| Age | Commit message (Collapse) | Author | Files | Lines |
|
commit e17b1af96b2afc38e684aa2f1033387e2ed10029 upstream.
The EFI stub is entered with the caches and MMU enabled by the
firmware, and once the stub is ready to hand over to the decompressor,
we clean and disable the caches.
The cache clean routines use CP15 barrier instructions, which can be
disabled via SCTLR. Normally, when using the provided cache handling
routines to enable the caches and MMU, this bit is enabled as well.
However, but since we entered the stub with the caches already enabled,
this routine is not executed before we call the cache clean routines,
resulting in undefined instruction exceptions if the firmware never
enabled this bit.
So set the bit explicitly in the EFI entry code, but do so in a way that
guarantees that the resulting code can still run on v6 cores as well
(which are guaranteed to have CP15 barriers enabled)
Cc: <stable@vger.kernel.org> # v4.9+
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 79b4a9cf0e2ea8203ce777c8d5cfa86c71eae86e upstream.
Commit 4c21b8fd8f14 (MIPS: seccomp: Handle indirect system calls (o32))
added indirect syscall detection for O32 processes running on MIPS64,
but it did not work correctly for big endian kernel/processes. The
reason is that the syscall number is loaded from ARG1 using the lw
instruction while this is a 64-bit value, so zero is loaded instead of
the syscall number.
Fix the code by using the ld instruction instead. When running a 32-bit
processes on a 64 bit CPU, the values are properly sign-extended, so it
ensures the value passed to syscall_trace_enter is correct.
Recent systemd versions with seccomp enabled whitelist the getpid
syscall for their internal processes (e.g. systemd-journald), but call
it through syscall(SYS_getpid). This fix therefore allows O32 big endian
systems with a 64-bit kernel to run recent systemd versions.
Signed-off-by: Aurelien Jarno <aurelien@aurel32.net>
Cc: <stable@vger.kernel.org> # v3.15+
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: linux-mips@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3fe3331bb285700ab2253dbb07f8e478fcea2f1b upstream.
Family 17h differs from prior families by:
- Does not support an L2 cache miss event
- It has re-enumerated PMC counters for:
- L2 cache references
- front & back end stalled cycles
So we add a new amd_f17h_perfmon_event_map[] so that the generic
perf event names will resolve to the correct h/w events on
family 17h and above processors.
Reference sections 2.1.13.3.3 (stalls) and 2.1.13.3.6 (L2):
https://www.amd.com/system/files/TechDocs/54945_PPR_Family_17h_Models_00h-0Fh.pdf
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Cc: <stable@vger.kernel.org> # v4.9+
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Janakarajan Natarajan <Janakarajan.Natarajan@amd.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Liška <mliska@suse.cz>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pu Wen <puwen@hygon.cn>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Fixes: e40ed1542dd7 ("perf/x86: Add perf support for AMD family-17h processors")
[ Improved the formatting a bit. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3ff9c075cc767b3060bdac12da72fc94dd7da1b8 upstream.
Verify the stack frame pointer on kretprobe trampoline handler,
If the stack frame pointer does not match, it skips the wrong
entry and tries to find correct one.
This can happen if user puts the kretprobe on the function
which can be used in the path of ftrace user-function call.
Such functions should not be probed, so this adds a warning
message that reports which function should be blacklisted.
Tested-by: Andrea Righi <righi.andrea@gmail.com>
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/155094059185.6137.15527904013362842072.stgit@devbox
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ff8acf929014b7f87315588e0daf8597c8aa9d1c upstream.
Commit 045afc24124d ("arm64: futex: Fix FUTEX_WAKE_OP atomic ops with
non-zero result value") removed oldval's zero initialization in
arch_futex_atomic_op_inuser because it is not necessary. Unfortunately,
Android's arm64 GCC 4.9.4 [1] does not agree:
../kernel/futex.c: In function 'do_futex':
../kernel/futex.c:1658:17: warning: 'oldval' may be used uninitialized
in this function [-Wmaybe-uninitialized]
return oldval == cmparg;
^
In file included from ../kernel/futex.c:73:0:
../arch/arm64/include/asm/futex.h:53:6: note: 'oldval' was declared here
int oldval, ret, tmp;
^
GCC fails to follow that when ret is non-zero, futex_atomic_op_inuser
returns right away, avoiding the uninitialized use that it claims.
Restoring the zero initialization works around this issue.
[1]: https://android.googlesource.com/platform/prebuilts/gcc/linux-x86/aarch64/aarch64-linux-android-4.9/
Cc: stable@vger.kernel.org
Fixes: 045afc24124d ("arm64: futex: Fix FUTEX_WAKE_OP atomic ops with non-zero result value")
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 678cce4019d746da6c680c48ba9e6d417803e127 upstream.
The x86_64 implementation of Poly1305 produces the wrong result on some
inputs because poly1305_4block_avx2() incorrectly assumes that when
partially reducing the accumulator, the bits carried from limb 'd4' to
limb 'h0' fit in a 32-bit integer. This is true for poly1305-generic
which processes only one block at a time. However, it's not true for
the AVX2 implementation, which processes 4 blocks at a time and
therefore can produce intermediate limbs about 4x larger.
Fix it by making the relevant calculations use 64-bit arithmetic rather
than 32-bit. Note that most of the carries already used 64-bit
arithmetic, but the d4 -> h0 carry was different for some reason.
To be safe I also made the same change to the corresponding SSE2 code,
though that only operates on 1 or 2 blocks at a time. I don't think
it's really needed for poly1305_block_sse2(), but it doesn't hurt
because it's already x86_64 code. It *might* be needed for
poly1305_2block_sse2(), but overflows aren't easy to reproduce there.
This bug was originally detected by my patches that improve testmgr to
fuzz algorithms against their generic implementation. But also add a
test vector which reproduces it directly (in the AVX2 case).
Fixes: b1ccc8f4b631 ("crypto: poly1305 - Add a four block AVX2 variant for x86_64")
Fixes: c70f4abef07a ("crypto: poly1305 - Add a SSE2 SIMD variant for x86_64")
Cc: <stable@vger.kernel.org> # v4.3+
Cc: Martin Willi <martin@strongswan.org>
Cc: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 4a58038b9e420276157785afa0a0bbb4b9bc2265 upstream.
This reverts commit bb218fbcfaaa3b115d4cd7a43c0ca164f3a96e57.
As Oren Twaig pointed out the old discussion:
https://patchwork.kernel.org/patch/8292231/
that the change coud potentially cause an extra IPI to be sent to
the destination vcpu because the AVIC hardware already set the IRR bit
before the incomplete IPI #VMEXIT with id=1 (target vcpu is not running).
Since writting to ICR and ICR2 will also set the IRR. If something triggers
the destination vcpu to get scheduled before the emulation finishes, then
this could result in an additional IPI.
Also, the issue mentioned in the commit bb218fbcfaaa was misdiagnosed.
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Reported-by: Oren Twaig <oren@scalemp.com>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 8f4dc2e77cdfaf7e644ef29693fa229db29ee1de upstream.
Neither AMD nor Intel CPUs have an EFER field in the legacy SMRAM save
state area, i.e. don't save/restore EFER across SMM transitions. KVM
somewhat models this, e.g. doesn't clear EFER on entry to SMM if the
guest doesn't support long mode. But during RSM, KVM unconditionally
clears EFER so that it can get back to pure 32-bit mode in order to
start loading CRs with their actual non-SMM values.
Clear EFER only when it will be written when loading the non-SMM state
so as to preserve bits that can theoretically be set on 32-bit vCPUs,
e.g. KVM always emulates EFER_SCE.
And because CR4.PAE is cleared only to play nice with EFER, wrap that
code in the long mode check as well. Note, this may result in a
compiler warning about cr4 being consumed uninitialized. Re-read CR4
even though it's technically unnecessary, as doing so allows for more
readable code and RSM emulation is not a performance critical path.
Fixes: 660a5d517aaab ("KVM: x86: save/load state on SMM switch")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 143c2a89e0e5fda6c6fd08d7bc1126438c19ae90 ]
When running kprobe on -rt kernel, the below bug is caught:
|BUG: sleeping function called from invalid context at kernel/locking/rtmutex.c:931
|in_atomic(): 1, irqs_disabled(): 128, pid: 14, name: migration/0
|Preemption disabled at:[<802f2b98>] cpu_stopper_thread+0xc0/0x140
|CPU: 0 PID: 14 Comm: migration/0 Tainted: G O 4.8.3-rt2 #1
|Hardware name: Freescale LS1021A
|[<8025a43c>] (___might_sleep)
|[<80b5b324>] (rt_spin_lock)
|[<80b5c31c>] (__patch_text_real)
|[<80b5c3ac>] (patch_text_stop_machine)
|[<802f2920>] (multi_cpu_stop)
Since patch_text_stop_machine() is called in stop_machine() which
disables IRQ, sleepable lock should be not used in this atomic context,
so replace patch_lock to raw lock.
Signed-off-by: Yang Shi <yang.shi@linaro.org>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit c64316502008064c158fa40cc250665e461b0f2a ]
The SHA512 code we adopted from the OpenSSL project uses a rather
peculiar way to take the address of the round constant table: it
takes the address of the sha256_block_data_order() routine, and
substracts a constant known quantity to arrive at the base of the
table, which is emitted by the same assembler code right before
the routine's entry point.
However, recent versions of binutils have helpfully changed the
behavior of references emitted via an ADR instruction when running
in Thumb2 mode: it now takes the Thumb execution mode bit into
account, which is bit 0 af the address. This means the produced
table address also has bit 0 set, and so we end up with an address
value pointing 1 byte past the start of the table, which results
in crashes such as
Unable to handle kernel paging request at virtual address bf825000
pgd = 42f44b11
[bf825000] *pgd=80000040206003, *pmd=5f1bd003, *pte=00000000
Internal error: Oops: 207 [#1] PREEMPT SMP THUMB2
Modules linked in: sha256_arm(+) sha1_arm_ce sha1_arm ...
CPU: 7 PID: 396 Comm: cryptomgr_test Not tainted 5.0.0-rc6+ #144
Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015
PC is at sha256_block_data_order+0xaaa/0xb30 [sha256_arm]
LR is at __this_module+0x17fd/0xffffe800 [sha256_arm]
pc : [<bf820bca>] lr : [<bf824ffd>] psr: 800b0033
sp : ebc8bbe8 ip : faaabe1c fp : 2fdd3433
r10: 4c5f1692 r9 : e43037df r8 : b04b0a5a
r7 : c369d722 r6 : 39c3693e r5 : 7a013189 r4 : 1580d26b
r3 : 8762a9b0 r2 : eea9c2cd r1 : 3e9ab536 r0 : 1dea4ae7
Flags: Nzcv IRQs on FIQs on Mode SVC_32 ISA Thumb Segment user
Control: 70c5383d Table: 6b8467c0 DAC: dbadc0de
Process cryptomgr_test (pid: 396, stack limit = 0x69e1fe23)
Stack: (0xebc8bbe8 to 0xebc8c000)
...
unwind: Unknown symbol address bf820bca
unwind: Index not found bf820bca
Code: 441a ea80 40f9 440a (f85e) 3b04
---[ end trace e560cce92700ef8a ]---
Given that this affects older kernels as well, in case they are built
with a recent toolchain, apply a minimal backportable fix, which is
to emit another non-code label at the start of the routine, and
reference that instead. (This is similar to the current upstream state
of this file in OpenSSL)
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 69216a545cf81b2b32d01948f7039315abaf75a0 ]
The SHA256 code we adopted from the OpenSSL project uses a rather
peculiar way to take the address of the round constant table: it
takes the address of the sha256_block_data_order() routine, and
substracts a constant known quantity to arrive at the base of the
table, which is emitted by the same assembler code right before
the routine's entry point.
However, recent versions of binutils have helpfully changed the
behavior of references emitted via an ADR instruction when running
in Thumb2 mode: it now takes the Thumb execution mode bit into
account, which is bit 0 af the address. This means the produced
table address also has bit 0 set, and so we end up with an address
value pointing 1 byte past the start of the table, which results
in crashes such as
Unable to handle kernel paging request at virtual address bf825000
pgd = 42f44b11
[bf825000] *pgd=80000040206003, *pmd=5f1bd003, *pte=00000000
Internal error: Oops: 207 [#1] PREEMPT SMP THUMB2
Modules linked in: sha256_arm(+) sha1_arm_ce sha1_arm ...
CPU: 7 PID: 396 Comm: cryptomgr_test Not tainted 5.0.0-rc6+ #144
Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015
PC is at sha256_block_data_order+0xaaa/0xb30 [sha256_arm]
LR is at __this_module+0x17fd/0xffffe800 [sha256_arm]
pc : [<bf820bca>] lr : [<bf824ffd>] psr: 800b0033
sp : ebc8bbe8 ip : faaabe1c fp : 2fdd3433
r10: 4c5f1692 r9 : e43037df r8 : b04b0a5a
r7 : c369d722 r6 : 39c3693e r5 : 7a013189 r4 : 1580d26b
r3 : 8762a9b0 r2 : eea9c2cd r1 : 3e9ab536 r0 : 1dea4ae7
Flags: Nzcv IRQs on FIQs on Mode SVC_32 ISA Thumb Segment user
Control: 70c5383d Table: 6b8467c0 DAC: dbadc0de
Process cryptomgr_test (pid: 396, stack limit = 0x69e1fe23)
Stack: (0xebc8bbe8 to 0xebc8c000)
...
unwind: Unknown symbol address bf820bca
unwind: Index not found bf820bca
Code: 441a ea80 40f9 440a (f85e) 3b04
---[ end trace e560cce92700ef8a ]---
Given that this affects older kernels as well, in case they are built
with a recent toolchain, apply a minimal backportable fix, which is
to emit another non-code label at the start of the routine, and
reference that instead. (This is similar to the current upstream state
of this file in OpenSSL)
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 6862fdf2201ab67cd962dbf0643d37db909f4860 ]
"S3C2410 PM Suspend Memory CRC" feature (controlled by
SAMSUNG_PM_CHECK config option) is incompatible with highmem
(uses phys_to_virt() instead of proper mapping) which is used by
the majority of Exynos boards. The issue manifests itself in OOPS
on affected boards, i.e. on Odroid-U3 I got the following one:
Unable to handle kernel paging request at virtual address f0000000
pgd = 1c0f9bb4
[f0000000] *pgd=00000000
Internal error: Oops: 5 [#1] PREEMPT SMP ARM
[<c0458034>] (crc32_le) from [<c0121f8c>] (s3c_pm_makecheck+0x34/0x54)
[<c0121f8c>] (s3c_pm_makecheck) from [<c0121efc>] (s3c_pm_run_res+0x74/0x8c)
[<c0121efc>] (s3c_pm_run_res) from [<c0121ecc>] (s3c_pm_run_res+0x44/0x8c)
[<c0121ecc>] (s3c_pm_run_res) from [<c01210b8>] (exynos_suspend_enter+0x64/0x148)
[<c01210b8>] (exynos_suspend_enter) from [<c018893c>] (suspend_devices_and_enter+0x9ec/0xe74)
[<c018893c>] (suspend_devices_and_enter) from [<c0189534>] (pm_suspend+0x770/0xc04)
[<c0189534>] (pm_suspend) from [<c0186ce8>] (state_store+0x6c/0xcc)
[<c0186ce8>] (state_store) from [<c09db434>] (kobj_attr_store+0x14/0x20)
[<c09db434>] (kobj_attr_store) from [<c02fa63c>] (sysfs_kf_write+0x4c/0x50)
[<c02fa63c>] (sysfs_kf_write) from [<c02f97a4>] (kernfs_fop_write+0xfc/0x1e4)
[<c02f97a4>] (kernfs_fop_write) from [<c027b198>] (__vfs_write+0x2c/0x140)
[<c027b198>] (__vfs_write) from [<c027b418>] (vfs_write+0xa4/0x160)
[<c027b418>] (vfs_write) from [<c027b5d8>] (ksys_write+0x40/0x8c)
[<c027b5d8>] (ksys_write) from [<c0101000>] (ret_fast_syscall+0x0/0x28)
Add PLAT_S3C24XX, ARCH_S3C64XX and ARCH_S5PV210 dependencies to
SAMSUNG_PM_CHECK config option to hide it on Exynos platforms.
Signed-off-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Signed-off-by: Krzysztof Kozlowski <krzk@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
an error
[ Upstream commit e898e69d6b9475bf123f99b3c5d1a67bb7cb2361 ]
When building with -Wsometimes-uninitialized, Clang warns:
arch/x86/kernel/hw_breakpoint.c:355:2: warning: variable 'align' is used
uninitialized whenever switch default is taken
[-Wsometimes-uninitialized]
The default cannot be reached because arch_build_bp_info() initializes
hw->len to one of the specified cases. Nevertheless the warning is valid
and returning -EINVAL makes sure that this cannot be broken by future
modifications.
Suggested-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: clang-built-linux@googlegroups.com
Link: https://github.com/ClangBuiltLinux/linux/issues/392
Link: https://lkml.kernel.org/r/20190307212756.4648-1-natechancellor@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 18fb053f9b827bd98cfc64f2a35df8ab19745a1d ]
There are comments in processor-cyrix.h advising you to _not_ make calls
using the deprecated macros in this style:
setCx86_old(CX86_CCR4, getCx86_old(CX86_CCR4) | 0x80);
This is because it expands the macro into a non-functioning calling
sequence. The calling order must be:
outb(CX86_CCR2, 0x22);
inb(0x23);
From the comments:
* When using the old macros a line like
* setCx86(CX86_CCR2, getCx86(CX86_CCR2) | 0x88);
* gets expanded to:
* do {
* outb((CX86_CCR2), 0x22);
* outb((({
* outb((CX86_CCR2), 0x22);
* inb(0x23);
* }) | 0x88), 0x23);
* } while (0);
The new macros fix this problem, so use them instead. Tested on an
actual Geode processor.
Signed-off-by: Matthew Whitehead <tedheadster@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: luto@kernel.org
Link: https://lkml.kernel.org/r/1552596361-8967-2-git-send-email-tedheadster@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 2e84f116afca3719c9d0a1a78b47b48f75fd5724 ]
hpet_virt_address may be NULL when ioremap_nocache fail, but the code lacks
a check.
Add a check to prevent NULL pointer dereference.
Signed-off-by: Aditya Pakki <pakki001@umn.edu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: kjlu@umn.edu
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Joe Perches <joe@perches.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Roland Dreier <roland@purestorage.com>
Link: https://lkml.kernel.org/r/20190319021958.17275-1-pakki001@umn.edu
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit edb64bca50cd736c6894cc6081d5263c007ce005 ]
In case of devboards we really often disable bootloader and load
Linux image in memory via JTAG. Even if kernel tries to verify
uboot_tag and uboot_arg there is sill a chance that we treat some
garbage in registers as valid u-boot arguments in JTAG case.
E.g. it is enough to have '1' in r0 to treat any value in r2 as
a boot command line.
So check that magic number passed from u-boot is correct and drop
u-boot arguments otherwise. That helps to reduce the possibility
of using garbage as u-boot arguments in JTAG case.
We can safely check U-boot magic value (0x0) in linux passed via
r1 register as U-boot pass it from the beginning. So there is no
backward-compatibility issues.
Signed-off-by: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit ada770b1e74a77fff2d5f539bf6c42c25f4784db upstream.
return_address returns the address that is one level higher in the call
stack than requested in its argument, because level 0 corresponds to its
caller's return address. Use requested level as the number of stack
frames to skip.
This fixes the address reported by might_sleep and friends.
Cc: stable@vger.kernel.org
Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 42d8644bd77dd2d747e004e367cb0c895a606f39 upstream.
The "call" variable comes from the user in privcmd_ioctl_hypercall().
It's an offset into the hypercall_page[] which has (PAGE_SIZE / 32)
elements. We need to put an upper bound on it to prevent an out of
bounds access.
Cc: stable@vger.kernel.org
Fixes: 1246ae0bb992 ("xen: add variable hypercall caller")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 5ffa8518851f1401817c15d2a7eecc0373c26ff9 upstream.
When running on qemu we know that the (emulated) cr16 cpu-internal
clocks are syncronized. So let's use them unconditionally on qemu.
Signed-off-by: Helge Deller <deller@gmx.de>
Cc: stable@vger.kernel.org # 4.14+
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 045afc24124d80c6998d9c770844c67912083506 upstream.
Rather embarrassingly, our futex() FUTEX_WAKE_OP implementation doesn't
explicitly set the return value on the non-faulting path and instead
leaves it holding the result of the underlying atomic operation. This
means that any FUTEX_WAKE_OP atomic operation which computes a non-zero
value will be reported as having failed. Regrettably, I wrote the buggy
code back in 2011 and it was upstreamed as part of the initial arm64
support in 2012.
The reasons we appear to get away with this are:
1. FUTEX_WAKE_OP is rarely used and therefore doesn't appear to get
exercised by futex() test applications
2. If the result of the atomic operation is zero, the system call
behaves correctly
3. Prior to version 2.25, the only operation used by GLIBC set the
futex to zero, and therefore worked as expected. From 2.25 onwards,
FUTEX_WAKE_OP is not used by GLIBC at all.
Fix the implementation by ensuring that the return value is either 0
to indicate that the atomic operation completed successfully, or -EFAULT
if we encountered a fault when accessing the user mapping.
Cc: <stable@kernel.org>
Fixes: 6170a97460db ("arm64: Atomic operations")
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e7dfb6d04e4715be1f3eb2c60d97b753fd2e4516 upstream.
The function argument for the ISC_D0 on PC9 was incorrect. According to
the documentation it should be 'C' aka 3.
Signed-off-by: David Engraf <david.engraf@sysgo.com>
Reviewed-by: Nicolas Ferre <nicolas.ferre@microchip.com>
Signed-off-by: Ludovic Desroches <ludovic.desroches@microchip.com>
Fixes: 7f16cb676c00 ("ARM: at91/dt: add sama5d2 pinmux")
Cc: <stable@vger.kernel.org> # v4.4+
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d006e95b5561f708d0385e9677ffe2c46f2ae345 upstream.
While adding LASI support to QEMU, I noticed that the QEMU detection in
the kernel happens much too late. For example, when a LASI chip is found
by the kernel, it registers the LASI LED driver as well. But when we
run on QEMU it makes sense to avoid spending unnecessary CPU cycles, so
we need to access the running_on_QEMU flag earlier than before.
This patch now makes the QEMU detection the fist task of the Linux
kernel by moving it to where the kernel enters the C-coding.
Fixes: 310d82784fb4 ("parisc: qemu idle sleep support")
Signed-off-by: Helge Deller <deller@gmx.de>
Cc: stable@vger.kernel.org # v4.14+
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit c8a43c18a97845e7f94ed7d181c11f41964976a2 ]
When KASLR is enabled (CONFIG_RANDOMIZE_BASE=y), the top 4K of kernel
virtual address space may be mapped to physical addresses despite being
reserved for ERR_PTR values.
Fix the randomization of the linear region so that we avoid mapping the
last page of the virtual address space.
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: liyueyi <liyueyi@live.com>
[will: rewrote commit message; merged in suggestion from Ard]
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Sasha Levin (Microsoft) <sashal@kernel.org>
|
|
commit 92edf8df0ff2ae86cc632eeca0e651fd8431d40d upstream.
When I updated the spectre_v2 reporting to handle software count cache
flush I got the logic wrong when there's no software count cache
enabled at all.
The result is that on systems with the software count cache flush
disabled we print:
Mitigation: Indirect branch cache disabled, Software count cache flush
Which correctly indicates that the count cache is disabled, but
incorrectly says the software count cache flush is enabled.
The root of the problem is that we are trying to handle all
combinations of options. But we know now that we only expect to see
the software count cache flush enabled if the other options are false.
So split the two cases, which simplifies the logic and fixes the bug.
We were also missing a space before "(hardware accelerated)".
The result is we see one of:
Mitigation: Indirect branch serialisation (kernel only)
Mitigation: Indirect branch cache disabled
Mitigation: Software count cache flush
Mitigation: Software count cache flush (hardware accelerated)
Fixes: ee13cb249fab ("powerpc/64s: Add support for software count cache flush")
Cc: stable@vger.kernel.org # v4.19+
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Michael Neuling <mikey@neuling.org>
Reviewed-by: Diana Craciun <diana.craciun@nxp.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 27da80719ef132cf8c80eb406d5aeb37dddf78cc upstream.
The commit identified below adds MC_BTB_FLUSH macro only when
CONFIG_PPC_FSL_BOOK3E is defined. This results in the following error
on some configs (seen several times with kisskb randconfig_defconfig)
arch/powerpc/kernel/exceptions-64e.S:576: Error: Unrecognized opcode: `mc_btb_flush'
make[3]: *** [scripts/Makefile.build:367: arch/powerpc/kernel/exceptions-64e.o] Error 1
make[2]: *** [scripts/Makefile.build:492: arch/powerpc/kernel] Error 2
make[1]: *** [Makefile:1043: arch/powerpc] Error 2
make: *** [Makefile:152: sub-make] Error 2
This patch adds a blank definition of MC_BTB_FLUSH for other cases.
Fixes: 10c5e83afd4a ("powerpc/fsl: Flush the branch predictor at each kernel entry (64bit)")
Cc: Diana Craciun <diana.craciun@nxp.com>
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Reviewed-by: Daniel Axtens <dja@axtens.net>
Reviewed-by: Diana Craciun <diana.craciun@nxp.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 039daac5526932ec731e4499613018d263af8b3e upstream.
Fixed the following build warning:
powerpc-linux-gnu-ld: warning: orphan section `__btb_flush_fixup' from
`arch/powerpc/kernel/head_44x.o' being placed in section
`__btb_flush_fixup'.
Signed-off-by: Diana Craciun <diana.craciun@nxp.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit dfa88658fb0583abb92e062c7a9cd5a5b94f2a46 upstream.
Report branch predictor state flush as a mitigation for
Spectre variant 2.
Signed-off-by: Diana Craciun <diana.craciun@nxp.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 3bc8ea8603ae4c1e09aca8de229ad38b8091fcb3 upstream.
If the user choses not to use the mitigations, replace
the code sequence with nops.
Signed-off-by: Diana Craciun <diana.craciun@nxp.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit e7aa61f47b23afbec41031bc47ca8d6cb6516abc upstream.
Switching from the guest to host is another place
where the speculative accesses can be exploited.
Flush the branch predictor when entering KVM.
Signed-off-by: Diana Craciun <diana.craciun@nxp.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 7fef436295bf6c05effe682c8797dfcb0deb112a upstream.
In order to protect against speculation attacks on
indirect branches, the branch predictor is flushed at
kernel entry to protect for the following situations:
- userspace process attacking another userspace process
- userspace process attacking the kernel
Basically when the privillege level change (i.e.the kernel
is entered), the branch predictor state is flushed.
Signed-off-by: Diana Craciun <diana.craciun@nxp.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 10c5e83afd4a3f01712d97d3bb1ae34d5b74a185 upstream.
In order to protect against speculation attacks on
indirect branches, the branch predictor is flushed at
kernel entry to protect for the following situations:
- userspace process attacking another userspace process
- userspace process attacking the kernel
Basically when the privillege level change (i.e. the
kernel is entered), the branch predictor state is flushed.
Signed-off-by: Diana Craciun <diana.craciun@nxp.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit f633a8ad636efb5d4bba1a047d4a0f1ef719aa06 upstream.
When the command line argument is present, the Spectre variant 2
mitigations are disabled.
Signed-off-by: Diana Craciun <diana.craciun@nxp.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 98518c4d8728656db349f875fcbbc7c126d4c973 upstream.
In order to flush the branch predictor the guest kernel performs
writes to the BUCSR register which is hypervisor privilleged. However,
the branch predictor is flushed at each KVM entry, so the branch
predictor has been already flushed, so just return as soon as possible
to guest.
Signed-off-by: Diana Craciun <diana.craciun@nxp.com>
[mpe: Tweak comment formatting]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 7d8bad99ba5a22892f0cad6881289fdc3875a930 upstream.
Currently for CONFIG_PPC_FSL_BOOK3E the spectre_v2 file is incorrect:
$ cat /sys/devices/system/cpu/vulnerabilities/spectre_v2
"Mitigation: Software count cache flush"
Which is wrong. Fix it to report vulnerable for now.
Fixes: ee13cb249fab ("powerpc/64s: Add support for software count cache flush")
Cc: stable@vger.kernel.org # v4.19+
Signed-off-by: Diana Craciun <diana.craciun@nxp.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 1cbf8990d79ff69da8ad09e8a3df014e1494462b upstream.
The BUCSR register can be used to invalidate the entries in the
branch prediction mechanisms.
Signed-off-by: Diana Craciun <diana.craciun@nxp.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 76a5eaa38b15dda92cd6964248c39b5a6f3a4e9d upstream.
In order to protect against speculation attacks (Spectre
variant 2) on NXP PowerPC platforms, the branch predictor
should be flushed when the privillege level is changed.
This patch is adding the infrastructure to fixup at runtime
the code sections that are performing the branch predictor flush
depending on a boot arg parameter which is added later in a
separate patch.
Signed-off-by: Diana Craciun <diana.craciun@nxp.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 99d54754d3d5f896a8f616b0b6520662bc99d66b upstream.
Look for fw-features properties to determine the appropriate settings
for the count cache flush, and then call the generic powerpc code to
set it up based on the security feature flags.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit ba72dc171954b782a79d25e0f4b3ed91090c3b1e upstream.
Use the existing hypercall to determine the appropriate settings for
the count cache flush, and then call the generic powerpc code to set
it up based on the security feature flags.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit ee13cb249fabdff8b90aaff61add347749280087 upstream.
Some CPU revisions support a mode where the count cache needs to be
flushed by software on context switch. Additionally some revisions may
have a hardware accelerated flush, in which case the software flush
sequence can be shortened.
If we detect the appropriate flag from firmware we patch a branch
into _switch() which takes us to a count cache flush sequence.
That sequence in turn may be patched to return early if we detect that
the CPU supports accelerating the flush sequence in hardware.
Add debugfs support for reporting the state of the flush, as well as
runtime disabling it.
And modify the spectre_v2 sysfs file to report the state of the
software flush.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit dc8c6cce9a26a51fc19961accb978217a3ba8c75 upstream.
Add security feature flags to indicate the need for software to flush
the count cache on context switch, and for the presence of a hardware
assisted count cache flush.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 06d0bbc6d0f56dacac3a79900e9a9a0d5972d818 upstream.
Add a macro and some helper C functions for patching single asm
instructions.
The gas macro means we can do something like:
1: nop
patch_site 1b, patch__foo
Which is less visually distracting than defining a GLOBAL symbol at 1,
and also doesn't pollute the symbol table which can confuse eg. perf.
These are obviously similar to our existing feature sections, but are
not automatically patched based on CPU/MMU features, rather they are
designed to be manually patched by C code at some arbitrary point.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit c28218d4abbf4f2035495334d8bfcba64bda4787 upstream.
Used barrier_nospec to sanitize the syscall table.
Signed-off-by: Diana Craciun <diana.craciun@nxp.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit ebcd1bfc33c7a90df941df68a6e5d4018c022fba upstream.
Implement the barrier_nospec as a isync;sync instruction sequence.
The implementation uses the infrastructure built for BOOK3S 64.
Signed-off-by: Diana Craciun <diana.craciun@nxp.com>
[mpe: Split out of larger patch]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 406d2b6ae3420f5bb2b3db6986dc6f0b6dbb637b upstream.
In a subsequent patch we will enable building security.c for Book3E.
However the NXP platforms are not vulnerable to Meltdown, so make the
Meltdown vulnerability reporting PPC_BOOK3S_64 specific.
Signed-off-by: Diana Craciun <diana.craciun@nxp.com>
[mpe: Split out of larger patch]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit af375eefbfb27cbb5b831984e66d724a40d26b5c upstream.
Currently we require platform code to call setup_barrier_nospec(). But
if we add an empty definition for the !CONFIG_PPC_BARRIER_NOSPEC case
then we can call it in setup_arch().
Signed-off-by: Diana Craciun <diana.craciun@nxp.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 179ab1cbf883575c3a585bcfc0f2160f1d22a149 upstream.
Add a config symbol to encode which platforms support the
barrier_nospec speculation barrier. Currently this is just Book3S 64
but we will add Book3E in a future patch.
Signed-off-by: Diana Craciun <diana.craciun@nxp.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 6453b532f2c8856a80381e6b9a1f5ea2f12294df upstream.
NXP Book3E platforms are not vulnerable to speculative store
bypass, so make the mitigations PPC_BOOK3S_64 specific.
Signed-off-by: Diana Craciun <diana.craciun@nxp.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit cf175dc315f90185128fb061dc05b6fbb211aa2f upstream.
The speculation barrier can be disabled from the command line
with the parameter: "nospectre_v1".
Signed-off-by: Diana Craciun <diana.craciun@nxp.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 6d44acae1937b81cf8115ada8958e04f601f3f2e upstream.
When I added the spectre_v2 information in sysfs, I included the
availability of the ori31 speculation barrier.
Although the ori31 barrier can be used to mitigate v2, it's primarily
intended as a spectre v1 mitigation. Spectre v2 is mitigated by
hardware changes.
So rework the sysfs files to show the ori31 information in the
spectre_v1 file, rather than v2.
Currently we display eg:
$ grep . spectre_v*
spectre_v1:Mitigation: __user pointer sanitization
spectre_v2:Mitigation: Indirect branch cache disabled, ori31 speculation barrier enabled
After:
$ grep . spectre_v*
spectre_v1:Mitigation: __user pointer sanitization, ori31 speculation barrier enabled
spectre_v2:Mitigation: Indirect branch cache disabled
Fixes: d6fbe1c55c55 ("powerpc/64s: Wire up cpu_show_spectre_v2()")
Cc: stable@vger.kernel.org # v4.17+
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit a377514519b9a20fa1ea9adddbb4129573129cef upstream.
We now have barrier_nospec as mitigation so print it in
cpu_show_spectre_v1() when enabled.
Signed-off-by: Michal Suchanek <msuchanek@suse.de>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|