF_ALG, SOCK_SEQPACKET, 0);
bind(fd, (void *)&addr, sizeof(addr));
setsockopt(fd, SOL_ALG, ALG_SET_KEY, &key, sizeof(key));
}
It caused:
BUG: unable to handle kernel paging request at ffff88007ffdc000
PGD 2e01067 P4D 2e01067 PUD 2e04067 PMD 2e05067 PTE 0
Oops: 0000 [#1] SMP
CPU: 0 PID: 883 Comm: authenc Not tainted 4.20.0-rc1-00108-g00c9fe37a7f27 #13
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-20181126_142135-anatol 04/01/2014
RIP: 0010:sha256_ni_transform+0xb3/0x330 arch/x86/crypto/sha256_ni_asm.S:155
[...]
Call Trace:
sha256_ni_finup+0x10/0x20 arch/x86/crypto/sha256_ssse3_glue.c:321
crypto_shash_finup+0x1a/0x30 crypto/shash.c:178
shash_digest_unaligned+0x45/0x60 crypto/shash.c:186
crypto_shash_digest+0x24/0x40 crypto/shash.c:202
hmac_setkey+0x135/0x1e0 crypto/hmac.c:66
crypto_shash_setkey+0x2b/0xb0 crypto/shash.c:66
shash_async_setkey+0x10/0x20 crypto/shash.c:223
crypto_ahash_setkey+0x2d/0xa0 crypto/ahash.c:202
crypto_authenc_setkey+0x68/0x100 crypto/authenc.c:96
crypto_aead_setkey+0x2a/0xc0 crypto/aead.c:62
aead_setkey+0xc/0x10 crypto/algif_aead.c:526
alg_setkey crypto/af_alg.c:223 [inline]
alg_setsockopt+0xfe/0x130 crypto/af_alg.c:256
__sys_setsockopt+0x6d/0xd0 net/socket.c:1902
__do_sys_setsockopt net/socket.c:1913 [inline]
__se_sys_setsockopt net/socket.c:1910 [inline]
__x64_sys_setsockopt+0x1f/0x30 net/socket.c:1910
do_syscall_64+0x4a/0x180 arch/x86/entry/common.c:290
entry_SYSCALL_64_after_hwframe+0x49/0xbe
Fixes: e236d4a89a2f ("[CRYPTO] authenc: Move enckeylen into key itself")
Cc: <stable@vger.kernel.org> # v2.6.25+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a7773363624b034ab198c738661253d20a8055c2 upstream.
Authencesn template in decrypt path unconditionally calls aead_request_complete
after ahash_verify which leads to following kernel panic in after decryption.
[ 338.539800] BUG: unable to handle kernel NULL pointer dereference at 0000000000000004
[ 338.548372] PGD 0 P4D 0
[ 338.551157] Oops: 0000 [#1] SMP PTI
[ 338.554919] CPU: 0 PID: 0 Comm: swapper/0 Kdump: loaded Tainted: G W I 4.19.7+ #13
[ 338.564431] Hardware name: Supermicro X8ST3/X8ST3, BIOS 2.0 07/29/10
[ 338.572212] RIP: 0010:esp_input_done2+0x350/0x410 [esp4]
[ 338.578030] Code: ff 0f b6 68 10 48 8b 83 c8 00 00 00 e9 8e fe ff ff 8b 04 25 04 00 00 00 83 e8 01 48 98 48 8b 3c c5 10 00 00 00 e9 f7 fd ff ff <8b> 04 25 04 00 00 00 83 e8 01 48 98 4c 8b 24 c5 10 00 00 00 e9 3b
[ 338.598547] RSP: 0018:ffff911c97803c00 EFLAGS: 00010246
[ 338.604268] RAX: 0000000000000002 RBX: ffff911c4469ee00 RCX: 0000000000000000
[ 338.612090] RDX: 0000000000000000 RSI: 0000000000000130 RDI: ffff911b87c20400
[ 338.619874] RBP: 0000000000000000 R08: ffff911b87c20498 R09: 000000000000000a
[ 338.627610] R10: 0000000000000001 R11: 0000000000000004 R12: 0000000000000000
[ 338.635402] R13: ffff911c89590000 R14: ffff911c91730000 R15: 0000000000000000
[ 338.643234] FS: 0000000000000000(0000) GS:ffff911c97800000(0000) knlGS:0000000000000000
[ 338.652047] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 338.658299] CR2: 0000000000000004 CR3: 00000001ec20a000 CR4: 00000000000006f0
[ 338.666382] Call Trace:
[ 338.669051] <IRQ>
[ 338.671254] esp_input_done+0x12/0x20 [esp4]
[ 338.675922] chcr_handle_resp+0x3b5/0x790 [chcr]
[ 338.680949] cpl_fw6_pld_handler+0x37/0x60 [chcr]
[ 338.686080] chcr_uld_rx_handler+0x22/0x50 [chcr]
[ 338.691233] uldrx_handler+0x8c/0xc0 [cxgb4]
[ 338.695923] process_responses+0x2f0/0x5d0 [cxgb4]
[ 338.701177] ? bitmap_find_next_zero_area_off+0x3a/0x90
[ 338.706882] ? matrix_alloc_area.constprop.7+0x60/0x90
[ 338.712517] ? apic_update_irq_cfg+0x82/0xf0
[ 338.717177] napi_rx_handler+0x14/0xe0 [cxgb4]
[ 338.722015] net_rx_action+0x2aa/0x3e0
[ 338.726136] __do_softirq+0xcb/0x280
[ 338.730054] irq_exit+0xde/0xf0
[ 338.733504] do_IRQ+0x54/0xd0
[ 338.736745] common_interrupt+0xf/0xf
Fixes: 104880a6b470 ("crypto: authencesn - Convert to new AEAD...")
Signed-off-by: Harsh Jain <harsh@chelsio.com>
Cc: stable@vger.kernel.org
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 508a1c4df085a547187eed346f1bfe5e381797f1 ]
The simd wrapper's skcipher request context structure consists
of a single subrequest whose size is taken from the subordinate
skcipher. However, in simd_skcipher_init(), the reqsize that is
retrieved is not from the subordinate skcipher but from the
cryptd request structure, whose size is completely unrelated to
the actual wrapped skcipher.
Reported-by: Qian Cai <cai@gmx.us>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Qian Cai <cai@gmx.us>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit f43f39958beb206b53292801e216d9b8a660f087 upstream.
All bytes of the NETLINK_CRYPTO report structures must be initialized,
since they are copied to userspace. The change from strncpy() to
strlcpy() broke this. As a minimal fix, change it back.
Fixes: 4473710df1f8 ("crypto: user - Prepare for CRYPTO_MAX_ALG_NAME expansion")
Cc: <stable@vger.kernel.org> # v4.12+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 331351f89c36bf7d03561a28b6f64fa10a9f6f3a upstream.
ghash is a keyed hash algorithm, thus setkey needs to be called.
Otherwise the following error occurs:
$ modprobe tcrypt mode=318 sec=1
testing speed of async ghash-generic (ghash-generic)
tcrypt: test 0 ( 16 byte blocks, 16 bytes per update, 1 updates):
tcrypt: hashing failed ret=-126
Cc: <stable@vger.kernel.org> # 4.6+
Fixes: 0660511c0bee ("crypto: tcrypt - Use ahash")
Tested-by: Franck Lenormand <franck.lenormand@nxp.com>
Signed-off-by: Horia Geantă <horia.geanta@nxp.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit fbe1a850b3b1522e9fc22319ccbbcd2ab05328d2 upstream.
When the LRW block counter overflows, the current implementation returns
128 as the index to the precomputed multiplication table, which has 128
entries. This patch fixes it to return the correct value (127).
Fixes: 64470f1b8510 ("[CRYPTO] lrw: Liskov Rivest Wagner, a tweakable narrow block cipher mode")
Cc: <stable@vger.kernel.org> # 2.6.20+
Reported-by: Eric Biggers <ebiggers@kernel.org>
Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit cefd769fd0192c84d638f66da202459ed8ad63ba ]
As of GCC 9.0.0 the build is reporting warnings like:
crypto/ablkcipher.c: In function ‘crypto_ablkcipher_report’:
crypto/ablkcipher.c:374:2: warning: ‘strncpy’ specified bound 64 equals destination size [-Wstringop-truncation]
strncpy(rblkcipher.geniv, alg->cra_ablkcipher.geniv ?: "<default>",
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
sizeof(rblkcipher.geniv));
~~~~~~~~~~~~~~~~~~~~~~~~~
This means the strnycpy might create a non null terminated string. Fix this by
explicitly performing '\0' termination.
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Eric Biggers <ebiggers3@gmail.com>
Cc: Nick Desaulniers <nick.desaulniers@gmail.com>
Signed-off-by: Stafford Horne <shorne@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit e2861fa71641c6414831d628a1f4f793b6562580 ]
When EVM attempts to appraise a file signed with a crypto algorithm the
kernel doesn't have support for, it will cause the kernel to trigger a
module load. If the EVM policy includes appraisal of kernel modules this
will in turn call back into EVM - since EVM is holding a lock until the
crypto initialisation is complete, this triggers a deadlock. Add a
CRYPTO_NOLOAD flag and skip module loading if it's set, and add that flag
in the EVM case in order to fail gracefully with an error message
instead of deadlocking.
Signed-off-by: Matthew Garrett <mjg59@google.com>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Mimi Zohar <zohar@linux.vnet.ibm.com>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 6e36719fbe90213fbba9f50093fa2d4d69b0e93c upstream.
My last bugfix added -Os on the command line, which unfortunately caused
a build regression on powerpc in some configurations.
I've done some more analysis of the original problem and found slightly
different workaround that avoids this regression and also results in
better performance on gcc-7.0: -fcode-hoisting is an optimization step
that got added in gcc-7 and that for all gcc-7 versions causes worse
performance.
This disables -fcode-hoisting on all compilers that understand the option.
For gcc-7.1 and 7.2 I found the same performance as my previous patch
(using -Os), in gcc-7.0 it was even better. On gcc-8 I could see no
change in performance from this patch. In theory, code hoisting should
not be able make things better for the AES cipher, so leaving it
disabled for gcc-8 only serves to simplify the Makefile change.
Reported-by: kbuild test robot <fengguang.wu@intel.com>
Link: https://www.mail-archive.com/linux-crypto@vger.kernel.org/msg30418.html
Link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83356
Link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83651
Fixes: 148b974deea9 ("crypto: aes-generic - build with -Os on gcc-7+")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Horia Geanta <horia.geanta@nxp.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 817aef260037f33ee0f44c17fe341323d3aebd6d upstream.
Replace the use of a magic number that indicates that verify_*_signature()
should use the secondary keyring with a symbol.
Signed-off-by: Yannik Sembritzki <yannik@sembritzki.me>
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: keyrings@vger.kernel.org
Cc: linux-security-module@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 8088d3dd4d7c6933a65aa169393b5d88d8065672 upstream.
scatterwalk_done() is only meant to be called after a nonzero number of
bytes have been processed, since scatterwalk_pagedone() will flush the
dcache of the *previous* page. But in the error case of
skcipher_walk_done(), e.g. if the input wasn't an integer number of
blocks, scatterwalk_done() was actually called after advancing 0 bytes.
This caused a crash ("BUG: unable to handle kernel paging request")
during '!PageSlab(page)' on architectures like arm and arm64 that define
ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE, provided that the input was
page-aligned as in that case walk->offset == 0.
Fix it by reorganizing skcipher_walk_done() to skip the
scatterwalk_advance() and scatterwalk_done() if an error has occurred.
This bug was found by syzkaller fuzzing.
Reproducer, assuming ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE:
#include <linux/if_alg.h>
#include <sys/socket.h>
#include <unistd.h>
int main()
{
struct sockaddr_alg addr = {
.salg_type = "skcipher",
.salg_name = "cbc(aes-generic)",
};
char buffer[4096] __attribute__((aligned(4096))) = { 0 };
int fd;
fd = socket(AF_ALG, SOCK_SEQPACKET, 0);
bind(fd, (void *)&addr, sizeof(addr));
setsockopt(fd, SOL_ALG, ALG_SET_KEY, buffer, 16);
fd = accept(fd, NULL, NULL);
write(fd, buffer, 15);
read(fd, buffer, 15);
}
Reported-by: Liu Chao <liuchao741@huawei.com>
Fixes: b286d8b1a690 ("crypto: skcipher - Add skcipher walk interface")
Cc: <stable@vger.kernel.org> # v4.10+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 0567fc9e90b9b1c8dbce8a5468758e6206744d4a upstream.
The ALIGN() macro needs to be passed the alignment, not the alignmask
(which is the alignment minus 1).
Fixes: b286d8b1a690 ("crypto: skcipher - Add skcipher walk interface")
Cc: <stable@vger.kernel.org> # v4.10+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 318abdfbe708aaaa652c79fb500e9bd60521f9dc upstream.
Like the skcipher_walk and blkcipher_walk cases:
scatterwalk_done() is only meant to be called after a nonzero number of
bytes have been processed, since scatterwalk_pagedone() will flush the
dcache of the *previous* page. But in the error case of
ablkcipher_walk_done(), e.g. if the input wasn't an integer number of
blocks, scatterwalk_done() was actually called after advancing 0 bytes.
This caused a crash ("BUG: unable to handle kernel paging request")
during '!PageSlab(page)' on architectures like arm and arm64 that define
ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE, provided that the input was
page-aligned as in that case walk->offset == 0.
Fix it by reorganizing ablkcipher_walk_done() to skip the
scatterwalk_advance() and scatterwalk_done() if an error has occurred.
Reported-by: Liu Chao <liuchao741@huawei.com>
Fixes: bf06099db18a ("crypto: skcipher - Add ablkcipher_walk interfaces")
Cc: <stable@vger.kernel.org> # v2.6.35+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 0868def3e4100591e7a1fdbf3eed1439cc8f7ca3 upstream.
Like the skcipher_walk case:
scatterwalk_done() is only meant to be called after a nonzero number of
bytes have been processed, since scatterwalk_pagedone() will flush the
dcache of the *previous* page. But in the error case of
blkcipher_walk_done(), e.g. if the input wasn't an integer number of
blocks, scatterwalk_done() was actually called after advancing 0 bytes.
This caused a crash ("BUG: unable to handle kernel paging request")
during '!PageSlab(page)' on architectures like arm and arm64 that define
ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE, provided that the input was
page-aligned as in that case walk->offset == 0.
Fix it by reorganizing blkcipher_walk_done() to skip the
scatterwalk_advance() and scatterwalk_done() if an error has occurred.
This bug was found by syzkaller fuzzing.
Reproducer, assuming ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE:
#include <linux/if_alg.h>
#include <sys/socket.h>
#include <unistd.h>
int main()
{
struct sockaddr_alg addr = {
.salg_type = "skcipher",
.salg_name = "ecb(aes-generic)",
};
char buffer[4096] __attribute__((aligned(4096))) = { 0 };
int fd;
fd = socket(AF_ALG, SOCK_SEQPACKET, 0);
bind(fd, (void *)&addr, sizeof(addr));
setsockopt(fd, SOL_ALG, ALG_SET_KEY, buffer, 16);
fd = accept(fd, NULL, NULL);
write(fd, buffer, 15);
read(fd, buffer, 15);
}
Reported-by: Liu Chao <liuchao741@huawei.com>
Fixes: 5cde0af2a982 ("[CRYPTO] cipher: Added block cipher type")
Cc: <stable@vger.kernel.org> # v2.6.19+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit bb29648102335586e9a66289a1d98a0cb392b6e5 upstream.
syzbot reported a crash in vmac_final() when multiple threads
concurrently use the same "vmac(aes)" transform through AF_ALG. The bug
is pretty fundamental: the VMAC template doesn't separate per-request
state from per-tfm (per-key) state like the other hash algorithms do,
but rather stores it all in the tfm context. That's wrong.
Also, vmac_final() incorrectly zeroes most of the state including the
derived keys and cached pseudorandom pad. Therefore, only the first
VMAC invocation with a given key calculates the correct digest.
Fix these bugs by splitting the per-tfm state from the per-request state
and using the proper init/update/final sequencing for requests.
Reproducer for the crash:
#include <linux/if_alg.h>
#include <sys/socket.h>
#include <unistd.h>
int main()
{
int fd;
struct sockaddr_alg addr = {
.salg_type = "hash",
.salg_name = "vmac(aes)",
};
char buf[256] = { 0 };
fd = socket(AF_ALG, SOCK_SEQPACKET, 0);
bind(fd, (void *)&addr, sizeof(addr));
setsockopt(fd, SOL_ALG, ALG_SET_KEY, buf, 16);
fork();
fd = accept(fd, NULL, NULL);
for (;;)
write(fd, buf, 256);
}
The immediate cause of the crash is that vmac_ctx_t.partial_size exceeds
VMAC_NHBYTES, causing vmac_final() to memset() a negative length.
Reported-by: syzbot+264bca3a6e8d645550d3@syzkaller.appspotmail.com
Fixes: f1939f7c5645 ("crypto: vmac - New hash algorithm for intel_txt support")
Cc: <stable@vger.kernel.org> # v2.6.32+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 73bf20ef3df262026c3470241ae4ac8196943ffa upstream.
The VMAC template assumes the block cipher has a 128-bit block size, but
it failed to check for that. Thus it was possible to instantiate it
using a 64-bit block size cipher, e.g. "vmac(cast5)", causing
uninitialized memory to be used.
Add the needed check when instantiating the template.
Fixes: f1939f7c5645 ("crypto: vmac - New hash algorithm for intel_txt support")
Cc: <stable@vger.kernel.org> # v2.6.32+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit ad2fdcdf75d169e7a5aec6c7cb421c0bec8ec711 ]
In crypto_authenc_setkey we save pointers to the authenc keys in
a local variable of type struct crypto_authenc_keys and we don't
zeroize it after use. Fix this and don't leak pointers to the
authenc keys.
Signed-off-by: Tudor Ambarus <tudor.ambarus@microchip.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 31545df391d58a3bb60e29b1192644a6f2b5a8dd ]
In crypto_authenc_esn_setkey we save pointers to the authenc keys
in a local variable of type struct crypto_authenc_keys and we don't
zeroize it after use. Fix this and don't leak pointers to the
authenc keys.
Signed-off-by: Tudor Ambarus <tudor.ambarus@microchip.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 2546da99212f22034aecf279da9c47cbfac6c981 upstream.
The RX SGL in processing is already registered with the RX SGL tracking
list to support proper cleanup. The cleanup code path uses the
sg_num_bytes variable which must therefore be always initialized, even
in the error code path.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Reported-by: syzbot+9c251bdd09f83b92ba95@syzkaller.appspotmail.com
#syz test: https://github.com/google/kmsan.git master
CC: <stable@vger.kernel.org> #4.14
Fixes: e870456d8e7c ("crypto: algif_skcipher - overhaul memory management")
Fixes: d887c52d6ae4 ("crypto: algif_aead - overhaul memory management")
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b7b73cd5d74694ed59abcdb4974dacb4ff8b2a2a upstream.
The x86 assembly implementations of Salsa20 use the frame base pointer
register (%ebp or %rbp), which breaks frame pointer convention and
breaks stack traces when unwinding from an interrupt in the crypto code.
Recent (v4.10+) kernels will warn about this, e.g.
WARNING: kernel stack regs at 00000000a8291e69 in syzkaller047086:4677 has bad 'bp' value 000000001077994c
[...]
But after looking into it, I believe there's very little reason to still
retain the x86 Salsa20 code. First, these are *not* vectorized
(SSE2/SSSE3/AVX2) implementations, which would be needed to get anywhere
close to the best Salsa20 performance on any remotely modern x86
processor; they're just regular x86 assembly. Second, it's still
unclear that anyone is actually using the kernel's Salsa20 at all,
especially given that now ChaCha20 is supported too, and with much more
efficient SSSE3 and AVX2 implementations. Finally, in benchmarks I did
on both Intel and AMD processors with both gcc 8.1.0 and gcc 4.9.4, the
x86_64 salsa20-asm is actually slightly *slower* than salsa20-generic
(~3% slower on Skylake, ~10% slower on Zen), while the i686 salsa20-asm
is only slightly faster than salsa20-generic (~15% faster on Skylake,
~20% faster on Zen). The gcc version made little difference.
So, the x86_64 salsa20-asm is pretty clearly useless. That leaves just
the i686 salsa20-asm, which based on my tests provides a 15-20% speed
boost. But that's without updating the code to not use %ebp. And given
the maintenance cost, the small speed difference vs. salsa20-generic,
the fact that few people still use i686 kernels, the doubt that anyone
is even using the kernel's Salsa20 at all, and the fact that a SSE2
implementation would almost certainly be much faster on any remotely
modern x86 processor yet no one has cared enough to add one yet, I don't
think it's worthwhile to keep.
Thus, just remove both the x86_64 and i686 salsa20-asm implementations.
Reported-by: syzbot+ffa3a158337bbc01ff09@syzkaller.appspotmail.com
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b65c32ec5a942ab3ada93a048089a938918aba7f upstream.
The signatureValue field of a X.509 certificate is encoded as a BIT STRING.
For RSA signatures this BIT STRING is of so-called primitive subtype, which
contains a u8 prefix indicating a count of unused bits in the encoding.
We have to strip this prefix from signature data, just as we already do for
key data in x509_extract_key_data() function.
This wasn't noticed earlier because this prefix byte is zero for RSA key
sizes divisible by 8. Since BIT STRING is a big-endian encoding adding zero
prefixes has no bearing on its value.
The signature length, however was incorrect, which is a problem for RSA
implementations that need it to be exactly correct (like AMD CCP).
Signed-off-by: Maciej S. Szmigiero <mail@maciej.szmigiero.name>
Fixes: c26fd69fa009 ("X.509: Add a crypto key parser for binary (DER) X.509 certificates")
Cc: stable@vger.kernel.org
Signed-off-by: James Morris <james.morris@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 6459ae386699a5fe0dc52cf30255f75274fa43a4 ]
If none of the certificates in a SignerInfo's certificate chain match a
trusted key, nor is the last certificate signed by a trusted key, then
pkcs7_validate_trust_one() tries to check whether the SignerInfo's
signature was made directly by a trusted key. But, it actually fails to
set the 'sig' variable correctly, so it actually verifies the last
signature seen. That will only be the SignerInfo's signature if the
certificate chain is empty; otherwise it will actually be the last
certificate's signature.
This is not by itself a security problem, since verifying any of the
certificates in the chain should be sufficient to verify the SignerInfo.
Still, it's not working as intended so it should be fixed.
Fix it by setting 'sig' correctly for the direct verification case.
Fixes: 757932e6da6d ("PKCS#7: Handle PKCS#7 messages that contain no X.509 certs")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a466856e0b7ab269cdf9461886d007e88ff575b0 upstream.
syzbot reported :
BUG: KMSAN: uninit-value in alg_bind+0xe3/0xd90 crypto/af_alg.c:162
We need to check addr_len before dereferencing sa (or uaddr)
Fixes: bb30b8848c85 ("crypto: af_alg - whitelist mask and type")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Cc: Stephan Mueller <smueller@chronox.de>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit eea0d3ea7546961f69f55b26714ac8fd71c7c020 upstream.
During freeing of the internal buffers used by the DRBG, set the pointer
to NULL. It is possible that the context with the freed buffers is
reused. In case of an error during initialization where the pointers
do not yet point to allocated memory, the NULL value prevents a double
free.
Cc: stable@vger.kernel.org
Fixes: 3cfc3b9721123 ("crypto: drbg - use aligned buffers")
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Reported-by: syzbot+75397ee3df5c70164154@syzkaller.appspotmail.com
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 148b974deea927f5dbb6c468af2707b488bfa2de ]
While testing other changes, I discovered that gcc-7.2.1 produces badly
optimized code for aes_encrypt/aes_decrypt. This is especially true when
CONFIG_UBSAN_SANITIZE_ALL is enabled, where it leads to extremely
large stack usage that in turn might cause kernel stack overflows:
crypto/aes_generic.c: In function 'aes_encrypt':
crypto/aes_generic.c:1371:1: warning: the frame size of 4880 bytes is larger than 2048 bytes [-Wframe-larger-than=]
crypto/aes_generic.c: In function 'aes_decrypt':
crypto/aes_generic.c:1441:1: warning: the frame size of 4864 bytes is larger than 2048 bytes [-Wframe-larger-than=]
I verified that this problem exists on all architectures that are
supported by gcc-7.2, though arm64 in particular is less affected than
the others. I also found that gcc-7.1 and gcc-8 do not show the extreme
stack usage but still produce worse code than earlier versions for this
file, apparently because of optimization passes that generally provide
a substantial improvement in object code quality but understandably fail
to find any shortcuts in the AES algorithm.
Possible workarounds include
a) disabling -ftree-pre and -ftree-sra optimizations, this was an earlier
patch I tried, which reliably fixed the stack usage, but caused a
serious performance regression in some versions, as later testing
found.
b) disabling UBSAN on this file or all ciphers, as suggested by Ard
Biesheuvel. This would lead to massively better crypto performance in
UBSAN-enabled kernels and avoid the stack usage, but there is a concern
over whether we should exclude arbitrary files from UBSAN at all.
c) Forcing the optimization level in a different way. Similar to a),
but rather than deselecting specific optimization stages,
this now uses "gcc -Os" for this file, regardless of the
CONFIG_CC_OPTIMIZE_FOR_PERFORMANCE/SIZE option. This is a reliable
workaround for the stack consumption on all architecture, and I've
retested the performance results now on x86, cycles/byte (lower is
better) for cbc(aes-generic) with 256 bit keys:
-O2 -Os
gcc-6.3.1 14.9 15.1
gcc-7.0.1 14.7 15.3
gcc-7.1.1 15.3 14.7
gcc-7.2.1 16.8 15.9
gcc-8.0.0 15.5 15.6
This implements the option c) by enabling forcing -Os on all compiler
versions starting with gcc-7.1. As a workaround for PR83356, it would
only be needed for gcc-7.2+ with UBSAN enabled, but since it also shows
better performance on gcc-7.1 without UBSAN, it seems appropriate to
use the faster version here as well.
Side note: during testing, I also played with the AES code in libressl,
which had a similar performance regression from gcc-6 to gcc-7.2,
but was three times slower overall. It might be interesting to
investigate that further and possibly port the Linux implementation
into that.
Link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83356
Link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83651
Cc: Richard Biener <rguenther@suse.de>
Cc: Jakub Jelinek <jakub@gcc.gnu.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 900a081f6912a8985dc15380ec912752cb66025a upstream.
When we have an unaligned SG list entry where there is no leftover
aligned data, the hash walk code will incorrectly return zero as if
the entire SG list has been processed.
This patch fixes it by moving onto the next page instead.
Reported-by: Eli Cooper <elicooper@gmx.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 333e18c5cc74438f8940c7f3a8b3573748a371f9 upstream.
The RSA private key for the first form should have
version, prime1, prime2, exponent1, exponent2, coefficient
values 0.
With non-zero values for prime1,2, exponent 1,2 and coefficient
the Intel QAT driver will assume that values are provided for the
private key second form. This will result in signature verification
failures for modules where QAT device is present and the modules
are signed with rsa,sha256.
Cc: <stable@vger.kernel.org>
Signed-off-by: Giovanni Cabiddu <giovanni.cabiddu@intel.com>
Signed-off-by: Conor McLoughlin <conor.mcloughlin@intel.com>
Reviewed-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 8c9bdab21289c211ca1ca6a5f9b7537b4a600a02 upstream.
The buffer rctx->ext contains potentially sensitive data and should
be freed with kzfree.
Cc: <stable@vger.kernel.org>
Fixes: 700cb3f5fe75 ("crypto: lrw - Convert to skcipher")
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 4c0e22c90510308433272d7ba281b1eb4eda8209 ]
If crypto_get_default_rng returns an error, the
function ecc_gen_privkey should return an error.
Instead, it currently tries to use the default_rng
nevertheless, thus creating a kernel panic with a
NULL pointer dereference.
Returning the error directly, as was supposedly
intended when looking at the code, fixes this.
Signed-off-by: Pierre Ducroquet <pinaraf@pinaraf.info>
Reviewed-by: PrasannaKumar Muralidharan <prasannatsmkumar@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit af955bf15d2c27496b0269b1f05c26f758c68314 ]
This variable was increased and decreased without any protection.
Result was an occasional misscount and negative wrap around resulting
in false resource allocation failures.
Fixes: 7d2c3f54e6f6 ("crypto: af_alg - remove locking in async callback")
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|