summaryrefslogtreecommitdiff
path: root/block/blk-mq-sysfs.c
AgeCommit message (Collapse)AuthorFilesLines
2016-08-04blk-mq: fix deadlock in blk_mq_register_disk() error pathJens Axboe1-4/+8
If we fail registering any of the hardware queues, we call into blk_mq_unregister_disk() with the hotplug mutex already held. Since blk_mq_unregister_disk() attempts to acquire the same mutex, we end up in a less than happy place. Reported-by: Jinpu Wang <jinpu.wang@profitbricks.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2016-03-20blk-mq: Use proper cpumask iteratorThomas Gleixner1-2/+4
queue_for_each_ctx() iterates over per_cpu variables under the assumption that the possible cpu mask cannot have holes. That's wrong as all cpumasks can have holes. In case there are holes the iteration ends up accessing uninitialized memory and crashing as a result. Replace the macro by a proper for_each_possible_cpu() loop and drop the unused macro blk_ctx_sum() which references queue_for_each_ctx(). Reported-by: Xiong Zhou <jencce.kernel@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Jens Axboe <axboe@fb.com>
2016-02-09blk-mq: dynamic h/w context countKeith Busch1-4/+5
The hardware's provided queue count may change at runtime with resource provisioning. This patch allows a block driver to alter the number of h/w queues available when its resource count changes. The main part is a new blk-mq API to request a new number of h/w queues for a given live tag set. The new API freezes all queues using that set, then adjusts the allocated count prior to remapping these to CPUs. The bulk of the rest just shifts where h/w contexts and all their artifacts are allocated and freed. The number of max h/w contexts is capped to the number of possible cpus since there is no use for more than that. As such, all pre-allocated memory for pointers need to account for the max possible rather than the initial number of queues. A side effect of this is that the blk-mq will proceed successfully as long as it can allocate at least one h/w context. Previously it would fail request queue initialization if less than the requested number was allocated. Signed-off-by: Keith Busch <keith.busch@intel.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Tested-by: Jon Derrick <jonathan.derrick@intel.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-11-07block: add block polling supportJens Axboe1-0/+10
Add basic support for polling for specific IO to complete. This uses the cookie that blk-mq passes back, which enables the block layer to pass this cookie to the driver to spin for a specific request. This will be combined with request latency tracking, so we can make qualified decisions about when to poll and when not to. For now, for benchmark purposes, we add a sysfs file that controls whether polling is enabled or not. Signed-off-by: Jens Axboe <axboe@fb.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Keith Busch <keith.busch@intel.com>
2015-10-21block: generic request_queue reference countingDan Williams1-6/+0
Allow pmem, and other synchronous/bio-based block drivers, to fallback on a per-cpu reference count managed by the core for tracking queue live/dead state. The existing per-cpu reference count for the blk_mq case is promoted to be used in all block i/o scenarios. This involves initializing it by default, waiting for it to drop to zero at exit, and holding a live reference over the invocation of q->make_request_fn() in generic_make_request(). The blk_mq code continues to take its own reference per blk_mq request and retains the ability to freeze the queue, but the check that the queue is frozen is moved to generic_make_request(). This fixes crash signatures like the following: BUG: unable to handle kernel paging request at ffff880140000000 [..] Call Trace: [<ffffffff8145e8bf>] ? copy_user_handle_tail+0x5f/0x70 [<ffffffffa004e1e0>] pmem_do_bvec.isra.11+0x70/0xf0 [nd_pmem] [<ffffffffa004e331>] pmem_make_request+0xd1/0x200 [nd_pmem] [<ffffffff811c3162>] ? mempool_alloc+0x72/0x1a0 [<ffffffff8141f8b6>] generic_make_request+0xd6/0x110 [<ffffffff8141f966>] submit_bio+0x76/0x170 [<ffffffff81286dff>] submit_bh_wbc+0x12f/0x160 [<ffffffff81286e62>] submit_bh+0x12/0x20 [<ffffffff813395bd>] jbd2_write_superblock+0x8d/0x170 [<ffffffff8133974d>] jbd2_mark_journal_empty+0x5d/0x90 [<ffffffff813399cb>] jbd2_journal_destroy+0x24b/0x270 [<ffffffff810bc4ca>] ? put_pwq_unlocked+0x2a/0x30 [<ffffffff810bc6f5>] ? destroy_workqueue+0x225/0x250 [<ffffffff81303494>] ext4_put_super+0x64/0x360 [<ffffffff8124ab1a>] generic_shutdown_super+0x6a/0xf0 Cc: Jens Axboe <axboe@kernel.dk> Cc: Keith Busch <keith.busch@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Suggested-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-09-29blk-mq: fix deadlock when reading cpu_listAkinobu Mita1-4/+0
CPU hotplug handling for blk-mq (blk_mq_queue_reinit) acquires all_q_mutex in blk_mq_queue_reinit_notify() and then removes sysfs entries by blk_mq_sysfs_unregister(). Removing sysfs entry needs to be blocked until the active reference of the kernfs_node to be zero. On the other hand, reading blk_mq_hw_sysfs_cpu sysfs entry (e.g. /sys/block/nullb0/mq/0/cpu_list) acquires all_q_mutex in blk_mq_hw_sysfs_cpus_show(). If these happen at the same time, a deadlock can happen. Because one can wait for the active reference to be zero with holding all_q_mutex, and the other tries to acquire all_q_mutex with holding the active reference. The reason that all_q_mutex is acquired in blk_mq_hw_sysfs_cpus_show() is to avoid reading an imcomplete hctx->cpumask. Since reading sysfs entry for blk-mq needs to acquire q->sysfs_lock, we can avoid deadlock and reading an imcomplete hctx->cpumask by protecting q->sysfs_lock while hctx->cpumask is being updated. Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Reviewed-by: Ming Lei <tom.leiming@gmail.com> Cc: Ming Lei <tom.leiming@gmail.com> Cc: Wanpeng Li <wanpeng.li@hotmail.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-09-29blk-mq: fix sysfs registration/unregistration raceAkinobu Mita1-8/+22
There is a race between cpu hotplug handling and adding/deleting gendisk for blk-mq, where both are trying to register and unregister the same sysfs entries. null_add_dev --> blk_mq_init_queue --> blk_mq_init_allocated_queue --> add to 'all_q_list' (*) --> add_disk --> blk_register_queue --> blk_mq_register_disk (++) null_del_dev --> del_gendisk --> blk_unregister_queue --> blk_mq_unregister_disk (--) --> blk_cleanup_queue --> blk_mq_free_queue --> del from 'all_q_list' (*) blk_mq_queue_reinit --> blk_mq_sysfs_unregister (-) --> blk_mq_sysfs_register (+) While the request queue is added to 'all_q_list' (*), blk_mq_queue_reinit() can be called for the queue anytime by CPU hotplug callback. But blk_mq_sysfs_unregister (-) and blk_mq_sysfs_register (+) in blk_mq_queue_reinit must not be called before blk_mq_register_disk (++) and after blk_mq_unregister_disk (--) is finished. Because '/sys/block/*/mq/' is not exists. There has already been BLK_MQ_F_SYSFS_UP flag in hctx->flags which can be used to track these sysfs stuff, but it is only fixing this issue partially. In order to fix it completely, we just need per-queue flag instead of per-hctx flag with appropriate locking. So this introduces q->mq_sysfs_init_done which is properly protected with all_q_mutex. Also, we need to ensure that blk_mq_map_swqueue() is called with all_q_mutex is held. Since hctx->nr_ctx is reset temporarily and updated in blk_mq_map_swqueue(), so we should avoid blk_mq_register_hctx() seeing the temporary hctx->nr_ctx value in CPU hotplug handling or adding/deleting gendisk . Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com> Reviewed-by: Ming Lei <tom.leiming@gmail.com> Cc: Ming Lei <tom.leiming@gmail.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-08-15blk-mq: fix buffer overflow when reading sysfs file of 'pending'Ming Lei1-7/+18
There may be lots of pending requests so that the buffer of PAGE_SIZE can't hold them at all. One typical example is scsi-mq, the queue depth(.can_queue) of scsi_host and blk-mq is quite big but scsi_device's queue_depth is a bit small(.cmd_per_lun), then it is quite easy to have lots of pending requests in hw queue. This patch fixes the following warning and the related memory destruction. [ 359.025101] fill_read_buffer: blk_mq_hw_sysfs_show+0x0/0x7d returned bad count^M [ 359.055595] irq event stamp: 15537^M [ 359.055606] general protection fault: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC ^M [ 359.055614] Dumping ftrace buffer:^M [ 359.055660] (ftrace buffer empty)^M [ 359.055672] Modules linked in: nbd ipv6 kvm_intel kvm serio_raw^M [ 359.055678] CPU: 4 PID: 21631 Comm: stress-ng-sysfs Not tainted 4.2.0-rc5-next-20150805 #434^M [ 359.055679] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011^M [ 359.055682] task: ffff8802161cc000 ti: ffff88021b4a8000 task.ti: ffff88021b4a8000^M [ 359.055693] RIP: 0010:[<ffffffff811541c5>] [<ffffffff811541c5>] __kmalloc+0xe8/0x152^M Cc: <stable@vger.kernel.org> Signed-off-by: Ming Lei <ming.lei@canonical.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-03-13blk-mq: add blk_mq_init_allocated_queue and export blk_mq_register_diskMike Snitzer1-0/+1
Add a variant of blk_mq_init_queue that allows a previously allocated queue to be initialized. blk_mq_init_allocated_queue models blk_init_allocated_queue -- which was also created for DM's use. DM's approach to device creation requires a placeholder request_queue be allocated for use with alloc_dev() but the decision about what type of request_queue will be ultimately created is deferred until all component devices referenced in the DM table are processed to determine the table type (request-based, blk-mq request-based, or bio-based). Also, because of DM's late finalization of the request_queue type the call to blk_mq_register_disk() doesn't happen during alloc_dev(). Must export blk_mq_register_disk() so that DM can backfill the 'mq' dir once the blk-mq queue is fully allocated. Signed-off-by: Mike Snitzer <snitzer@redhat.com> Reviewed-by: Ming Lei <ming.lei@canonical.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-01-29Revert "blk-mq: fix hctx/ctx kobject use-after-free"Ming Lei1-23/+2
This reverts commit 76d697d10769048e5721510100bf3a9413a56385. The commit 76d697d10769048 causes general protection fault reported from Bart Van Assche: https://lkml.org/lkml/2015/1/28/334 Reported-by: Bart Van Assche <bart.vanassche@sandisk.com> Signed-off-by: Ming Lei <ming.lei@canonical.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2015-01-20blk-mq: fix hctx/ctx kobject use-after-freeMing Lei1-2/+23
The kobject memory shouldn't have been freed before the kobject is released because driver core can access it freely before its release. This patch frees hctx in its release callback. For ctx, they share one single per-cpu variable which is associated with the request queue, so free ctx in q->mq_kobj's release handler. Signed-off-by: Sasha Levin <sasha.levin@oracle.com> (fix ctx kobjects) Signed-off-by: Ming Lei <ming.lei@canonical.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2014-12-10blk-mq: Fix uninitialized kobject at CPU hotpluggingTakashi Iwai1-5/+4
When a CPU is hotplugged, the current blk-mq spews a warning like: kobject '(null)' (ffffe8ffffc8b5d8): tried to add an uninitialized object, something is seriously wrong. CPU: 1 PID: 1386 Comm: systemd-udevd Not tainted 3.18.0-rc7-2.g088d59b-default #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.7.5-20140531_171129-lamiak 04/01/2014 0000000000000000 0000000000000002 ffffffff81605f07 ffffe8ffffc8b5d8 ffffffff8132c7a0 ffff88023341d370 0000000000000020 ffff8800bb05bd58 ffff8800bb05bd08 000000000000a0a0 000000003f441940 0000000000000007 Call Trace: [<ffffffff81005306>] dump_trace+0x86/0x330 [<ffffffff81005644>] show_stack_log_lvl+0x94/0x170 [<ffffffff81006d21>] show_stack+0x21/0x50 [<ffffffff81605f07>] dump_stack+0x41/0x51 [<ffffffff8132c7a0>] kobject_add+0xa0/0xb0 [<ffffffff8130aee1>] blk_mq_register_hctx+0x91/0xb0 [<ffffffff8130b82e>] blk_mq_sysfs_register+0x3e/0x60 [<ffffffff81309298>] blk_mq_queue_reinit_notify+0xf8/0x190 [<ffffffff8107cfdc>] notifier_call_chain+0x4c/0x70 [<ffffffff8105fd23>] cpu_notify+0x23/0x50 [<ffffffff81060037>] _cpu_up+0x157/0x170 [<ffffffff810600d9>] cpu_up+0x89/0xb0 [<ffffffff815fa5b5>] cpu_subsys_online+0x35/0x80 [<ffffffff814323cd>] device_online+0x5d/0xa0 [<ffffffff81432485>] online_store+0x75/0x80 [<ffffffff81236a5a>] kernfs_fop_write+0xda/0x150 [<ffffffff811c5532>] vfs_write+0xb2/0x1f0 [<ffffffff811c5f42>] SyS_write+0x42/0xb0 [<ffffffff8160c4ed>] system_call_fastpath+0x16/0x1b [<00007f0132fb24e0>] 0x7f0132fb24e0 This is indeed because of an uninitialized kobject for blk_mq_ctx. The blk_mq_ctx kobjects are initialized in blk_mq_sysfs_init(), but it goes loop over hctx_for_each_ctx(), i.e. it initializes only for online CPUs. Thus, when a CPU is hotplugged, the ctx for the newly onlined CPU is registered without initialization. This patch fixes the issue by initializing the all ctx kobjects belonging to each queue. Bugzilla: https://bugzilla.novell.com/show_bug.cgi?id=908794 Cc: <stable@vger.kernel.org> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jens Axboe <axboe@fb.com>
2014-09-24blk-mq, percpu_ref: start q->mq_usage_counter in atomic modeTejun Heo1-0/+6
blk-mq uses percpu_ref for its usage counter which tracks the number of in-flight commands and used to synchronously drain the queue on freeze. percpu_ref shutdown takes measureable wallclock time as it involves a sched RCU grace period. This means that draining a blk-mq takes measureable wallclock time. One would think that this shouldn't matter as queue shutdown should be a rare event which takes place asynchronously w.r.t. userland. Unfortunately, SCSI probing involves synchronously setting up and then tearing down a lot of request_queues back-to-back for non-existent LUNs. This means that SCSI probing may take above ten seconds when scsi-mq is used. [ 0.949892] scsi host0: Virtio SCSI HBA [ 1.007864] scsi 0:0:0:0: Direct-Access QEMU QEMU HARDDISK 1.1. PQ: 0 ANSI: 5 [ 1.021299] scsi 0:0:1:0: Direct-Access QEMU QEMU HARDDISK 1.1. PQ: 0 ANSI: 5 [ 1.520356] tsc: Refined TSC clocksource calibration: 2491.910 MHz <stall> [ 16.186549] sd 0:0:0:0: Attached scsi generic sg0 type 0 [ 16.190478] sd 0:0:1:0: Attached scsi generic sg1 type 0 [ 16.194099] osd: LOADED open-osd 0.2.1 [ 16.203202] sd 0:0:0:0: [sda] 31457280 512-byte logical blocks: (16.1 GB/15.0 GiB) [ 16.208478] sd 0:0:0:0: [sda] Write Protect is off [ 16.211439] sd 0:0:0:0: [sda] Write cache: enabled, read cache: enabled, doesn't support DPO or FUA [ 16.218771] sd 0:0:1:0: [sdb] 31457280 512-byte logical blocks: (16.1 GB/15.0 GiB) [ 16.223264] sd 0:0:1:0: [sdb] Write Protect is off [ 16.225682] sd 0:0:1:0: [sdb] Write cache: enabled, read cache: enabled, doesn't support DPO or FUA This is also the reason why request_queues start in bypass mode which is ended on blk_register_queue() as shutting down a fully functional queue also involves a RCU grace period and the queues for non-existent SCSI devices never reach registration. blk-mq basically needs to do the same thing - start the mq in a degraded mode which is faster to shut down and then make it fully functional only after the queue reaches registration. percpu_ref recently grew facilities to force atomic operation until explicitly switched to percpu mode, which can be used for this purpose. This patch makes blk-mq initialize q->mq_usage_counter in atomic mode and switch it to percpu mode only once blk_register_queue() is reached. Note that this issue was previously worked around by 0a30288da1ae ("blk-mq, percpu_ref: implement a kludge for SCSI blk-mq stall during probe") for v3.17. The temp fix was reverted in preparation of adding persistent atomic mode to percpu_ref by 9eca80461a45 ("Revert "blk-mq, percpu_ref: implement a kludge for SCSI blk-mq stall during probe""). This patch and the prerequisite percpu_ref changes will be merged during v3.18 devel cycle. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Christoph Hellwig <hch@infradead.org> Link: http://lkml.kernel.org/g/20140919113815.GA10791@lst.de Fixes: add703fda981 ("blk-mq: use percpu_ref for mq usage count") Reviewed-by: Kent Overstreet <kmo@daterainc.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org>
2014-05-30blk-mq: blk_mq_unregister_hctx() can be staticFengguang Wu1-2/+2
CC: Jens Axboe <axboe@kernel.dk> Signed-off-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Jens Axboe <axboe@fb.com>
2014-05-30blk-mq: make the sysfs mq/ layout reflect current mappingsJens Axboe1-19/+83
Currently blk-mq registers all the hardware queues in sysfs, regardless of whether it uses them (e.g. they have CPU mappings) or not. The unused hardware queues lack the cpux/ directories, and the other sysfs entries (like active, pending, etc) are all zeroes. Change this so that sysfs correctly reflects the current mappings of the hardware queues. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-05-14blk-mq: improve support for shared tags mapsJens Axboe1-0/+10
This adds support for active queue tracking, meaning that the blk-mq tagging maintains a count of active users of a tag set. This allows us to maintain a notion of fairness between users, so that we can distribute the tag depth evenly without starving some users while allowing others to try unfair deep queues. If sharing of a tag set is detected, each hardware queue will track the depth of its own queue. And if this exceeds the total depth divided by the number of active queues, the user is actively throttled down. The active queue count is done lazily to avoid bouncing that data between submitter and completer. Each hardware queue gets marked active when it allocates its first tag, and gets marked inactive when 1) the last tag is cleared, and 2) the queue timeout grace period has passed. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-04-25blk-mq: respect rq_affinityChristoph Hellwig1-42/+0
The blk-mq code is using it's own version of the I/O completion affinity tunables, which causes a few issues: - the rq_affinity sysfs file doesn't work for blk-mq devices, even if it still is present, thus breaking existing tuning setups. - the rq_affinity = 1 mode, which is the defauly for legacy request based drivers isn't implemented at all. - blk-mq drivers don't implement any completion affinity with the default flag settings. This patches removes the blk-mq ipi_redirect flag and sysfs file, as well as the internal BLK_MQ_F_SHOULD_IPI flag and replaces it with code that respects the queue-wide rq_affinity flags and also implements the rq_affinity = 1 mode. This means I/O completion affinity can now only be tuned block-queue wide instead of per context, which seems more sensible to me anyway. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@fb.com>
2014-04-09blk-mq: simplify blk_mq_hw_sysfs_cpus_show()Jens Axboe1-6/+2
Now that we have a cpu mask of CPUs that are mapped to a specific hardware queue, we can just iterate that to display the sysfs num-hw-queue/cpu_list file. Signed-off-by: Jens Axboe <axboe@fb.com>
2014-03-20blk-mq: don't dump CPU -> hw queue map on driver loadJens Axboe1-0/+31
Now that we are out of initial debug/bringup mode, remove the verbose dump of the mapping table. Provide the mapping table in sysfs, under the hardware queue directory, in the cpu_list file. Signed-off-by: Jens Axboe <axboe@fb.com>
2013-12-06block: fix memory leaks on unplugging block deviceAndrey Vagin1-0/+13
All objects, which are allocated in blk_mq_register_disk, must be released in blk_mq_unregister_disk. I use a KVM virtual machine and virtio disk to reproduce this issue. kmemleak: 18 new suspected memory leaks (see /sys/kernel/debug/kmemleak) $ cat /sys/kernel/debug/kmemleak | head -n 30 unreferenced object 0xffff8800b6636150 (size 8): comm "kworker/0:2", pid 65, jiffies 4294809903 (age 86.358s) hex dump (first 8 bytes): 76 69 72 74 69 6f 34 00 virtio4. backtrace: [<ffffffff8165d41e>] kmemleak_alloc+0x4e/0xb0 [<ffffffff8118cfc5>] __kmalloc_track_caller+0xf5/0x260 [<ffffffff81155b11>] kstrdup+0x31/0x60 [<ffffffff812242be>] sysfs_new_dirent+0x2e/0x140 [<ffffffff81224678>] create_dir+0x38/0xe0 [<ffffffff812249e3>] sysfs_create_dir_ns+0x73/0xc0 [<ffffffff8130dfa9>] kobject_add_internal+0xc9/0x340 [<ffffffff8130e535>] kobject_add+0x65/0xb0 [<ffffffff813f34f8>] device_add+0x128/0x660 [<ffffffff813f3a4a>] device_register+0x1a/0x20 [<ffffffff813ae6f8>] register_virtio_device+0x98/0xe0 [<ffffffff813b0cce>] virtio_pci_probe+0x12e/0x1c0 [<ffffffff81340675>] local_pci_probe+0x45/0xa0 [<ffffffff81341a51>] pci_device_probe+0x121/0x130 [<ffffffff813f67f7>] driver_probe_device+0x87/0x390 [<ffffffff813f6b3b>] __device_attach+0x3b/0x40 unreferenced object 0xffff8800b65aa1d8 (size 144): Fixes: 320ae51feed5 (blk-mq: new multi-queue block IO queueing mechanism) Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: Andrey Vagin <avagin@openvz.org> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2013-10-25blk-mq: new multi-queue block IO queueing mechanismJens Axboe1-0/+384
Linux currently has two models for block devices: - The classic request_fn based approach, where drivers use struct request units for IO. The block layer provides various helper functionalities to let drivers share code, things like tag management, timeout handling, queueing, etc. - The "stacked" approach, where a driver squeezes in between the block layer and IO submitter. Since this bypasses the IO stack, driver generally have to manage everything themselves. With drivers being written for new high IOPS devices, the classic request_fn based driver doesn't work well enough. The design dates back to when both SMP and high IOPS was rare. It has problems with scaling to bigger machines, and runs into scaling issues even on smaller machines when you have IOPS in the hundreds of thousands per device. The stacked approach is then most often selected as the model for the driver. But this means that everybody has to re-invent everything, and along with that we get all the problems again that the shared approach solved. This commit introduces blk-mq, block multi queue support. The design is centered around per-cpu queues for queueing IO, which then funnel down into x number of hardware submission queues. We might have a 1:1 mapping between the two, or it might be an N:M mapping. That all depends on what the hardware supports. blk-mq provides various helper functions, which include: - Scalable support for request tagging. Most devices need to be able to uniquely identify a request both in the driver and to the hardware. The tagging uses per-cpu caches for freed tags, to enable cache hot reuse. - Timeout handling without tracking request on a per-device basis. Basically the driver should be able to get a notification, if a request happens to fail. - Optional support for non 1:1 mappings between issue and submission queues. blk-mq can redirect IO completions to the desired location. - Support for per-request payloads. Drivers almost always need to associate a request structure with some driver private command structure. Drivers can tell blk-mq this at init time, and then any request handed to the driver will have the required size of memory associated with it. - Support for merging of IO, and plugging. The stacked model gets neither of these. Even for high IOPS devices, merging sequential IO reduces per-command overhead and thus increases bandwidth. For now, this is provided as a potential 3rd queueing model, with the hope being that, as it matures, it can replace both the classic and stacked model. That would get us back to having just 1 real model for block devices, leaving the stacked approach to dm/md devices (as it was originally intended). Contributions in this patch from the following people: Shaohua Li <shli@fusionio.com> Alexander Gordeev <agordeev@redhat.com> Christoph Hellwig <hch@infradead.org> Mike Christie <michaelc@cs.wisc.edu> Matias Bjorling <m@bjorling.me> Jeff Moyer <jmoyer@redhat.com> Acked-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>