summaryrefslogtreecommitdiff
path: root/block/blk-crypto-internal.h
AgeCommit message (Collapse)AuthorFilesLines
2023-03-16blk-crypto: remove blk_crypto_insert_cloned_request()Eric Biggers1-15/+0
blk_crypto_insert_cloned_request() is the same as blk_crypto_rq_get_keyslot(), so just use that directly. Signed-off-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Link: https://lore.kernel.org/r/20230315183907.53675-2-ebiggers@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2023-03-16blk-mq: release crypto keyslot before reporting I/O completeEric Biggers1-4/+21
Once all I/O using a blk_crypto_key has completed, filesystems can call blk_crypto_evict_key(). However, the block layer currently doesn't call blk_crypto_put_keyslot() until the request is being freed, which happens after upper layers have been told (via bio_endio()) the I/O has completed. This causes a race condition where blk_crypto_evict_key() can see 'slot_refs != 0' without there being an actual bug. This makes __blk_crypto_evict_key() hit the 'WARN_ON_ONCE(atomic_read(&slot->slot_refs) != 0)' and return without doing anything, eventually causing a use-after-free in blk_crypto_reprogram_all_keys(). (This is a very rare bug and has only been seen when per-file keys are being used with fscrypt.) There are two options to fix this: either release the keyslot before bio_endio() is called on the request's last bio, or make __blk_crypto_evict_key() ignore slot_refs. Let's go with the first solution, since it preserves the ability to report bugs (via WARN_ON_ONCE) where a key is evicted while still in-use. Fixes: a892c8d52c02 ("block: Inline encryption support for blk-mq") Cc: stable@vger.kernel.org Reviewed-by: Nathan Huckleberry <nhuck@google.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Eric Biggers <ebiggers@google.com> Link: https://lore.kernel.org/r/20230315183907.53675-2-ebiggers@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2022-11-30blk-crypto: pass a gendisk to blk_crypto_sysfs_{,un}registerChristoph Hellwig1-4/+6
Prepare for changes to the block layer sysfs handling by passing the readily available gendisk to blk_crypto_sysfs_{,un}register. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Eric Biggers <ebiggers@google.com> Link: https://lore.kernel.org/r/20221114042637.1009333-2-hch@lst.de Signed-off-by: Jens Axboe <axboe@kernel.dk>
2022-11-21blk-crypto: move internal only declarations to blk-crypto-internal.hChristoph Hellwig1-0/+12
blk_crypto_get_keyslot, blk_crypto_put_keyslot, __blk_crypto_evict_key and __blk_crypto_cfg_supported are only used internally by the blk-crypto code, so move the out of blk-crypto-profile.h, which is included by drivers that supply blk-crypto functionality. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Eric Biggers <ebiggers@google.com> Link: https://lore.kernel.org/r/20221114042944.1009870-4-hch@lst.de Signed-off-by: Jens Axboe <axboe@kernel.dk>
2022-02-28blk-crypto: show crypto capabilities in sysfsEric Biggers1-0/+12
Add sysfs files that expose the inline encryption capabilities of request queues: /sys/block/$disk/queue/crypto/max_dun_bits /sys/block/$disk/queue/crypto/modes/$mode /sys/block/$disk/queue/crypto/num_keyslots Userspace can use these new files to decide what encryption settings to use, or whether to use inline encryption at all. This also brings the crypto capabilities in line with the other queue properties, which are already discoverable via the queue directory in sysfs. Design notes: - Place the new files in a new subdirectory "crypto" to group them together and to avoid complicating the main "queue" directory. This also makes it possible to replace "crypto" with a symlink later if we ever make the blk_crypto_profiles into real kobjects (see below). - It was necessary to define a new kobject that corresponds to the crypto subdirectory. For now, this kobject just contains a pointer to the blk_crypto_profile. Note that multiple queues (and hence multiple such kobjects) may refer to the same blk_crypto_profile. An alternative design would more closely match the current kernel data structures: the blk_crypto_profile could be a kobject itself, located directly under the host controller device's kobject, while /sys/block/$disk/queue/crypto would be a symlink to it. I decided not to do that for now because it would require a lot more changes, such as no longer embedding blk_crypto_profile in other structures, and also because I'm not sure we can rule out moving the crypto capabilities into 'struct queue_limits' in the future. (Even if multiple queues share the same crypto engine, maybe the supported data unit sizes could differ due to other queue properties.) It would also still be possible to switch to that design later without breaking userspace, by replacing the directory with a symlink. - Use "max_dun_bits" instead of "max_dun_bytes". Currently, the kernel internally stores this value in bytes, but that's an implementation detail. It probably makes more sense to talk about this value in bits, and choosing bits is more future-proof. - "modes" is a sub-subdirectory, since there may be multiple supported crypto modes, sysfs is supposed to have one value per file, and it makes sense to group all the mode files together. - Each mode had to be named. The crypto API names like "xts(aes)" are not appropriate because they don't specify the key size. Therefore, I assigned new names. The exact names chosen are arbitrary, but they happen to match the names used in log messages in fs/crypto/. - The "num_keyslots" file is a bit different from the others in that it is only useful to know for performance reasons. However, it's included as it can still be useful. For example, a user might not want to use inline encryption if there aren't very many keyslots. Reviewed-by: Hannes Reinecke <hare@suse.de> Signed-off-by: Eric Biggers <ebiggers@google.com> Link: https://lore.kernel.org/r/20220124215938.2769-4-ebiggers@kernel.org Signed-off-by: Jens Axboe <axboe@kernel.dk>
2021-10-18block: move struct request to blk-mq.hChristoph Hellwig1-1/+1
struct request is only used by blk-mq drivers, so move it and all related declarations to blk-mq.h. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Link: https://lore.kernel.org/r/20210920123328.1399408-18-hch@lst.de Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-10-05block: make blk_crypto_rq_bio_prep() able to failEric Biggers1-5/+16
blk_crypto_rq_bio_prep() assumes its gfp_mask argument always includes __GFP_DIRECT_RECLAIM, so that the mempool_alloc() will always succeed. However, blk_crypto_rq_bio_prep() might be called with GFP_ATOMIC via setup_clone() in drivers/md/dm-rq.c. This case isn't currently reachable with a bio that actually has an encryption context. However, it's fragile to rely on this. Just make blk_crypto_rq_bio_prep() able to fail. Suggested-by: Satya Tangirala <satyat@google.com> Signed-off-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Mike Snitzer <snitzer@redhat.com> Reviewed-by: Satya Tangirala <satyat@google.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-05-14block: blk-crypto-fallback for Inline EncryptionSatya Tangirala1-0/+35
Blk-crypto delegates crypto operations to inline encryption hardware when available. The separately configurable blk-crypto-fallback contains a software fallback to the kernel crypto API - when enabled, blk-crypto will use this fallback for en/decryption when inline encryption hardware is not available. This lets upper layers not have to worry about whether or not the underlying device has support for inline encryption before deciding to specify an encryption context for a bio. It also allows for testing without actual inline encryption hardware - in particular, it makes it possible to test the inline encryption code in ext4 and f2fs simply by running xfstests with the inlinecrypt mount option, which in turn allows for things like the regular upstream regression testing of ext4 to cover the inline encryption code paths. For more details, refer to Documentation/block/inline-encryption.rst. Signed-off-by: Satya Tangirala <satyat@google.com> Reviewed-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-05-14block: Inline encryption support for blk-mqSatya Tangirala1-0/+166
We must have some way of letting a storage device driver know what encryption context it should use for en/decrypting a request. However, it's the upper layers (like the filesystem/fscrypt) that know about and manages encryption contexts. As such, when the upper layer submits a bio to the block layer, and this bio eventually reaches a device driver with support for inline encryption, the device driver will need to have been told the encryption context for that bio. We want to communicate the encryption context from the upper layer to the storage device along with the bio, when the bio is submitted to the block layer. To do this, we add a struct bio_crypt_ctx to struct bio, which can represent an encryption context (note that we can't use the bi_private field in struct bio to do this because that field does not function to pass information across layers in the storage stack). We also introduce various functions to manipulate the bio_crypt_ctx and make the bio/request merging logic aware of the bio_crypt_ctx. We also make changes to blk-mq to make it handle bios with encryption contexts. blk-mq can merge many bios into the same request. These bios need to have contiguous data unit numbers (the necessary changes to blk-merge are also made to ensure this) - as such, it suffices to keep the data unit number of just the first bio, since that's all a storage driver needs to infer the data unit number to use for each data block in each bio in a request. blk-mq keeps track of the encryption context to be used for all the bios in a request with the request's rq_crypt_ctx. When the first bio is added to an empty request, blk-mq will program the encryption context of that bio into the request_queue's keyslot manager, and store the returned keyslot in the request's rq_crypt_ctx. All the functions to operate on encryption contexts are in blk-crypto.c. Upper layers only need to call bio_crypt_set_ctx with the encryption key, algorithm and data_unit_num; they don't have to worry about getting a keyslot for each encryption context, as blk-mq/blk-crypto handles that. Blk-crypto also makes it possible for request-based layered devices like dm-rq to make use of inline encryption hardware by cloning the rq_crypt_ctx and programming a keyslot in the new request_queue when necessary. Note that any user of the block layer can submit bios with an encryption context, such as filesystems, device-mapper targets, etc. Signed-off-by: Satya Tangirala <satyat@google.com> Reviewed-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk>