summaryrefslogtreecommitdiff
path: root/crypto/jitterentropy-kcapi.c
AgeCommit message (Collapse)AuthorFilesLines
2019-06-06crypto: jitter - update implementation to 2.1.2Stephan Müller1-5/+0
The Jitter RNG implementation is updated to comply with upstream version 2.1.2. The change covers the following aspects: * Time variation measurement is conducted over the LFSR operation instead of the XOR folding * Invcation of stuck test during initialization * Removal of the stirring functionality and the Von-Neumann unbiaser as the LFSR using a primitive and irreducible polynomial generates an identical distribution of random bits This implementation was successfully used in FIPS 140-2 validations as well as in German BSI evaluations. This kernel implementation was tested as follows: * The unchanged kernel code file jitterentropy.c is compiled as part of user space application to generate raw unconditioned noise data. That data is processed with the NIST SP800-90B non-IID test tool to verify that the kernel code exhibits an equal amount of noise as the upstream Jitter RNG version 2.1.2. * Using AF_ALG with the libkcapi tool of kcapi-rng the Jitter RNG was output tested with dieharder to verify that the output does not exhibit statistical weaknesses. The following command was used: kcapi-rng -n "jitterentropy_rng" -b 100000000000 | dieharder -a -g 200 * The unchanged kernel code file jitterentropy.c is compiled as part of user space application to test the LFSR implementation. The LFSR is injected a monotonically increasing counter as input and the output is fed into dieharder to verify that the LFSR operation does not exhibit statistical weaknesses. * The patch was tested on the Muen separation kernel which returns a more coarse time stamp to verify that the Jitter RNG does not cause regressions with its initialization test considering that the Jitter RNG depends on a high-resolution timer. Tested-by: Reto Buerki <reet@codelabs.ch> Signed-off-by: Stephan Mueller <smueller@chronox.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2019-04-18crypto: run initcalls for generic implementations earlierEric Biggers1-1/+1
Use subsys_initcall for registration of all templates and generic algorithm implementations, rather than module_init. Then change cryptomgr to use arch_initcall, to place it before the subsys_initcalls. This is needed so that when both a generic and optimized implementation of an algorithm are built into the kernel (not loadable modules), the generic implementation is registered before the optimized one. Otherwise, the self-tests for the optimized implementation are unable to allocate the generic implementation for the new comparison fuzz tests. Note that on arm, a side effect of this change is that self-tests for generic implementations may run before the unaligned access handler has been installed. So, unaligned accesses will crash the kernel. This is arguably a good thing as it makes it easier to detect that type of bug. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2016-11-17crypto: jitterentropy - drop duplicate header module.hGeliang Tang1-1/+0
Drop duplicate header module.h from jitterentropy-kcapi.c. Signed-off-by: Geliang Tang <geliangtang@gmail.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2016-06-24crypto: jitterentropy - use ktime_get_ns as fallbackStephan Mueller1-9/+13
As part of the Y2038 development, __getnstimeofday is not supposed to be used any more. It is now replaced with ktime_get_ns. The Jitter RNG uses the time stamp to measure the execution time of a given code path and tries to detect variations in the execution time. Therefore, the only requirement the Jitter RNG has, is a sufficient high resolution to detect these variations. The change was tested on x86 to show an identical behavior as RDTSC. The used test code simply measures the execution time of the heart of the RNG: jent_get_nstime(&time); jent_memaccess(ec, min); jent_fold_time(NULL, time, &folded, min); jent_get_nstime(&time2); return ((time2 - time)); Signed-off-by: Stephan Mueller <smueller@chronox.de> Acked-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-10-14crypto: jitterentropy - remove unnecessary information from a commentAlexander Kuleshov1-4/+0
The clocksource does not provide clocksource_register() function since f893598 commit (clocksource: Mostly kill clocksource_register()), so let's remove unnecessary information about this function from a comment. Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com> Suggested-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-07-28crypto: jitterentropy - use safe format string parametersKees Cook1-1/+1
Since the API for jent_panic() does not include format string parameters, adjust the call to panic() to use a literal string to avoid any future callers from leaking format strings into the panic message. Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Stephan Mueller <smueller@chronox.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2015-06-25crypto: jitterentropy - avoid compiler warningsStephan Mueller1-0/+208
The core of the Jitter RNG is intended to be compiled with -O0. To ensure that the Jitter RNG can be compiled on all architectures, separate out the RNG core into a stand-alone C file that can be compiled with -O0 which does not depend on any kernel include file. As no kernel includes can be used in the C file implementing the core RNG, any dependencies on kernel code must be extracted. A second file provides the link to the kernel and the kernel crypto API that can be compiled with the regular compile options of the kernel. Signed-off-by: Stephan Mueller <smueller@chronox.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>