Age | Commit message (Collapse) | Author | Files | Lines |
|
commit 9e7460fc325dad06d2066abdbc1f4dd49456f9a4 upstream.
Extend the container size to 0x2000 to include the gpio controller at
offset 0x1040.
While at it, add start address notation to the gpio node name to match
its 'offset' property.
Fixes: 63dac0f4924b ("arm64: dts: marvell: add gpio support for Armada
7K/8K")
Signed-off-by: Baruch Siach <baruch@tkos.co.il>
Signed-off-by: Gregory CLEMENT <gregory.clement@free-electrons.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 044215d145a7a8a60ffa8fdc859d110a795fa6ea upstream.
Currently it's possible that on returning from the signal handler
through the restore_tm_sigcontexts() code path (e.g. from a signal
caught due to a `trap` instruction executed in the middle of an HTM
block, or a deliberately constructed sigframe) an illegal TM state
(like TS=10 TM=0, i.e. "T0") is set in SRR1 and when `rfid` sets
implicitly the MSR register from SRR1 register on return to userspace
it causes a TM Bad Thing exception.
That illegal state can be set (a) by a malicious user that disables
the TM bit by tweaking the bits in uc_mcontext before returning from
the signal handler or (b) by a sufficient number of context switches
occurring such that the load_tm counter overflows and TM is disabled
whilst in the signal handler.
This commit fixes the illegal TM state by ensuring that TM bit is
always enabled before we return from restore_tm_sigcontexts(). A small
comment correction is made as well.
Fixes: 5d176f751ee3 ("powerpc: tm: Enable transactional memory (TM) lazily for userspace")
Signed-off-by: Gustavo Romero <gromero@linux.vnet.ibm.com>
Signed-off-by: Breno Leitao <leitao@debian.org>
Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 265e60a170d0a0ecfc2d20490134ed2c48dd45ab upstream.
When using transactional memory (TM), the CPU can be in one of six
states as far as TM is concerned, encoded in the Machine State
Register (MSR). Certain state transitions are illegal and if attempted
trigger a "TM Bad Thing" type program check exception.
If we ever hit one of these exceptions it's treated as a bug, ie. we
oops, and kill the process and/or panic, depending on configuration.
One case where we can trigger a TM Bad Thing, is when returning to
userspace after a system call or interrupt, using RFID. When this
happens the CPU first restores the user register state, in particular
r1 (the stack pointer) and then attempts to update the MSR. However
the MSR update is not allowed and so we take the program check with
the user register state, but the kernel MSR.
This tricks the exception entry code into thinking we have a bad
kernel stack pointer, because the MSR says we're coming from the
kernel, but r1 is pointing to userspace.
To avoid this we instead always switch to the emergency stack if we
take a TM Bad Thing from the kernel. That way none of the user
register values are used, other than for printing in the oops message.
This is the fix for CVE-2017-1000255.
Fixes: 5d176f751ee3 ("powerpc: tm: Enable transactional memory (TM) lazily for userspace")
Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
[mpe: Rewrite change log & comments, tweak asm slightly]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3b7af5c0fd9631762d1c4d7b4cee76f571dd3c2c upstream.
Commit 41d0c2ecde19 ("powerpc/powernv: Fix local TLB flush for boot
and MCE on POWER9") introduced calls to __flush_tlb_power[89] from the
cpufeatures code, specifying the number of sets to flush.
However, these functions take an action argument, not a number of
sets. This means we hit the BUG() in __flush_tlb_{206,300} when using
cpufeatures-style configuration.
This change passes TLB_INVAL_SCOPE_GLOBAL instead.
Fixes: 41d0c2ecde19 ("powerpc/powernv: Fix local TLB flush for boot and MCE on POWER9")
Signed-off-by: Jeremy Kerr <jk@ozlabs.org>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 53ecde0b9126ff140abe3aefd7f0ec64d6fa36b0 upstream.
Memory hot unplug on PowerNV radix hosts is broken. Our memory block
size is 256MB but since we map the linear region with very large
pages, each pte we tear down maps 1GB.
A hot unplug of one 256MB memory block results in 768MB of memory
getting unintentionally unmapped. At this point we are likely to oops.
Fix this by increasing our memory block size to 1GB on PowerNV radix
hosts.
Fixes: 4b5d62ca17a1 ("powerpc/mm: add radix__remove_section_mapping()")
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 90caccdd8cc0215705f18b92771b449b01e2474a ]
- bpf prog_array just like all other types of bpf array accepts 32-bit index.
Clarify that in the comment.
- fix x64 JIT of bpf_tail_call which was incorrectly loading 8 instead of 4 bytes
- tighten corresponding check in the interpreter to stay consistent
The JIT bug can be triggered after introduction of BPF_F_NUMA_NODE flag
in commit 96eabe7a40aa in 4.14. Before that the map_flags would stay zero and
though JIT code is wrong it will check bounds correctly.
Hence two fixes tags. All other JITs don't have this problem.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Fixes: 96eabe7a40aa ("bpf: Allow selecting numa node during map creation")
Fixes: b52f00e6a715 ("x86: bpf_jit: implement bpf_tail_call() helper")
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c0a1666bcb2a33e84187a15eabdcd54056be9a97 upstream.
This fixes a compilation failure on 32-bit systems.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 5753743fa5108b8f98bd61e40dc63f641b26c768 upstream.
WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc)) in kvm_vcpu_trigger_posted_interrupt()
intends to detect the violation of invariant that VT-d PI notification
event is not suppressed when vcpu is in the guest mode. Because the
two checks for the target vcpu mode and the target suppress field
cannot be performed atomically, the target vcpu mode may change in
between. If that does happen, WARN_ON_ONCE() here may raise false
alarms.
As the previous patch fixed the real invariant breaker, remove this
WARN_ON_ONCE() to avoid false alarms, and document the allowed cases
instead.
Signed-off-by: Haozhong Zhang <haozhong.zhang@intel.com>
Reported-by: "Ramamurthy, Venkatesh" <venkatesh.ramamurthy@intel.com>
Reported-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Fixes: 28b835d60fcc ("KVM: Update Posted-Interrupts Descriptor when vCPU is preempted")
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit dc91f2eb1a4021eb6705c15e474942f84ab9b211 upstream.
In kvm_vcpu_trigger_posted_interrupt() and pi_pre_block(), KVM
assumes that PI notification events should not be suppressed when the
target vCPU is not blocked.
vmx_update_pi_irte() sets the SN field before changing an interrupt
from posting to remapping, but it does not check the vCPU mode.
Therefore, the change of SN field may break above the assumption.
Besides, I don't see reasons to suppress notification events here, so
remove the changes of SN field to avoid race condition.
Signed-off-by: Haozhong Zhang <haozhong.zhang@intel.com>
Reported-by: "Ramamurthy, Venkatesh" <venkatesh.ramamurthy@intel.com>
Reported-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Fixes: 28b835d60fcc ("KVM: Update Posted-Interrupts Descriptor when vCPU is preempted")
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 814fb7bb7db5433757d76f4c4502c96fc53b0b5e upstream.
On x86, userspace can use the ptrace() or rt_sigreturn() system calls to
set a task's extended state (xstate) or "FPU" registers. ptrace() can
set them for another task using the PTRACE_SETREGSET request with
NT_X86_XSTATE, while rt_sigreturn() can set them for the current task.
In either case, registers can be set to any value, but the kernel
assumes that the XSAVE area itself remains valid in the sense that the
CPU can restore it.
However, in the case where the kernel is using the uncompacted xstate
format (which it does whenever the XSAVES instruction is unavailable),
it was possible for userspace to set the xcomp_bv field in the
xstate_header to an arbitrary value. However, all bits in that field
are reserved in the uncompacted case, so when switching to a task with
nonzero xcomp_bv, the XRSTOR instruction failed with a #GP fault. This
caused the WARN_ON_FPU(err) in copy_kernel_to_xregs() to be hit. In
addition, since the error is otherwise ignored, the FPU registers from
the task previously executing on the CPU were leaked.
Fix the bug by checking that the user-supplied value of xcomp_bv is 0 in
the uncompacted case, and returning an error otherwise.
The reason for validating xcomp_bv rather than simply overwriting it
with 0 is that we want userspace to see an error if it (incorrectly)
provides an XSAVE area in compacted format rather than in uncompacted
format.
Note that as before, in case of error we clear the task's FPU state.
This is perhaps non-ideal, especially for PTRACE_SETREGSET; it might be
better to return an error before changing anything. But it seems the
"clear on error" behavior is fine for now, and it's a little tricky to
do otherwise because it would mean we couldn't simply copy the full
userspace state into kernel memory in one __copy_from_user().
This bug was found by syzkaller, which hit the above-mentioned
WARN_ON_FPU():
WARNING: CPU: 1 PID: 0 at ./arch/x86/include/asm/fpu/internal.h:373 __switch_to+0x5b5/0x5d0
CPU: 1 PID: 0 Comm: swapper/1 Not tainted 4.13.0 #453
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011
task: ffff9ba2bc8e42c0 task.stack: ffffa78cc036c000
RIP: 0010:__switch_to+0x5b5/0x5d0
RSP: 0000:ffffa78cc08bbb88 EFLAGS: 00010082
RAX: 00000000fffffffe RBX: ffff9ba2b8bf2180 RCX: 00000000c0000100
RDX: 00000000ffffffff RSI: 000000005cb10700 RDI: ffff9ba2b8bf36c0
RBP: ffffa78cc08bbbd0 R08: 00000000929fdf46 R09: 0000000000000001
R10: 0000000000000000 R11: 0000000000000000 R12: ffff9ba2bc8e42c0
R13: 0000000000000000 R14: ffff9ba2b8bf3680 R15: ffff9ba2bf5d7b40
FS: 00007f7e5cb10700(0000) GS:ffff9ba2bf400000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000004005cc CR3: 0000000079fd5000 CR4: 00000000001406e0
Call Trace:
Code: 84 00 00 00 00 00 e9 11 fd ff ff 0f ff 66 0f 1f 84 00 00 00 00 00 e9 e7 fa ff ff 0f ff 66 0f 1f 84 00 00 00 00 00 e9 c2 fa ff ff <0f> ff 66 0f 1f 84 00 00 00 00 00 e9 d4 fc ff ff 66 66 2e 0f 1f
Here is a C reproducer. The expected behavior is that the program spin
forever with no output. However, on a buggy kernel running on a
processor with the "xsave" feature but without the "xsaves" feature
(e.g. Sandy Bridge through Broadwell for Intel), within a second or two
the program reports that the xmm registers were corrupted, i.e. were not
restored correctly. With CONFIG_X86_DEBUG_FPU=y it also hits the above
kernel warning.
#define _GNU_SOURCE
#include <stdbool.h>
#include <inttypes.h>
#include <linux/elf.h>
#include <stdio.h>
#include <sys/ptrace.h>
#include <sys/uio.h>
#include <sys/wait.h>
#include <unistd.h>
int main(void)
{
int pid = fork();
uint64_t xstate[512];
struct iovec iov = { .iov_base = xstate, .iov_len = sizeof(xstate) };
if (pid == 0) {
bool tracee = true;
for (int i = 0; i < sysconf(_SC_NPROCESSORS_ONLN) && tracee; i++)
tracee = (fork() != 0);
uint32_t xmm0[4] = { [0 ... 3] = tracee ? 0x00000000 : 0xDEADBEEF };
asm volatile(" movdqu %0, %%xmm0\n"
" mov %0, %%rbx\n"
"1: movdqu %%xmm0, %0\n"
" mov %0, %%rax\n"
" cmp %%rax, %%rbx\n"
" je 1b\n"
: "+m" (xmm0) : : "rax", "rbx", "xmm0");
printf("BUG: xmm registers corrupted! tracee=%d, xmm0=%08X%08X%08X%08X\n",
tracee, xmm0[0], xmm0[1], xmm0[2], xmm0[3]);
} else {
usleep(100000);
ptrace(PTRACE_ATTACH, pid, 0, 0);
wait(NULL);
ptrace(PTRACE_GETREGSET, pid, NT_X86_XSTATE, &iov);
xstate[65] = -1;
ptrace(PTRACE_SETREGSET, pid, NT_X86_XSTATE, &iov);
ptrace(PTRACE_CONT, pid, 0, 0);
wait(NULL);
}
return 1;
}
Note: the program only tests for the bug using the ptrace() system call.
The bug can also be reproduced using the rt_sigreturn() system call, but
only when called from a 32-bit program, since for 64-bit programs the
kernel restores the FPU state from the signal frame by doing XRSTOR
directly from userspace memory (with proper error checking).
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Eric Biggers <ebiggers3@gmail.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Kevin Hao <haokexin@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael Halcrow <mhalcrow@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Cc: Yu-cheng Yu <yu-cheng.yu@intel.com>
Cc: kernel-hardening@lists.openwall.com
Fixes: 0b29643a5843 ("x86/xsaves: Change compacted format xsave area header")
Link: http://lkml.kernel.org/r/20170922174156.16780-2-ebiggers3@gmail.com
Link: http://lkml.kernel.org/r/20170923130016.21448-25-mingo@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a3c4fb7c9c2ebfd50b8c60f6c069932bb319bc37 upstream.
commit 7b2d0dbac489 ("x86/mm/pkeys: Pass VMA down in to fault signal
generation code") passes down a vma pointer to the error path, but that is
done once the mmap_sem is released when calling mm_fault_error() from
__do_page_fault().
This is dangerous as the vma structure is no more safe to be used once the
mmap_sem has been released. As only the protection key value is required in
the error processing, we could just pass down this value.
Fix it by passing a pointer to a protection key value down to the fault
signal generation code. The use of a pointer allows to keep the check
generating a warning message in fill_sig_info_pkey() when the vma was not
known. If the pointer is valid, the protection value can be accessed by
deferencing the pointer.
[ tglx: Made *pkey u32 as that's the type which is passed in siginfo ]
Fixes: 7b2d0dbac489 ("x86/mm/pkeys: Pass VMA down in to fault signal generation code")
Signed-off-by: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Link: http://lkml.kernel.org/r/1504513935-12742-1-git-send-email-ldufour@linux.vnet.ibm.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 51aa68e7d57e3217192d88ce90fd5b8ef29ec94f upstream.
If L1 does not specify the "use TPR shadow" VM-execution control in
vmcs12, then L0 must specify the "CR8-load exiting" and "CR8-store
exiting" VM-execution controls in vmcs02. Failure to do so will give
the L2 VM unrestricted read/write access to the hardware CR8.
This fixes CVE-2017-12154.
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3a8b0677fc6180a467e26cc32ce6b0c09a32f9bb upstream.
The value of the guest_irq argument to vmx_update_pi_irte() is
ultimately coming from a KVM_IRQFD API call. Do not BUG() in
vmx_update_pi_irte() if the value is out-of bounds. (Especially,
since KVM as a whole seems to hang after that.)
Instead, print a message only once if we find that we don't have a
route for a certain IRQ (which can be out-of-bounds or within the
array).
This fixes CVE-2017-1000252.
Fixes: efc644048ecde54 ("KVM: x86: Update IRTE for posted-interrupts")
Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b862789aa5186d5ea3a024b7cfe0f80c3a38b980 upstream.
Sasha Levin reported a WARNING:
| WARNING: CPU: 0 PID: 6974 at kernel/rcu/tree_plugin.h:329
| rcu_preempt_note_context_switch kernel/rcu/tree_plugin.h:329 [inline]
| WARNING: CPU: 0 PID: 6974 at kernel/rcu/tree_plugin.h:329
| rcu_note_context_switch+0x16c/0x2210 kernel/rcu/tree.c:458
...
| CPU: 0 PID: 6974 Comm: syz-fuzzer Not tainted 4.13.0-next-20170908+ #246
| Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
| 1.10.1-1ubuntu1 04/01/2014
| Call Trace:
...
| RIP: 0010:rcu_preempt_note_context_switch kernel/rcu/tree_plugin.h:329 [inline]
| RIP: 0010:rcu_note_context_switch+0x16c/0x2210 kernel/rcu/tree.c:458
| RSP: 0018:ffff88003b2debc8 EFLAGS: 00010002
| RAX: 0000000000000001 RBX: 1ffff1000765bd85 RCX: 0000000000000000
| RDX: 1ffff100075d7882 RSI: ffffffffb5c7da20 RDI: ffff88003aebc410
| RBP: ffff88003b2def30 R08: dffffc0000000000 R09: 0000000000000001
| R10: 0000000000000000 R11: 0000000000000000 R12: ffff88003b2def08
| R13: 0000000000000000 R14: ffff88003aebc040 R15: ffff88003aebc040
| __schedule+0x201/0x2240 kernel/sched/core.c:3292
| schedule+0x113/0x460 kernel/sched/core.c:3421
| kvm_async_pf_task_wait+0x43f/0x940 arch/x86/kernel/kvm.c:158
| do_async_page_fault+0x72/0x90 arch/x86/kernel/kvm.c:271
| async_page_fault+0x22/0x30 arch/x86/entry/entry_64.S:1069
| RIP: 0010:format_decode+0x240/0x830 lib/vsprintf.c:1996
| RSP: 0018:ffff88003b2df520 EFLAGS: 00010283
| RAX: 000000000000003f RBX: ffffffffb5d1e141 RCX: ffff88003b2df670
| RDX: 0000000000000001 RSI: dffffc0000000000 RDI: ffffffffb5d1e140
| RBP: ffff88003b2df560 R08: dffffc0000000000 R09: 0000000000000000
| R10: ffff88003b2df718 R11: 0000000000000000 R12: ffff88003b2df5d8
| R13: 0000000000000064 R14: ffffffffb5d1e140 R15: 0000000000000000
| vsnprintf+0x173/0x1700 lib/vsprintf.c:2136
| sprintf+0xbe/0xf0 lib/vsprintf.c:2386
| proc_self_get_link+0xfb/0x1c0 fs/proc/self.c:23
| get_link fs/namei.c:1047 [inline]
| link_path_walk+0x1041/0x1490 fs/namei.c:2127
...
This happened when the host hit a page fault, and delivered it as in an
async page fault, while the guest was in an RCU read-side critical
section. The guest then tries to reschedule in kvm_async_pf_task_wait(),
but rcu_preempt_note_context_switch() would treat the reschedule as a
sleep in RCU read-side critical section, which is not allowed (even in
preemptible RCU). Thus the WARN.
To cure this, make kvm_async_pf_task_wait() go to the halt path if the
PF happens in a RCU read-side critical section.
Reported-by: Sasha Levin <levinsasha928@gmail.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 44889942b6eb356eab27ce25fe10701adfec7776 upstream.
For nested virt we maintain multiple VMCS that can run on a vCPU. So it is
incorrect to keep vmcs_host_cr3 and vmcs_host_cr4, whose purpose is caching
the value of the rarely changing HOST_CR3 and HOST_CR4 VMCS fields, in
vCPU-wide data structures.
Hyper-V nested on KVM runs into this consistently for me with PCID enabled.
CR3 is updated with a new value, unlikely(cr3 != vmx->host_state.vmcs_host_cr3)
fires, and the currently loaded VMCS is updated. Then we switch from L2 to
L1 and the next exit reverts CR3 to its old value.
Fixes: d6e41f1151fe ("x86/mm, KVM: Teach KVM's VMX code that CR3 isn't a constant")
Signed-off-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 31afb2ea2b10a7d17ce3db4cdb0a12b63b2fe08a upstream.
The simplify part: do not touch pi_desc.nv, we can set it when the
VCPU is first created. Likewise, pi_desc.sn is only handled by
vmx_vcpu_pi_load, do not touch it in __pi_post_block.
The fix part: do not check kvm_arch_has_assigned_device, instead
check the SN bit to figure out whether vmx_vcpu_pi_put ran before.
This matches what the previous patch did in pi_post_block.
Cc: Huangweidong <weidong.huang@huawei.com>
Cc: Gonglei <arei.gonglei@huawei.com>
Cc: wangxin <wangxinxin.wang@huawei.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Tested-by: Longpeng (Mike) <longpeng2@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 8b306e2f3c41939ea528e6174c88cfbfff893ce1 upstream.
In some cases, for example involving hot-unplug of assigned
devices, pi_post_block can forget to remove the vCPU from the
blocked_vcpu_list. When this happens, the next call to
pi_pre_block corrupts the list.
Fix this in two ways. First, check vcpu->pre_pcpu in pi_pre_block
and WARN instead of adding the element twice in the list. Second,
always do the list removal in pi_post_block if vcpu->pre_pcpu is
set (not -1).
The new code keeps interrupts disabled for the whole duration of
pi_pre_block/pi_post_block. This is not strictly necessary, but
easier to follow. For the same reason, PI.ON is checked only
after the cmpxchg, and to handle it we just call the post-block
code. This removes duplication of the list removal code.
Cc: Huangweidong <weidong.huang@huawei.com>
Cc: Gonglei <arei.gonglei@huawei.com>
Cc: wangxin <wangxinxin.wang@huawei.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Tested-by: Longpeng (Mike) <longpeng2@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit cd39e1176d320157831ce030b4c869bd2d5eb142 upstream.
Simple code movement patch, preparing for the next one.
Cc: Huangweidong <weidong.huang@huawei.com>
Cc: Gonglei <arei.gonglei@huawei.com>
Cc: wangxin <wangxinxin.wang@huawei.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Tested-by: Longpeng (Mike) <longpeng2@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 760bfb47c36a07741a089bf6a28e854ffbee7dc9 upstream.
We currently route pte translation faults via do_page_fault, which elides
the address check against TASK_SIZE before invoking the mm fault handling
code. However, this can cause issues with the path walking code in
conjunction with our word-at-a-time implementation because
load_unaligned_zeropad can end up faulting in kernel space if it reads
across a page boundary and runs into a page fault (e.g. by attempting to
read from a guard region).
In the case of such a fault, load_unaligned_zeropad has registered a
fixup to shift the valid data and pad with zeroes, however the abort is
reported as a level 3 translation fault and we dispatch it straight to
do_page_fault, despite it being a kernel address. This results in calling
a sleeping function from atomic context:
BUG: sleeping function called from invalid context at arch/arm64/mm/fault.c:313
in_atomic(): 0, irqs_disabled(): 0, pid: 10290
Internal error: Oops - BUG: 0 [#1] PREEMPT SMP
[...]
[<ffffff8e016cd0cc>] ___might_sleep+0x134/0x144
[<ffffff8e016cd158>] __might_sleep+0x7c/0x8c
[<ffffff8e016977f0>] do_page_fault+0x140/0x330
[<ffffff8e01681328>] do_mem_abort+0x54/0xb0
Exception stack(0xfffffffb20247a70 to 0xfffffffb20247ba0)
[...]
[<ffffff8e016844fc>] el1_da+0x18/0x78
[<ffffff8e017f399c>] path_parentat+0x44/0x88
[<ffffff8e017f4c9c>] filename_parentat+0x5c/0xd8
[<ffffff8e017f5044>] filename_create+0x4c/0x128
[<ffffff8e017f59e4>] SyS_mkdirat+0x50/0xc8
[<ffffff8e01684e30>] el0_svc_naked+0x24/0x28
Code: 36380080 d5384100 f9400800 9402566d (d4210000)
---[ end trace 2d01889f2bca9b9f ]---
Fix this by dispatching all translation faults to do_translation_faults,
which avoids invoking the page fault logic for faults on kernel addresses.
Reported-by: Ankit Jain <ankijain@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f069faba688701c4d56b6c3452a130f97bf02e95 upstream.
On kernels built with support for transparent huge pages, different CPUs
can access the PMD concurrently due to e.g. fast GUP or page_vma_mapped_walk
and they must take care to use READ_ONCE to avoid value tearing or caching
of stale values by the compiler. Unfortunately, these functions call into
our pgtable macros, which don't use READ_ONCE, and compiler caching has
been observed to cause the following crash during ext4 writeback:
PC is at check_pte+0x20/0x170
LR is at page_vma_mapped_walk+0x2e0/0x540
[...]
Process doio (pid: 2463, stack limit = 0xffff00000f2e8000)
Call trace:
[<ffff000008233328>] check_pte+0x20/0x170
[<ffff000008233758>] page_vma_mapped_walk+0x2e0/0x540
[<ffff000008234adc>] page_mkclean_one+0xac/0x278
[<ffff000008234d98>] rmap_walk_file+0xf0/0x238
[<ffff000008236e74>] rmap_walk+0x64/0xa0
[<ffff0000082370c8>] page_mkclean+0x90/0xa8
[<ffff0000081f3c64>] clear_page_dirty_for_io+0x84/0x2a8
[<ffff00000832f984>] mpage_submit_page+0x34/0x98
[<ffff00000832fb4c>] mpage_process_page_bufs+0x164/0x170
[<ffff00000832fc8c>] mpage_prepare_extent_to_map+0x134/0x2b8
[<ffff00000833530c>] ext4_writepages+0x484/0xe30
[<ffff0000081f6ab4>] do_writepages+0x44/0xe8
[<ffff0000081e5bd4>] __filemap_fdatawrite_range+0xbc/0x110
[<ffff0000081e5e68>] file_write_and_wait_range+0x48/0xd8
[<ffff000008324310>] ext4_sync_file+0x80/0x4b8
[<ffff0000082bd434>] vfs_fsync_range+0x64/0xc0
[<ffff0000082332b4>] SyS_msync+0x194/0x1e8
This is because page_vma_mapped_walk loads the PMD twice before calling
pte_offset_map: the first time without READ_ONCE (where it gets all zeroes
due to a concurrent pmdp_invalidate) and the second time with READ_ONCE
(where it sees a valid table pointer due to a concurrent pmd_populate).
However, the compiler inlines everything and caches the first value in
a register, which is subsequently used in pte_offset_phys which returns
a junk pointer that is later dereferenced when attempting to access the
relevant pte.
This patch fixes the issue by using READ_ONCE in pte_offset_phys to ensure
that a stale value is not used. Whilst this is a point fix for a known
failure (and simple to backport), a full fix moving all of our page table
accessors over to {READ,WRITE}_ONCE and consistently using READ_ONCE in
page_vma_mapped_walk is in the works for a future kernel release.
Cc: Jon Masters <jcm@redhat.com>
Cc: Timur Tabi <timur@codeaurora.org>
Fixes: f27176cfc363 ("mm: convert page_mkclean_one() to use page_vma_mapped_walk()")
Tested-by: Richard Ruigrok <rruigrok@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 5371513fb338fb9989c569dc071326d369d6ade8 upstream.
When the kernel is entered at EL2 on an ARMv8.0 system, we construct
the EL1 pstate and make sure this uses the the EL1 stack pointer
(we perform an exception return to EL1h).
But if the kernel is either entered at EL1 or stays at EL2 (because
we're on a VHE-capable system), we fail to set SPsel, and use whatever
stack selection the higher exception level has choosen for us.
Let's not take any chance, and make sure that SPsel is set to one
before we decide the mode we're going to run in.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ba385c0594e723d41790ecfb12c610e6f90c7785 upstream.
The check for the _SEGMENT_ENTRY_PROTECT bit in gup_huge_pmd() is the
wrong way around. It must not be set for write==1, and not be checked for
write==0. Fix this similar to how it was fixed for ptes long time ago in
commit 25591b070336 ("[S390] fix get_user_pages_fast").
One impact of this bug would be unnecessarily using the gup slow path for
write==0 on r/w mappings. A potentially more severe impact would be that
gup_huge_pmd() will succeed for write==1 on r/o mappings.
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 91c575b335766effa6103eba42a82aea560c365f upstream.
Commit 227be799c39a ("s390/mm: uninline pmdp_xxx functions from pgtable.h")
inadvertently changed the behavior of pmdp_invalidate(), so that it now
clears the pmd instead of just marking it as invalid. Fix this by restoring
the original behavior.
A possible impact of the misbehaving pmdp_invalidate() would be the
MADV_DONTNEED races (see commits ced10803 and 58ceeb6b), although we
should not have any negative impact on the related dirty/young flags,
since those flags are not set by the hardware on s390.
Fixes: 227be799c39a ("s390/mm: uninline pmdp_xxx functions from pgtable.h")
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit fc3100d64f0ae383ae8d845989103da06d62763b upstream.
A per-thread event could not be created correctly like below:
perf record --per-thread -e rB0000 -- sleep 1
Error:
The sys_perf_event_open() syscall returned with 19 (No such device) for event (rB0000).
/bin/dmesg may provide additional information.
No CONFIG_PERF_EVENTS=y kernel support configured?
This bug was introduced by:
commit c311c797998c1e70eade463dd60b843da4f1a203
Author: Alexey Dobriyan <adobriyan@gmail.com>
Date: Mon May 8 15:56:15 2017 -0700
cpumask: make "nr_cpumask_bits" unsigned
If a per-thread event is not attached to any CPU, the cpu field
in struct perf_event is -1. The above commit converts the CPU number
to unsigned int, which result in an illegal CPU number.
Fixes: c311c797998c ("cpumask: make "nr_cpumask_bits" unsigned")
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Pu Hou <bjhoupu@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit fd0b19ed5389187829b854900511c9195875bb42 upstream.
Commit c311c797998c ("cpumask: make "nr_cpumask_bits" unsigned")
modified mipspmu_event_init() to cast the struct perf_event cpu field to
an unsigned integer before it is compared with nr_cpumask_bits (and
*ahem* did so without copying the linux-mips mailing list or any MIPS
developers...). This is broken because the cpu field may be -1 for
events which follow a process rather than being affine to a particular
CPU. When this is the case the cast to an unsigned int results in a
value equal to ULONG_MAX, which is always greater than nr_cpumask_bits
so we always fail mipspmu_event_init() and return -ENODEV.
The check against nr_cpumask_bits seems nonsensical anyway, so this
patch simply removes it. The cpu field is going to either be -1 or a
valid CPU number. Comparing it with nr_cpumask_bits is effectively
checking that it's a valid cpu number, but it seems safe to rely on the
core perf events code to ensure that's the case.
The end result is that this fixes use of perf on MIPS when not
constraining events to a particular CPU, and fixes the "perf list hw"
command which fails to list any events without this.
Signed-off-by: Paul Burton <paul.burton@imgtec.com>
Fixes: c311c797998c ("cpumask: make "nr_cpumask_bits" unsigned")
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/17323/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c1fa0768a8713b135848f78fd43ffc208d8ded70 upstream.
Commit cd63f3c ("powerpc/tm: Fix saving of TM SPRs in core dump")
added code to access TM SPRs in flush_tmregs_to_thread(). However
flush_tmregs_to_thread() does not check if TM feature is available on
CPU before trying to access TM SPRs in order to copy live state to
thread structures. flush_tmregs_to_thread() is indeed guarded by
CONFIG_PPC_TRANSACTIONAL_MEM but it might be the case that kernel
was compiled with CONFIG_PPC_TRANSACTIONAL_MEM enabled and ran on
a CPU without TM feature available, thus rendering the execution
of TM instructions that are treated by the CPU as illegal instructions.
The fix is just to add proper checking in flush_tmregs_to_thread()
if CPU has the TM feature before accessing any TM-specific resource,
returning immediately if TM is no available on the CPU. Adding
that checking in flush_tmregs_to_thread() instead of in places
where it is called, like in vsr_get() and vsr_set(), is better because
avoids the same problem cropping up elsewhere.
Fixes: cd63f3c ("powerpc/tm: Fix saving of TM SPRs in core dump")
Signed-off-by: Gustavo Romero <gromero@linux.vnet.ibm.com>
Reviewed-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b537ca6fede69a281dc524983e5e633d79a10a08 upstream.
A reference to the parent device node is held by add_dt_node() for the
node to be added. If the call to dlpar_configure_connector() fails
add_dt_node() returns ENOENT and that reference is not freed.
Add a call to of_node_put(parent_dn) prior to bailing out after a
failed dlpar_configure_connector() call.
Fixes: 8d5ff320766f ("powerpc/pseries: Make dlpar_configure_connector parent node aware")
Signed-off-by: Tyrel Datwyler <tyreld@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3e77adeea3c5393c9b624832f65441e92867f618 upstream.
Otherwise we end up not yet having computed the right diag data size
on powernv where EEH initialization is delayed, thus causing memory
corruption later on when calling OPAL.
Fixes: 5cb1f8fdddb7 ("powerpc/powernv/pci: Dynamically allocate PHB diag data")
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Russell Currey <ruscur@russell.cc>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d222af072380c4470295c07d84ecb15f4937e365 upstream.
The XIVE interrupt controller on POWER9 machines doesn't support byte
accesses to any register in the thread management area other than the
CPPR (current processor priority register). In particular, when
reading the PIPR (pending interrupt priority register), we need to
do a 32-bit or 64-bit load.
Fixes: 2c4fb78f78b6 ("KVM: PPC: Book3S HV: Workaround POWER9 DD1.0 bug causing IPB bit loss")
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 67f8a8c1151c9ef3d1285905d1e66ebb769ecdf7 upstream.
Aneesh Kumar reported seeing host crashes when running recent kernels
on POWER8. The symptom was an oops like this:
Unable to handle kernel paging request for data at address 0xf00000000786c620
Faulting instruction address: 0xc00000000030e1e4
Oops: Kernel access of bad area, sig: 11 [#1]
LE SMP NR_CPUS=2048 NUMA PowerNV
Modules linked in: powernv_op_panel
CPU: 24 PID: 6663 Comm: qemu-system-ppc Tainted: G W 4.13.0-rc7-43932-gfc36c59 #2
task: c000000fdeadfe80 task.stack: c000000fdeb68000
NIP: c00000000030e1e4 LR: c00000000030de6c CTR: c000000000103620
REGS: c000000fdeb6b450 TRAP: 0300 Tainted: G W (4.13.0-rc7-43932-gfc36c59)
MSR: 9000000000009033 <SF,HV,EE,ME,IR,DR,RI,LE> CR: 24044428 XER: 20000000
CFAR: c00000000030e134 DAR: f00000000786c620 DSISR: 40000000 SOFTE: 0
GPR00: 0000000000000000 c000000fdeb6b6d0 c0000000010bd000 000000000000e1b0
GPR04: c00000000115e168 c000001fffa6e4b0 c00000000115d000 c000001e1b180386
GPR08: f000000000000000 c000000f9a8913e0 f00000000786c600 00007fff587d0000
GPR12: c000000fdeb68000 c00000000fb0f000 0000000000000001 00007fff587cffff
GPR16: 0000000000000000 c000000000000000 00000000003fffff c000000fdebfe1f8
GPR20: 0000000000000004 c000000fdeb6b8a8 0000000000000001 0008000000000040
GPR24: 07000000000000c0 00007fff587cffff c000000fdec20bf8 00007fff587d0000
GPR28: c000000fdeca9ac0 00007fff587d0000 00007fff587c0000 00007fff587d0000
NIP [c00000000030e1e4] __get_user_pages_fast+0x434/0x1070
LR [c00000000030de6c] __get_user_pages_fast+0xbc/0x1070
Call Trace:
[c000000fdeb6b6d0] [c00000000139dab8] lock_classes+0x0/0x35fe50 (unreliable)
[c000000fdeb6b7e0] [c00000000030ef38] get_user_pages_fast+0xf8/0x120
[c000000fdeb6b830] [c000000000112318] kvmppc_book3s_hv_page_fault+0x308/0xf30
[c000000fdeb6b960] [c00000000010e10c] kvmppc_vcpu_run_hv+0xfdc/0x1f00
[c000000fdeb6bb20] [c0000000000e915c] kvmppc_vcpu_run+0x2c/0x40
[c000000fdeb6bb40] [c0000000000e5650] kvm_arch_vcpu_ioctl_run+0x110/0x300
[c000000fdeb6bbe0] [c0000000000d6468] kvm_vcpu_ioctl+0x528/0x900
[c000000fdeb6bd40] [c0000000003bc04c] do_vfs_ioctl+0xcc/0x950
[c000000fdeb6bde0] [c0000000003bc930] SyS_ioctl+0x60/0x100
[c000000fdeb6be30] [c00000000000b96c] system_call+0x58/0x6c
Instruction dump:
7ca81a14 2fa50000 41de0010 7cc8182a 68c60002 78c6ffe2 0b060000 3cc2000a
794a3664 390610d8 e9080000 7d485214 <e90a0020> 7d435378 790507e1 408202f0
---[ end trace fad4a342d0414aa2 ]---
It turns out that what has happened is that the SLB entry for the
vmmemap region hasn't been reloaded on exit from a guest, and it has
the wrong page size. Then, when the host next accesses the vmemmap
region, it gets a page fault.
Commit a25bd72badfa ("powerpc/mm/radix: Workaround prefetch issue with
KVM", 2017-07-24) modified the guest exit code so that it now only clears
out the SLB for hash guest. The code tests the radix flag and puts the
result in a non-volatile CR field, CR2, and later branches based on CR2.
Unfortunately, the kvmppc_save_tm function, which gets called between
those two points, modifies all the user-visible registers in the case
where the guest was in transactional or suspended state, except for a
few which it restores (namely r1, r2, r9 and r13). Thus the hash/radix indication in CR2 gets corrupted.
This fixes the problem by re-doing the comparison just before the
result is needed. For good measure, this also adds comments next to
the call sites of kvmppc_save_tm and kvmppc_restore_tm pointing out
that non-volatile register state will be lost.
Fixes: a25bd72badfa ("powerpc/mm/radix: Workaround prefetch issue with KVM")
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit cf5f6f3125241853462334b1bc696f3c3c492178 upstream.
Commit 468808bd35c4 ("KVM: PPC: Book3S HV: Set process table for HPT
guests on POWER9", 2017-01-30) added a call to kvmppc_update_lpcr()
which doesn't hold the kvm->lock mutex around the call, as required.
This adds the lock/unlock pair, and for good measure, includes
the kvmppc_setup_partition_table() call in the locked region, since
it is altering global state of the VM.
This error appears not to have any fatal consequences for the host;
the consequences would be that the VCPUs could end up running with
different LPCR values, or an update to the LPCR value by userspace
using the one_reg interface could get overwritten, or the update
done by kvmhv_configure_mmu() could get overwritten.
Fixes: 468808bd35c4 ("KVM: PPC: Book3S HV: Set process table for HPT guests on POWER9")
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 60f07c8ec5fae06c23e9fd7bab67dabce92b3414 upstream.
The order in __tlb_flush_mm_lazy is to flush TLB first and then clear
the mm->context.flush_mm bit. This can lead to missed flushes as the
bit can be set anytime, the order needs to be the other way aronud.
But this leads to a different race, __tlb_flush_mm_lazy may be called
on two CPUs concurrently. If mm->context.flush_mm is cleared first then
another CPU can bypass __tlb_flush_mm_lazy although the first CPU has
not done the flush yet. In a virtualized environment the time until the
flush is finally completed can be arbitrarily long.
Add a spinlock to serialize __tlb_flush_mm_lazy and use the function
in finish_arch_post_lock_switch as well.
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b3e5dc45fd1ec2aa1de6b80008f9295eb17e0659 upstream.
The local TLB flushing code keeps an additional mask in the mm.context,
the cpu_attach_mask. At the time a global flush of an address space is
done the cpu_attach_mask is copied to the mm_cpumask in order to avoid
future global flushes in case the mm is used by a single CPU only after
the flush.
Trouble is that the reset of the mm_cpumask is racy against the detach
of an mm address space by switch_mm. The current order is first the
global TLB flush and then the copy of the cpu_attach_mask to the
mm_cpumask. The order needs to be the other way around.
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1ee55a8f7f6b7ca4c0c59e0b4b4e3584a085c2d3 upstream.
I recently came upon a scenario where I would get a double fault
machine check exception tiriggered by a kernel module.
However the ensuing crash stacktrace (ksym lookup) was not working
correctly.
Turns out that machine check auto-disables MMU while modules are allocated
in kernel vaddr spapce.
This patch re-enables the MMU before start printing the stacktrace
making stacktracing of modules work upon a fatal exception.
Signed-off-by: Jose Abreu <joabreu@synopsys.com>
Reviewed-by: Alexey Brodkin <abrodkin@synopsys.com>
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
[vgupta: moved code into low level handler to avoid in 2 places]
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f9effe925039cf54489b5c04e0d40073bb3a123d upstream.
Anton noticed that if we fault part way through emulating an unaligned
instruction, we don't update the DAR to reflect that.
The DAR value is eventually reported back to userspace as the address
in the SEGV signal, and if userspace is using that value to demand
fault then it can be confused by us not setting the value correctly.
This patch is ugly as hell, but is intended to be the minimal fix and
back ports easily.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
assigned lmbs
commit afb5519fdb346201728040cab4e08ce53e7ff4fd upstream.
Check if an LMB is assigned before attempting to call dlpar_acquire_drc
in order to avoid any unnecessary rtas calls. This substantially
reduces the running time of memory hot add on lpars with large amounts
of memory.
[mpe: We need to explicitly set rc to 0 in the success case, otherwise
the compiler might think we use rc without initialising it.]
Fixes: c21f515c7436 ("powerpc/pseries: Make the acquire/release of the drc for memory a seperate step")
Signed-off-by: John Allen <jallen@linux.vnet.ibm.com>
Reviewed-by: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit bab9f954aaf352127725a9b7920226abdb65b604 upstream.
The nest MMU tlb flush needs to happen before the GPU translation
shootdown is launched to avoid the GPU refilling its tlb with stale
nmmu translations prior to the nmmu flush completing.
Fixes: 1ab66d1fbada ("powerpc/powernv: Introduce address translation services for Nvlink2")
Signed-off-by: Alistair Popple <alistair@popple.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 2cfa58259f4b65b33ebe8f167019a1f89c6c3289 upstream.
Implement fused multiply-add with correct accuracy.
Fused multiply-add operation has better accuracy than respective
sequential execution of multiply and add operations applied on the
same inputs. This is because accuracy errors accumulate in latter
case.
This patch implements fused multiply-add with the same accuracy
as it is implemented in hardware, using 128-bit intermediate
calculations.
One test case example (raw bits) that this patch fixes:
MADDF.D fd,fs,ft:
fd = 0x00000ca000000000
fs = ft = 0x3f40624dd2f1a9fc
Fixes: e24c3bec3e8e ("MIPS: math-emu: Add support for the MIPS R6 MADDF FPU instruction")
Fixes: 83d43305a1df ("MIPS: math-emu: Add support for the MIPS R6 MSUBF FPU instruction")
Signed-off-by: Douglas Leung <douglas.leung@imgtec.com>
Signed-off-by: Miodrag Dinic <miodrag.dinic@imgtec.com>
Signed-off-by: Goran Ferenc <goran.ferenc@imgtec.com>
Signed-off-by: Aleksandar Markovic <aleksandar.markovic@imgtec.com>
Cc: Douglas Leung <douglas.leung@imgtec.com>
Cc: Bo Hu <bohu@google.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Jin Qian <jinqian@google.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: Petar Jovanovic <petar.jovanovic@imgtec.com>
Cc: Raghu Gandham <raghu.gandham@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
Patchwork: https://patchwork.linux-mips.org/patch/16891/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b3b8e1eb27c523e32b6a8aa7ec8ac4754456af57 upstream.
Implement fused multiply-add with correct accuracy.
Fused multiply-add operation has better accuracy than respective
sequential execution of multiply and add operations applied on the
same inputs. This is because accuracy errors accumulate in latter
case.
This patch implements fused multiply-add with the same accuracy
as it is implemented in hardware, using 64-bit intermediate
calculations.
One test case example (raw bits) that this patch fixes:
MADDF.S fd,fs,ft:
fd = 0x22575225
fs = ft = 0x3727c5ac
Fixes: e24c3bec3e8e ("MIPS: math-emu: Add support for the MIPS R6 MADDF FPU instruction")
Fixes: 83d43305a1df ("MIPS: math-emu: Add support for the MIPS R6 MSUBF FPU instruction")
Signed-off-by: Douglas Leung <douglas.leung@imgtec.com>
Signed-off-by: Miodrag Dinic <miodrag.dinic@imgtec.com>
Signed-off-by: Goran Ferenc <goran.ferenc@imgtec.com>
Signed-off-by: Aleksandar Markovic <aleksandar.markovic@imgtec.com>
Cc: Douglas Leung <douglas.leung@imgtec.com>
Cc: Bo Hu <bohu@google.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Jin Qian <jinqian@google.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: Petar Jovanovic <petar.jovanovic@imgtec.com>
Cc: Raghu Gandham <raghu.gandham@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
Patchwork: https://patchwork.linux-mips.org/patch/16890/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ae11c0619973ffd73a496308d8a1cb5e1a353737 upstream.
Fix definition and usage of "maddf_flags" enumeration. Avoid duplicate
definition and apply more common capitalization.
This patch does not change any scenario. It just makes MADDF and
MSUBF emulation code more readable and easier to maintain, and
hopefully prevents future bugs as well.
Signed-off-by: Miodrag Dinic <miodrag.dinic@imgtec.com>
Signed-off-by: Goran Ferenc <goran.ferenc@imgtec.com>
Signed-off-by: Aleksandar Markovic <aleksandar.markovic@imgtec.com>
Reviewed-by: James Hogan <james.hogan@imgtec.com>
Cc: Bo Hu <bohu@google.com>
Cc: Douglas Leung <douglas.leung@imgtec.com>
Cc: Jin Qian <jinqian@google.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: Petar Jovanovic <petar.jovanovic@imgtec.com>
Cc: Raghu Gandham <raghu.gandham@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
Patchwork: https://patchwork.linux-mips.org/patch/16889/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 7cf64ce4d37f1b4f44365fcf77f565d523819dcd upstream.
Fix the cases of <MADDF|MSUBF>.<D|S> when any of two multiplicands is
+0 or -0, and the third input is also +0 or -0. Depending on the signs
of inputs, certain special cases must be handled.
A relevant example:
MADDF.S fd,fs,ft:
If fs contains +0.0, ft contains -0.0, and fd contains 0.0, fd is
going to contain +0.0 (without this patch, it used to contain -0.0).
Fixes: e24c3bec3e8e ("MIPS: math-emu: Add support for the MIPS R6 MADDF FPU instruction")
Fixes: 83d43305a1df ("MIPS: math-emu: Add support for the MIPS R6 MSUBF FPU instruction")
Signed-off-by: Miodrag Dinic <miodrag.dinic@imgtec.com>
Signed-off-by: Goran Ferenc <goran.ferenc@imgtec.com>
Signed-off-by: Aleksandar Markovic <aleksandar.markovic@imgtec.com>
Reviewed-by: James Hogan <james.hogan@imgtec.com>
Cc: Bo Hu <bohu@google.com>
Cc: Douglas Leung <douglas.leung@imgtec.com>
Cc: Jin Qian <jinqian@google.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: Petar Jovanovic <petar.jovanovic@imgtec.com>
Cc: Raghu Gandham <raghu.gandham@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
Patchwork: https://patchwork.linux-mips.org/patch/16888/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 0c64fe6348687f0e1cea9a608eae9d351124a73a upstream.
Fix the cases of <MADDF|MSUBF>.<D|S> when any of two multiplicands is
infinity. The correct behavior in such cases is affected by the nature
of third input. Cases of addition of infinities with opposite signs
and subtraction of infinities with same signs may arise and must be
handles separately. Also, the value od flags argument (that determines
whether the instruction is MADDF or MSUBF) affects the outcome.
Relevant examples:
MADDF.S fd,fs,ft:
If fs contains +inf, ft contains +inf, and fd contains -inf, fd is
going to contain indef (without this patch, it used to contain
-inf).
MSUBF.S fd,fs,ft:
If fs contains +inf, ft contains 1.0, and fd contains +0.0, fd is
going to contain -inf (without this patch, it used to contain +inf).
Fixes: e24c3bec3e8e ("MIPS: math-emu: Add support for the MIPS R6 MADDF FPU instruction")
Fixes: 83d43305a1df ("MIPS: math-emu: Add support for the MIPS R6 MSUBF FPU instruction")
Signed-off-by: Douglas Leung <douglas.leung@imgtec.com>
Signed-off-by: Miodrag Dinic <miodrag.dinic@imgtec.com>
Signed-off-by: Goran Ferenc <goran.ferenc@imgtec.com>
Signed-off-by: Aleksandar Markovic <aleksandar.markovic@imgtec.com>
Reviewed-by: James Hogan <james.hogan@imgtec.com>
Cc: Douglas Leung <douglas.leung@imgtec.com>
Cc: Bo Hu <bohu@google.com>
Cc: Jin Qian <jinqian@google.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: Petar Jovanovic <petar.jovanovic@imgtec.com>
Cc: Raghu Gandham <raghu.gandham@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
Patchwork: https://patchwork.linux-mips.org/patch/16887/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e840be6e7057757befc3581e1699e30fe7f0dd51 upstream.
Fix the cases of <MADDF|MSUBF>.<D|S> when any of three inputs is any
NaN. Correct behavior of <MADDF|MSUBF>.<D|S> fd, fs, ft is following:
- if any of inputs is sNaN, return a sNaN using following rules: if
only one input is sNaN, return that one; if more than one input is
sNaN, order of precedence for return value is fd, fs, ft
- if no input is sNaN, but at least one of inputs is qNaN, return a
qNaN using following rules: if only one input is qNaN, return that
one; if more than one input is qNaN, order of precedence for
return value is fd, fs, ft
The previous code contained correct handling of some above cases, but
not all. Also, such handling was scattered into various cases of
"switch (CLPAIR(xc, yc))" statement, and elsewhere. With this patch,
this logic is placed in one place, and "switch (CLPAIR(xc, yc))" is
significantly simplified.
A relevant example:
MADDF.S fd,fs,ft:
If fs contains qNaN1, ft contains qNaN2, and fd contains qNaN3, fd
is going to contain qNaN3 (without this patch, it used to contain
qNaN1).
Fixes: e24c3bec3e8e ("MIPS: math-emu: Add support for the MIPS R6 MADDF FPU instruction")
Fixes: 83d43305a1df ("MIPS: math-emu: Add support for the MIPS R6 MSUBF FPU instruction")
Signed-off-by: Miodrag Dinic <miodrag.dinic@imgtec.com>
Signed-off-by: Goran Ferenc <goran.ferenc@imgtec.com>
Signed-off-by: Aleksandar Markovic <aleksandar.markovic@imgtec.com>
Reviewed-by: James Hogan <james.hogan@imgtec.com>
Cc: Bo Hu <bohu@google.com>
Cc: Douglas Leung <douglas.leung@imgtec.com>
Cc: Jin Qian <jinqian@google.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: Petar Jovanovic <petar.jovanovic@imgtec.com>
Cc: Raghu Gandham <raghu.gandham@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
Patchwork: https://patchwork.linux-mips.org/patch/16886/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 304bfe473e70523e591fb1c9223289d355e0bdcb upstream.
Fix following special cases for MINA>.<D|S>:
- if one of the inputs is zero, and the other is subnormal, normal,
or infinity, the value of the former should be returned (that is,
a zero).
- if one of the inputs is infinity, and the other input is normal,
or subnormal, the value of the latter should be returned.
The previous implementation's logic for such cases was incorrect - it
appears as if it implements MAXA, and not MINA instruction.
A relevant example:
MINA.S fd,fs,ft:
If fs contains 100.0, and ft contains 0.0, fd is going to contain
0.0 (without this patch, it used to contain 100.0).
Fixes: a79f5f9ba508 ("MIPS: math-emu: Add support for the MIPS R6 MAX{, A} FPU instruction")
Fixes: 4e9561b20e2f ("MIPS: math-emu: Add support for the MIPS R6 MIN{, A} FPU instruction")
Signed-off-by: Miodrag Dinic <miodrag.dinic@imgtec.com>
Signed-off-by: Goran Ferenc <goran.ferenc@imgtec.com>
Signed-off-by: Aleksandar Markovic <aleksandar.markovic@imgtec.com>
Reviewed-by: James Hogan <james.hogan@imgtec.com>
Cc: Bo Hu <bohu@google.com>
Cc: Douglas Leung <douglas.leung@imgtec.com>
Cc: Jin Qian <jinqian@google.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: Petar Jovanovic <petar.jovanovic@imgtec.com>
Cc: Raghu Gandham <raghu.gandham@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
Patchwork: https://patchwork.linux-mips.org/patch/16885/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3444c4eb534c20e44f0d6670b34263efaf8b531f upstream.
Fix the value returned by <MAXA|MINA>.<D|S> fd,fs,ft, if both inputs
are infinite. The previous implementation returned always the value
contained in ft in such cases. The correct behavior is specified
in Mips instruction set manual and is as follows:
fs ft MAXA MINA
---------------------------------
inf inf inf inf
inf -inf inf -inf
-inf inf inf -inf
-inf -inf -inf -inf
A relevant example:
MAXA.S fd,fs,ft:
If fs contains +inf, and ft contains -inf, fd is going to contain
+inf (without this patch, it used to contain -inf).
Fixes: a79f5f9ba508 ("MIPS: math-emu: Add support for the MIPS R6 MAX{, A} FPU instruction")
Fixes: 4e9561b20e2f ("MIPS: math-emu: Add support for the MIPS R6 MIN{, A} FPU instruction")
Signed-off-by: Miodrag Dinic <miodrag.dinic@imgtec.com>
Signed-off-by: Goran Ferenc <goran.ferenc@imgtec.com>
Signed-off-by: Aleksandar Markovic <aleksandar.markovic@imgtec.com>
Reviewed-by: James Hogan <james.hogan@imgtec.com>
Cc: Bo Hu <bohu@google.com>
Cc: Douglas Leung <douglas.leung@imgtec.com>
Cc: Jin Qian <jinqian@google.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: Petar Jovanovic <petar.jovanovic@imgtec.com>
Cc: Raghu Gandham <raghu.gandham@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
Patchwork: https://patchwork.linux-mips.org/patch/16884/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1a41b3b441508ae63b1a9ec699ec94065739eb60 upstream.
Fix the value returned by <MAXA|MINA>.<D|S>, if the inputs are normal
fp numbers of the same absolute value, but opposite signs.
A relevant example:
MAXA.S fd,fs,ft:
If fs contains -3.0, and ft contains +3.0, fd is going to contain
+3.0 (without this patch, it used to contain -3.0).
Fixes: a79f5f9ba508 ("MIPS: math-emu: Add support for the MIPS R6 MAX{, A} FPU instruction")
Fixes: 4e9561b20e2f ("MIPS: math-emu: Add support for the MIPS R6 MIN{, A} FPU instruction")
Signed-off-by: Miodrag Dinic <miodrag.dinic@imgtec.com>
Signed-off-by: Goran Ferenc <goran.ferenc@imgtec.com>
Signed-off-by: Aleksandar Markovic <aleksandar.markovic@imgtec.com>
Reviewed-by: James Hogan <james.hogan@imgtec.com>
Cc: Bo Hu <bohu@google.com>
Cc: Douglas Leung <douglas.leung@imgtec.com>
Cc: Jin Qian <jinqian@google.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: Petar Jovanovic <petar.jovanovic@imgtec.com>
Cc: Raghu Gandham <raghu.gandham@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
Patchwork: https://patchwork.linux-mips.org/patch/16883/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit aabf5cf02e22ebc4e541adf835910f388b6c3e65 upstream.
Fix the value returned by <MAX|MIN>.<D|S>, if both inputs are negative
normal fp numbers. The previous logic did not take into account that
if both inputs have the same sign, there should be separate treatment
of the cases when both inputs are negative and when both inputs are
positive.
A relevant example:
MAX.S fd,fs,ft:
If fs contains -5.0, and ft contains -7.0, fd is going to contain
-5.0 (without this patch, it used to contain -7.0).
Fixes: a79f5f9ba508 ("MIPS: math-emu: Add support for the MIPS R6 MAX{, A} FPU instruction")
Fixes: 4e9561b20e2f ("MIPS: math-emu: Add support for the MIPS R6 MIN{, A} FPU instruction")
Signed-off-by: Miodrag Dinic <miodrag.dinic@imgtec.com>
Signed-off-by: Goran Ferenc <goran.ferenc@imgtec.com>
Signed-off-by: Aleksandar Markovic <aleksandar.markovic@imgtec.com>
Reviewed-by: James Hogan <james.hogan@imgtec.com>
Cc: Bo Hu <bohu@google.com>
Cc: Douglas Leung <douglas.leung@imgtec.com>
Cc: Jin Qian <jinqian@google.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: Petar Jovanovic <petar.jovanovic@imgtec.com>
Cc: Raghu Gandham <raghu.gandham@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
Patchwork: https://patchwork.linux-mips.org/patch/16882/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 15560a58bfd4ff82cdd16b2270d4ef9b06d2cc4d upstream.
Fix the value returned by <MAX|MAXA|MIN|MINA>.<D|S>, if both inputs
are zeros. The right behavior in such cases is stated in instruction
reference manual and is as follows:
fs ft MAX MIN MAXA MINA
---------------------------------------------
0 0 0 0 0 0
0 -0 0 -0 0 -0
-0 0 0 -0 0 -0
-0 -0 -0 -0 -0 -0
Prior to this patch, some of the above cases were yielding correct
results. However, for the sake of code consistency, all such cases
are rewritten in this patch.
A relevant example:
MAX.S fd,fs,ft:
If fs contains +0.0, and ft contains -0.0, fd is going to contain
+0.0 (without this patch, it used to contain -0.0).
Fixes: a79f5f9ba508 ("MIPS: math-emu: Add support for the MIPS R6 MAX{, A} FPU instruction")
Fixes: 4e9561b20e2f ("MIPS: math-emu: Add support for the MIPS R6 MIN{, A} FPU instruction")
Signed-off-by: Miodrag Dinic <miodrag.dinic@imgtec.com>
Signed-off-by: Goran Ferenc <goran.ferenc@imgtec.com>
Signed-off-by: Aleksandar Markovic <aleksandar.markovic@imgtec.com>
Reviewed-by: James Hogan <james.hogan@imgtec.com>
Cc: Bo Hu <bohu@google.com>
Cc: Douglas Leung <douglas.leung@imgtec.com>
Cc: Jin Qian <jinqian@google.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: Petar Jovanovic <petar.jovanovic@imgtec.com>
Cc: Raghu Gandham <raghu.gandham@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
Patchwork: https://patchwork.linux-mips.org/patch/16881/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e78bf0dc4789bdea1453595ae89e8db65918e22e upstream.
Fix the value returned by <MAX|MAXA|MIN|MINA>.<D|S> fd,fs,ft, if both
inputs are quiet NaNs. The <MAX|MAXA|MIN|MINA>.<D|S> specifications
state that the returned value in such cases should be the quiet NaN
contained in register fs.
A relevant example:
MAX.S fd,fs,ft:
If fs contains qNaN1, and ft contains qNaN2, fd is going to contain
qNaN1 (without this patch, it used to contain qNaN2).
Fixes: a79f5f9ba508 ("MIPS: math-emu: Add support for the MIPS R6 MAX{, A} FPU instruction")
Fixes: 4e9561b20e2f ("MIPS: math-emu: Add support for the MIPS R6 MIN{, A} FPU instruction")
Signed-off-by: Miodrag Dinic <miodrag.dinic@imgtec.com>
Signed-off-by: Goran Ferenc <goran.ferenc@imgtec.com>
Signed-off-by: Aleksandar Markovic <aleksandar.markovic@imgtec.com>
Reviewed-by: James Hogan <james.hogan@imgtec.com>
Cc: Bo Hu <bohu@google.com>
Cc: Douglas Leung <douglas.leung@imgtec.com>
Cc: Jin Qian <jinqian@google.com>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: Petar Jovanovic <petar.jovanovic@imgtec.com>
Cc: Raghu Gandham <raghu.gandham@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
Patchwork: https://patchwork.linux-mips.org/patch/16880/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ce0fa3e56ad20f04d8252353dcd24e924abdafca upstream.
Speculative processor accesses may reference any memory that has a
valid page table entry. While a speculative access won't generate
a machine check, it will log the error in a machine check bank. That
could cause escalation of a subsequent error since the overflow bit
will be then set in the machine check bank status register.
Code has to be double-plus-tricky to avoid mentioning the 1:1 virtual
address of the page we want to map out otherwise we may trigger the
very problem we are trying to avoid. We use a non-canonical address
that passes through the usual Linux table walking code to get to the
same "pte".
Thanks to Dave Hansen for reviewing several iterations of this.
Also see:
http://marc.info/?l=linux-mm&m=149860136413338&w=2
Signed-off-by: Tony Luck <tony.luck@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Elliott, Robert (Persistent Memory) <elliott@hpe.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20170816171803.28342-1-tony.luck@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|