Age | Commit message (Collapse) | Author | Files | Lines |
|
block/blk-mq.h needs various definitions from <linux/blk-mq.h>,
include it there instead of relying on the source files to include
both.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Damien Le Moal <dlemoal@kernel.org>
Link: https://lore.kernel.org/r/20230413064057.707578-4-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
We need to set QUEUE_FLAG_STATS for two cases:
1. blk_stat_enable_accounting()
2. blk_stat_add_callback()
So we should clear it only when ((q->stats->accounting == 0) &&
list_empty(&q->stats->callbacks)).
blk_stat_disable_accounting() only check if q->stats->accounting
is 0 before clear the flag, this patch fix it.
Also add list_empty(&q->stats->callbacks)) check when enable, or
the flag is already set.
The bug can be reproduced on kernel without BLK_DEV_THROTTLING
(since it unconditionally enable accounting, see the next patch).
# cat /sys/block/sr0/queue/scheduler
none mq-deadline [bfq]
# cat /sys/kernel/debug/block/sr0/state
SAME_COMP|IO_STAT|INIT_DONE|STATS|REGISTERED|NOWAIT|30
# echo none > /sys/block/sr0/queue/scheduler
# cat /sys/kernel/debug/block/sr0/state
SAME_COMP|IO_STAT|INIT_DONE|REGISTERED|NOWAIT
# cat /sys/block/sr0/queue/wbt_lat_usec
75000
We can see that after changing elevator from "bfq" to "none",
"STATS" flag is lost even though WBT callback still need it.
Fixes: 68497092bde9 ("block: make queue stat accounting a reference")
Cc: <stable@vger.kernel.org> # v5.17+
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/r/20230413062805.2081970-1-chengming.zhou@linux.dev
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
io_uring provides the only way user space can poll completions, and that
always sets BLK_POLL_NOSLEEP. This effectively makes hybrid polling dead
code, so remove it and everything supporting it.
Hybrid polling was effectively killed off with 9650b453a3d4b1, "block:
ignore RWF_HIPRI hint for sync dio", but still potentially reachable
through io_uring until d729cf9acb93119, "io_uring: don't sleep when
polling for I/O", but hybrid polling probably should not have been
reachable through that async interface from the beginning.
Fixes: 9650b453a3d4 ("block: ignore RWF_HIPRI hint for sync dio")
Fixes: d729cf9acb93 ("io_uring: don't sleep when polling for I/O")
Signed-off-by: Keith Busch <kbusch@kernel.org>
Link: https://lore.kernel.org/r/20230320194926.3353144-1-kbusch@meta.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
blk_throtl_stat_add is called from blk_stat_add explicitly, unlike the
other stats that go through q->stats->callbacks. To prepare for cgroup
data moving to the gendisk, ensure blk_throtl_stat_add is only called
for the plain READ and WRITE commands that it actually handles internally,
as blk_stat_add can also be called for passthrough commands on queues that
do not have a gendisk associated with them.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Andreas Herrmann <aherrmann@suse.de>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/r/20230203150400.3199230-2-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
kyber turns on IO statistics when it is loaded on a queue, which means
that even if kyber is then later unloaded, we're still stuck with stats
enabled on the queue.
Change the account enabled from a bool to an int, and pair the enable call
with the equivalent disable call. This ensures that stats gets turned off
again appropriately.
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
This is essentially never used, yet it's about 1/3rd of the total
queue size. Allocate it when needed, and don't embed it in the queue.
Kill the queue flag for this while at it, since we can just check the
assigned pointer now.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
blk-iocost calls blk_stat_enable_accounting() while holding an irqsafe lock
which triggers a lockdep splat because q->stats->lock isn't irqsafe. Let's
make it irqsafe.
Signed-off-by: Tejun Heo <tj@kernel.org>
Fixes: cd006509b0a9 ("blk-iocost: account for IO size when testing latencies")
Cc: stable@vger.kernel.org # v5.8+
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
blk_stat_add() calls {get,put}_cpu_ptr() in a loop, which entails
overhead of disabling/enabling preemption. The loop is under RCU
(i.e.short) anyway, so do get_cpu() in advance.
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Various block layer files do not have any licensing information at all.
Add SPDX tags for the default kernel GPLv2 license to those.
Reviewed-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Kyber will need this in a future change if it is built as a module.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
We need to use blk_rq_stat in the blkcg qos stuff, so export some of
these helpers so they can be used by other things.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Currently, struct request has four timestamp fields:
- A start time, set at get_request time, in jiffies, used for iostats
- An I/O start time, set at start_request time, in ktime nanoseconds,
used for blk-stats (i.e., wbt, kyber, hybrid polling)
- Another start time and another I/O start time, used for cfq and bfq
These can all be consolidated into one start time and one I/O start
time, both in ktime nanoseconds, shaving off up to 16 bytes from struct
request depending on the kernel config.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
struct blk_issue_stat squashes three things into one u64:
- The time the driver started working on a request
- The original size of the request (for the io.low controller)
- Flags for writeback throttling
It turns out that on x86_64, we have a 4 byte hole in struct request
which we can fill with the non-timestamp fields from blk_issue_stat,
simplifying things quite a bit.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Since the queue flags may be changed concurrently from multiple
contexts after a queue becomes visible in sysfs, make these changes
safe by protecting these with the queue lock.
Cc: Christoph Hellwig <hch@lst.de>
Cc: Hannes Reinecke <hare@suse.de>
Cc: Ming Lei <ming.lei@redhat.com>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Except for changing the atomic queue flag manipulations that are
protected by the queue lock into non-atomic manipulations, this
patch does not change any functionality.
Cc: Christoph Hellwig <hch@lst.de>
Cc: Hannes Reinecke <hare@suse.de>
Cc: Ming Lei <ming.lei@redhat.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
This converts all remaining cases of the old setup_timer() API into using
timer_setup(), where the callback argument is the structure already
holding the struct timer_list. These should have no behavioral changes,
since they just change which pointer is passed into the callback with
the same available pointers after conversion. It handles the following
examples, in addition to some other variations.
Casting from unsigned long:
void my_callback(unsigned long data)
{
struct something *ptr = (struct something *)data;
...
}
...
setup_timer(&ptr->my_timer, my_callback, ptr);
and forced object casts:
void my_callback(struct something *ptr)
{
...
}
...
setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr);
become:
void my_callback(struct timer_list *t)
{
struct something *ptr = from_timer(ptr, t, my_timer);
...
}
...
timer_setup(&ptr->my_timer, my_callback, 0);
Direct function assignments:
void my_callback(unsigned long data)
{
struct something *ptr = (struct something *)data;
...
}
...
ptr->my_timer.function = my_callback;
have a temporary cast added, along with converting the args:
void my_callback(struct timer_list *t)
{
struct something *ptr = from_timer(ptr, t, my_timer);
...
}
...
ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback;
And finally, callbacks without a data assignment:
void my_callback(unsigned long data)
{
...
}
...
setup_timer(&ptr->my_timer, my_callback, 0);
have their argument renamed to verify they're unused during conversion:
void my_callback(struct timer_list *unused)
{
...
}
...
timer_setup(&ptr->my_timer, my_callback, 0);
The conversion is done with the following Coccinelle script:
spatch --very-quiet --all-includes --include-headers \
-I ./arch/x86/include -I ./arch/x86/include/generated \
-I ./include -I ./arch/x86/include/uapi \
-I ./arch/x86/include/generated/uapi -I ./include/uapi \
-I ./include/generated/uapi --include ./include/linux/kconfig.h \
--dir . \
--cocci-file ~/src/data/timer_setup.cocci
@fix_address_of@
expression e;
@@
setup_timer(
-&(e)
+&e
, ...)
// Update any raw setup_timer() usages that have a NULL callback, but
// would otherwise match change_timer_function_usage, since the latter
// will update all function assignments done in the face of a NULL
// function initialization in setup_timer().
@change_timer_function_usage_NULL@
expression _E;
identifier _timer;
type _cast_data;
@@
(
-setup_timer(&_E->_timer, NULL, _E);
+timer_setup(&_E->_timer, NULL, 0);
|
-setup_timer(&_E->_timer, NULL, (_cast_data)_E);
+timer_setup(&_E->_timer, NULL, 0);
|
-setup_timer(&_E._timer, NULL, &_E);
+timer_setup(&_E._timer, NULL, 0);
|
-setup_timer(&_E._timer, NULL, (_cast_data)&_E);
+timer_setup(&_E._timer, NULL, 0);
)
@change_timer_function_usage@
expression _E;
identifier _timer;
struct timer_list _stl;
identifier _callback;
type _cast_func, _cast_data;
@@
(
-setup_timer(&_E->_timer, _callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, &_callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, _callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, &_callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)_callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)&_callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, &_callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, &_callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
_E->_timer@_stl.function = _callback;
|
_E->_timer@_stl.function = &_callback;
|
_E->_timer@_stl.function = (_cast_func)_callback;
|
_E->_timer@_stl.function = (_cast_func)&_callback;
|
_E._timer@_stl.function = _callback;
|
_E._timer@_stl.function = &_callback;
|
_E._timer@_stl.function = (_cast_func)_callback;
|
_E._timer@_stl.function = (_cast_func)&_callback;
)
// callback(unsigned long arg)
@change_callback_handle_cast
depends on change_timer_function_usage@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _origtype;
identifier _origarg;
type _handletype;
identifier _handle;
@@
void _callback(
-_origtype _origarg
+struct timer_list *t
)
{
(
... when != _origarg
_handletype *_handle =
-(_handletype *)_origarg;
+from_timer(_handle, t, _timer);
... when != _origarg
|
... when != _origarg
_handletype *_handle =
-(void *)_origarg;
+from_timer(_handle, t, _timer);
... when != _origarg
|
... when != _origarg
_handletype *_handle;
... when != _handle
_handle =
-(_handletype *)_origarg;
+from_timer(_handle, t, _timer);
... when != _origarg
|
... when != _origarg
_handletype *_handle;
... when != _handle
_handle =
-(void *)_origarg;
+from_timer(_handle, t, _timer);
... when != _origarg
)
}
// callback(unsigned long arg) without existing variable
@change_callback_handle_cast_no_arg
depends on change_timer_function_usage &&
!change_callback_handle_cast@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _origtype;
identifier _origarg;
type _handletype;
@@
void _callback(
-_origtype _origarg
+struct timer_list *t
)
{
+ _handletype *_origarg = from_timer(_origarg, t, _timer);
+
... when != _origarg
- (_handletype *)_origarg
+ _origarg
... when != _origarg
}
// Avoid already converted callbacks.
@match_callback_converted
depends on change_timer_function_usage &&
!change_callback_handle_cast &&
!change_callback_handle_cast_no_arg@
identifier change_timer_function_usage._callback;
identifier t;
@@
void _callback(struct timer_list *t)
{ ... }
// callback(struct something *handle)
@change_callback_handle_arg
depends on change_timer_function_usage &&
!match_callback_converted &&
!change_callback_handle_cast &&
!change_callback_handle_cast_no_arg@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _handletype;
identifier _handle;
@@
void _callback(
-_handletype *_handle
+struct timer_list *t
)
{
+ _handletype *_handle = from_timer(_handle, t, _timer);
...
}
// If change_callback_handle_arg ran on an empty function, remove
// the added handler.
@unchange_callback_handle_arg
depends on change_timer_function_usage &&
change_callback_handle_arg@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _handletype;
identifier _handle;
identifier t;
@@
void _callback(struct timer_list *t)
{
- _handletype *_handle = from_timer(_handle, t, _timer);
}
// We only want to refactor the setup_timer() data argument if we've found
// the matching callback. This undoes changes in change_timer_function_usage.
@unchange_timer_function_usage
depends on change_timer_function_usage &&
!change_callback_handle_cast &&
!change_callback_handle_cast_no_arg &&
!change_callback_handle_arg@
expression change_timer_function_usage._E;
identifier change_timer_function_usage._timer;
identifier change_timer_function_usage._callback;
type change_timer_function_usage._cast_data;
@@
(
-timer_setup(&_E->_timer, _callback, 0);
+setup_timer(&_E->_timer, _callback, (_cast_data)_E);
|
-timer_setup(&_E._timer, _callback, 0);
+setup_timer(&_E._timer, _callback, (_cast_data)&_E);
)
// If we fixed a callback from a .function assignment, fix the
// assignment cast now.
@change_timer_function_assignment
depends on change_timer_function_usage &&
(change_callback_handle_cast ||
change_callback_handle_cast_no_arg ||
change_callback_handle_arg)@
expression change_timer_function_usage._E;
identifier change_timer_function_usage._timer;
identifier change_timer_function_usage._callback;
type _cast_func;
typedef TIMER_FUNC_TYPE;
@@
(
_E->_timer.function =
-_callback
+(TIMER_FUNC_TYPE)_callback
;
|
_E->_timer.function =
-&_callback
+(TIMER_FUNC_TYPE)_callback
;
|
_E->_timer.function =
-(_cast_func)_callback;
+(TIMER_FUNC_TYPE)_callback
;
|
_E->_timer.function =
-(_cast_func)&_callback
+(TIMER_FUNC_TYPE)_callback
;
|
_E._timer.function =
-_callback
+(TIMER_FUNC_TYPE)_callback
;
|
_E._timer.function =
-&_callback;
+(TIMER_FUNC_TYPE)_callback
;
|
_E._timer.function =
-(_cast_func)_callback
+(TIMER_FUNC_TYPE)_callback
;
|
_E._timer.function =
-(_cast_func)&_callback
+(TIMER_FUNC_TYPE)_callback
;
)
// Sometimes timer functions are called directly. Replace matched args.
@change_timer_function_calls
depends on change_timer_function_usage &&
(change_callback_handle_cast ||
change_callback_handle_cast_no_arg ||
change_callback_handle_arg)@
expression _E;
identifier change_timer_function_usage._timer;
identifier change_timer_function_usage._callback;
type _cast_data;
@@
_callback(
(
-(_cast_data)_E
+&_E->_timer
|
-(_cast_data)&_E
+&_E._timer
|
-_E
+&_E->_timer
)
)
// If a timer has been configured without a data argument, it can be
// converted without regard to the callback argument, since it is unused.
@match_timer_function_unused_data@
expression _E;
identifier _timer;
identifier _callback;
@@
(
-setup_timer(&_E->_timer, _callback, 0);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, _callback, 0L);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, _callback, 0UL);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, 0);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, 0L);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, 0UL);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_timer, _callback, 0);
+timer_setup(&_timer, _callback, 0);
|
-setup_timer(&_timer, _callback, 0L);
+timer_setup(&_timer, _callback, 0);
|
-setup_timer(&_timer, _callback, 0UL);
+timer_setup(&_timer, _callback, 0);
|
-setup_timer(_timer, _callback, 0);
+timer_setup(_timer, _callback, 0);
|
-setup_timer(_timer, _callback, 0L);
+timer_setup(_timer, _callback, 0);
|
-setup_timer(_timer, _callback, 0UL);
+timer_setup(_timer, _callback, 0);
)
@change_callback_unused_data
depends on match_timer_function_unused_data@
identifier match_timer_function_unused_data._callback;
type _origtype;
identifier _origarg;
@@
void _callback(
-_origtype _origarg
+struct timer_list *unused
)
{
... when != _origarg
}
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
Fix two issues:
- the per-cpu stat flush is unnecessary, nobody uses per-cpu stat except
sum it to global stat. We can do the calculation there. The flush just
wastes cpu time.
- some fields are signed int/s64. I don't see the point.
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
If PREEMPT_RCU is enabled, rcu_read_lock() isn't strong enough
for us to use this_cpu_ptr() in that section. Use the safer
get/put_cpu_ptr() variants instead.
Reported-by: Mike Galbraith <efault@gmx.de>
Fixes: 34dbad5d26e2 ("blk-stat: convert to callback-based statistics reporting")
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
No point in providing and exporting this helper. There's just
one (real) user of it, just use rq_data_dir().
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
In order to allow for filtering of IO based on some other properties
of the request than direction we allow the bucket function to return
an int.
If the bucket callback returns a negative do no count it in the stats
accumulation.
Signed-off-by: Stephen Bates <sbates@raithlin.com>
Fixed up Kyber scheduler stat callback.
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
User configures latency target, but the latency threshold for each
request size isn't fixed. For a SSD, the IO latency highly depends on
request size. To calculate latency threshold, we sample some data, eg,
average latency for request size 4k, 8k, 16k, 32k .. 1M. The latency
threshold of each request size will be the sample latency (I'll call it
base latency) plus latency target. For example, the base latency for
request size 4k is 80us and user configures latency target 60us. The 4k
latency threshold will be 80 + 60 = 140us.
To sample data, we calculate the order base 2 of rounded up IO sectors.
If the IO size is bigger than 1M, it will be accounted as 1M. Since the
calculation does round up, the base latency will be slightly smaller
than actual value. Also if there isn't any IO dispatched for a specific
IO size, we will use the base latency of smaller IO size for this IO
size.
But we shouldn't sample data at any time. The base latency is supposed
to be latency where disk isn't congested, because we use latency
threshold to schedule IOs between cgroups. If disk is congested, the
latency is higher, using it for scheduling is meaningless. Hence we only
do the sampling when block throttling is in the LOW limit, with
assumption disk isn't congested in such state. If the assumption isn't
true, eg, low limit is too high, calculated latency threshold will be
higher.
Hard disk is completely different. Latency depends on spindle seek
instead of request size. Currently this feature is SSD only, we probably
can use a fixed threshold like 4ms for hard disk though.
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
If a driver allocates a queue for stacked usage, then it does
not currently get stats allocated. This causes the later init
of, eg, writeback throttling to blow up. Move the init to the
queue allocation instead.
Additionally, allow a NULL callback unregistration. This avoids
having the caller check for that, fixing another oops on
removal of a block device that doesn't have poll stats allocated.
Fixes: 34dbad5d26e2 ("blk-stat: convert to callback-based statistics reporting")
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Currently, statistics are gathered in ~0.13s windows, and users grab the
statistics whenever they need them. This is not ideal for both in-tree
users:
1. Writeback throttling wants its own dynamically sized window of
statistics. Since the blk-stats statistics are reset after every
window and the wbt windows don't line up with the blk-stats windows,
wbt doesn't see every I/O.
2. Polling currently grabs the statistics on every I/O. Again, depending
on how the window lines up, we may miss some I/Os. It's also
unnecessary overhead to get the statistics on every I/O; the hybrid
polling heuristic would be just as happy with the statistics from the
previous full window.
This reworks the blk-stats infrastructure to be callback-based: users
register a callback that they want called at a given time with all of
the statistics from the window during which the callback was active.
Users can dynamically bucketize the statistics. wbt and polling both
currently use read vs. write, but polling can be extended to further
subdivide based on request size.
The callbacks are kept on an RCU list, and each callback has percpu
stats buffers. There will only be a few users, so the overhead on the
I/O completion side is low. The stats flushing is also simplified
considerably: since the timer function is responsible for clearing the
statistics, we don't have to worry about stale statistics.
wbt is a trivial conversion. After the conversion, the windowing problem
mentioned above is fixed.
For polling, we register an extra callback that caches the previous
window's statistics in the struct request_queue for the hybrid polling
heuristic to use.
Since we no longer have a single stats buffer for the request queue,
this also removes the sysfs and debugfs stats entries. To replace those,
we add a debugfs entry for the poll statistics.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
This is an implementation detail that no-one outside of blk-stat.c uses.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
The stats buckets will become generic soon, so make the existing users
use the common READ and WRITE definitions instead of one internal to
blk-stat.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
We need to flush the batch _before_ we check the number of samples,
otherwise we'll miss all of the batched samples.
Fixes: cf43e6b ("block: add scalable completion tracking of requests")
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Everytime we need to read ->nr_samples, we should have flushed
the batch first. The non-mq read path also needs to flush the
batch.
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Signed-off-by: Shaohua Li <shli@fb.com>
Fixes: cf43e6be865a ("block: add scalable completion tracking of requests")
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
For legacy block, we simply track them in the request queue. For
blk-mq, we track them on a per-sw queue basis, which we can then
sum up through the hardware queues and finally to a per device
state.
The stats are tracked in, roughly, 0.1s interval windows.
Add sysfs files to display the stats.
The feature is off by default, to avoid any extra overhead. In-kernel
users of it can turn it on by setting QUEUE_FLAG_STATS in the queue
flags. We currently don't turn it on if someone just reads any of
the stats files, that is something we could add as well.
Signed-off-by: Jens Axboe <axboe@fb.com>
|