Age | Commit message (Collapse) | Author | Files | Lines |
|
commit 872df34d7c51a79523820ea6a14860398c639b87 upstream.
ITS mitigation moves the unsafe indirect branches to a safe thunk. This
could degrade the prediction accuracy as the source address of indirect
branches becomes same for different execution paths.
To improve the predictions, and hence the performance, assign a separate
thunk for each indirect callsite. This is also a defense-in-depth measure
to avoid indirect branches aliasing with each other.
As an example, 5000 dynamic thunks would utilize around 16 bits of the
address space, thereby gaining entropy. For a BTB that uses
32 bits for indexing, dynamic thunks could provide better prediction
accuracy over fixed thunks.
Have ITS thunks be variable sized and use EXECMEM_MODULE_TEXT such that
they are both more flexible (got to extend them later) and live in 2M TLBs,
just like kernel code, avoiding undue TLB pressure.
[ pawan: CONFIG_EXECMEM_ROX is not supported on backport kernel, made
adjustments to set memory to RW and ROX ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ebebe30794d38c51f71fe4951ba6af4159d9837d upstream.
cfi_rewrite_callers() updates the fineIBT hash matching at the caller side,
but except for paranoid-mode it relies on apply_retpoline() and friends for
any ENDBR relocation. This could temporarily cause an indirect branch to
land on a poisoned ENDBR.
For instance, with para-virtualization enabled, a simple wrmsrl() could
have an indirect branch pointing to native_write_msr() who's ENDBR has been
relocated due to fineIBT:
<wrmsrl>:
push %rbp
mov %rsp,%rbp
mov %esi,%eax
mov %rsi,%rdx
shr $0x20,%rdx
mov %edi,%edi
mov %rax,%rsi
call *0x21e65d0(%rip) # <pv_ops+0xb8>
^^^^^^^^^^^^^^^^^^^^^^^
Such an indirect call during the alternative patching could #CP if the
caller is not *yet* adjusted for the new target ENDBR. To prevent a false
#CP, keep CET-IBT disabled until all callers are patched.
Patching during the module load does not need to be guarded by IBT-disable
because the module code is not executed until the patching is complete.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f0cd7091cc5a032c8870b4285305d9172569d126 upstream.
The software mitigation for BHI is to execute BHB clear sequence at syscall
entry, and possibly after a cBPF program. ITS mitigation thunks RETs in the
lower half of the cacheline. This causes the RETs in the BHB clear sequence
to be thunked as well, adding unnecessary branches to the BHB clear
sequence.
Since the sequence is in hot path, align the RET instructions in the
sequence to avoid thunking.
This is how disassembly clear_bhb_loop() looks like after this change:
0x44 <+4>: mov $0x5,%ecx
0x49 <+9>: call 0xffffffff81001d9b <clear_bhb_loop+91>
0x4e <+14>: jmp 0xffffffff81001de5 <clear_bhb_loop+165>
0x53 <+19>: int3
...
0x9b <+91>: call 0xffffffff81001dce <clear_bhb_loop+142>
0xa0 <+96>: ret
0xa1 <+97>: int3
...
0xce <+142>: mov $0x5,%eax
0xd3 <+147>: jmp 0xffffffff81001dd6 <clear_bhb_loop+150>
0xd5 <+149>: nop
0xd6 <+150>: sub $0x1,%eax
0xd9 <+153>: jne 0xffffffff81001dd3 <clear_bhb_loop+147>
0xdb <+155>: sub $0x1,%ecx
0xde <+158>: jne 0xffffffff81001d9b <clear_bhb_loop+91>
0xe0 <+160>: ret
0xe1 <+161>: int3
0xe2 <+162>: int3
0xe3 <+163>: int3
0xe4 <+164>: int3
0xe5 <+165>: lfence
0xe8 <+168>: pop %rbp
0xe9 <+169>: ret
Suggested-by: Andrew Cooper <andrew.cooper3@citrix.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit facd226f7e0c8ca936ac114aba43cb3e8b94e41e upstream.
When retpoline mitigation is enabled for spectre-v2, enabling
call-depth-tracking and RSB stuffing also mitigates ITS. Add cmdline option
indirect_target_selection=stuff to allow enabling RSB stuffing mitigation.
When retpoline mitigation is not enabled, =stuff option is ignored, and
default mitigation for ITS is deployed.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 2665281a07e19550944e8354a2024635a7b2714a upstream.
Ice Lake generation CPUs are not affected by guest/host isolation part of
ITS. If a user is only concerned about KVM guests, they can now choose a
new cmdline option "vmexit" that will not deploy the ITS mitigation when
CPU is not affected by guest/host isolation. This saves the performance
overhead of ITS mitigation on Ice Lake gen CPUs.
When "vmexit" option selected, if the CPU is affected by ITS guest/host
isolation, the default ITS mitigation is deployed.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f4818881c47fd91fcb6d62373c57c7844e3de1c0 upstream.
Indirect Target Selection (ITS) is a bug in some pre-ADL Intel CPUs with
eIBRS. It affects prediction of indirect branch and RETs in the
lower half of cacheline. Due to ITS such branches may get wrongly predicted
to a target of (direct or indirect) branch that is located in the upper
half of the cacheline.
Scope of impact
===============
Guest/host isolation
--------------------
When eIBRS is used for guest/host isolation, the indirect branches in the
VMM may still be predicted with targets corresponding to branches in the
guest.
Intra-mode
----------
cBPF or other native gadgets can be used for intra-mode training and
disclosure using ITS.
User/kernel isolation
---------------------
When eIBRS is enabled user/kernel isolation is not impacted.
Indirect Branch Prediction Barrier (IBPB)
-----------------------------------------
After an IBPB, indirect branches may be predicted with targets
corresponding to direct branches which were executed prior to IBPB. This is
mitigated by a microcode update.
Add cmdline parameter indirect_target_selection=off|on|force to control the
mitigation to relocate the affected branches to an ITS-safe thunk i.e.
located in the upper half of cacheline. Also add the sysfs reporting.
When retpoline mitigation is deployed, ITS safe-thunks are not needed,
because retpoline sequence is already ITS-safe. Similarly, when call depth
tracking (CDT) mitigation is deployed (retbleed=stuff), ITS safe return
thunk is not used, as CDT prevents RSB-underflow.
To not overcomplicate things, ITS mitigation is not supported with
spectre-v2 lfence;jmp mitigation. Moreover, it is less practical to deploy
lfence;jmp mitigation on ITS affected parts anyways.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a75bf27fe41abe658c53276a0c486c4bf9adecfc upstream.
RETs in the lower half of cacheline may be affected by ITS bug,
specifically when the RSB-underflows. Use ITS-safe return thunk for such
RETs.
RETs that are not patched:
- RET in retpoline sequence does not need to be patched, because the
sequence itself fills an RSB before RET.
- RET in Call Depth Tracking (CDT) thunks __x86_indirect_{call|jump}_thunk
and call_depth_return_thunk are not patched because CDT by design
prevents RSB-underflow.
- RETs in .init section are not reachable after init.
- RETs that are explicitly marked safe with ANNOTATE_UNRET_SAFE.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 8754e67ad4ac692c67ff1f99c0d07156f04ae40c upstream.
Due to ITS, indirect branches in the lower half of a cacheline may be
vulnerable to branch target injection attack.
Introduce ITS-safe thunks to patch indirect branches in the lower half of
cacheline with the thunk. Also thunk any eBPF generated indirect branches
in emit_indirect_jump().
Below category of indirect branches are not mitigated:
- Indirect branches in the .init section are not mitigated because they are
discarded after boot.
- Indirect branches that are explicitly marked retpoline-safe.
Note that retpoline also mitigates the indirect branches against ITS. This
is because the retpoline sequence fills an RSB entry before RET, and it
does not suffer from RSB-underflow part of the ITS.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 159013a7ca18c271ff64192deb62a689b622d860 upstream.
ITS bug in some pre-Alderlake Intel CPUs may allow indirect branches in the
first half of a cache line get predicted to a target of a branch located in
the second half of the cache line.
Set X86_BUG_ITS on affected CPUs. Mitigation to follow in later commits.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c8c81458863ab686cda4fe1e603fccaae0f12460 upstream.
Commit:
010c4a461c1d ("x86/speculation: Simplify and make CALL_NOSPEC consistent")
added an #ifdef CONFIG_MITIGATION_RETPOLINE around the CALL_NOSPEC definition.
This is not required as this code is already under a larger #ifdef.
Remove the extra #ifdef, no functional change.
vmlinux size remains same before and after this change:
CONFIG_MITIGATION_RETPOLINE=y:
text data bss dec hex filename
25434752 7342290 2301212 35078254 217406e vmlinux.before
25434752 7342290 2301212 35078254 217406e vmlinux.after
# CONFIG_MITIGATION_RETPOLINE is not set:
text data bss dec hex filename
22943094 6214994 1550152 30708240 1d49210 vmlinux.before
22943094 6214994 1550152 30708240 1d49210 vmlinux.after
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lore.kernel.org/r/20250320-call-nospec-extra-ifdef-v1-1-d9b084d24820@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 052040e34c08428a5a388b85787e8531970c0c67 upstream.
Retpoline mitigation for spectre-v2 uses thunks for indirect branches. To
support this mitigation compilers add a CS prefix with
-mindirect-branch-cs-prefix. For an indirect branch in asm, this needs to
be added manually.
CS prefix is already being added to indirect branches in asm files, but not
in inline asm. Add CS prefix to CALL_NOSPEC for inline asm as well. There
is no JMP_NOSPEC for inline asm.
Reported-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20250228-call-nospec-v3-2-96599fed0f33@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit cfceff8526a426948b53445c02bcb98453c7330d upstream.
CALL_NOSPEC macro is used to generate Spectre-v2 mitigation friendly
indirect branches. At compile time the macro defaults to indirect branch,
and at runtime those can be patched to thunk based mitigations.
This approach is opposite of what is done for the rest of the kernel, where
the compile time default is to replace indirect calls with retpoline thunk
calls.
Make CALL_NOSPEC consistent with the rest of the kernel, default to
retpoline thunk at compile time when CONFIG_MITIGATION_RETPOLINE is
enabled.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Cooper <andrew.cooper3@citrix.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20250228-call-nospec-v3-1-96599fed0f33@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 073fdbe02c69c43fb7c0d547ec265c7747d4a646 upstream.
With the possibility of intra-mode BHI via cBPF, complete mitigation for
BHI is to use IBHF (history fence) instruction with BHI_DIS_S set. Since
this new instruction is only available in 64-bit mode, setting BHI_DIS_S in
32-bit mode is only a partial mitigation.
Do not set BHI_DIS_S in 32-bit mode so as to avoid reporting misleading
mitigated status. With this change IBHF won't be used in 32-bit mode, also
remove the CONFIG_X86_64 check from emit_spectre_bhb_barrier().
Suggested-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 9f725eec8fc0b39bdc07dcc8897283c367c1a163 upstream.
Classic BPF programs can be run by unprivileged users, allowing
unprivileged code to execute inside the kernel. Attackers can use this to
craft branch history in kernel mode that can influence the target of
indirect branches.
BHI_DIS_S provides user-kernel isolation of branch history, but cBPF can be
used to bypass this protection by crafting branch history in kernel mode.
To stop intra-mode attacks via cBPF programs, Intel created a new
instruction Indirect Branch History Fence (IBHF). IBHF prevents the
predicted targets of subsequent indirect branches from being influenced by
branch history prior to the IBHF. IBHF is only effective while BHI_DIS_S is
enabled.
Add the IBHF instruction to cBPF jitted code's exit path. Add the new fence
when the hardware mitigation is enabled (i.e., X86_FEATURE_CLEAR_BHB_HW is
set) or after the software sequence (X86_FEATURE_CLEAR_BHB_LOOP) is being
used in a virtual machine. Note that X86_FEATURE_CLEAR_BHB_HW and
X86_FEATURE_CLEAR_BHB_LOOP are mutually exclusive, so the JIT compiler will
only emit the new fence, not the SW sequence, when X86_FEATURE_CLEAR_BHB_HW
is set.
Hardware that enumerates BHI_NO basically has BHI_DIS_S protections always
enabled, regardless of the value of BHI_DIS_S. Since BHI_DIS_S doesn't
protect against intra-mode attacks, enumerate BHI bug on BHI_NO hardware as
well.
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d4e89d212d401672e9cdfe825d947ee3a9fbe3f5 upstream.
Classic BPF programs have been identified as potential vectors for
intra-mode Branch Target Injection (BTI) attacks. Classic BPF programs can
be run by unprivileged users. They allow unprivileged code to execute
inside the kernel. Attackers can use unprivileged cBPF to craft branch
history in kernel mode that can influence the target of indirect branches.
Introduce a branch history buffer (BHB) clearing sequence during the JIT
compilation of classic BPF programs. The clearing sequence is the same as
is used in previous mitigations to protect syscalls. Since eBPF programs
already have their own mitigations in place, only insert the call on
classic programs that aren't run by privileged users.
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit efe676a1a7554219eae0b0dcfe1e0cdcc9ef9aef upstream.
Update the list of 'k' values for the branch mitigation from arm's
website.
Add the values for Cortex-X1C. The MIDR_EL1 value can be found here:
https://developer.arm.com/documentation/101968/0002/Register-descriptions/AArch>
Link: https://developer.arm.com/documentation/110280/2-0/?lang=en
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f300769ead032513a68e4a02e806393402e626f8 upstream.
Support for eBPF programs loaded by unprivileged users is typically
disabled. This means only cBPF programs need to be mitigated for BHB.
In addition, only mitigate cBPF programs that were loaded by an
unprivileged user. Privileged users can also load the same program
via eBPF, making the mitigation pointless.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 0dfefc2ea2f29ced2416017d7e5b1253a54c2735 upstream.
A malicious BPF program may manipulate the branch history to influence
what the hardware speculates will happen next.
On exit from a BPF program, emit the BHB mititgation sequence.
This is only applied for 'classic' cBPF programs that are loaded by
seccomp.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a1152be30a043d2d4dcb1683415f328bf3c51978 upstream.
Add a helper to expose the k value of the branchy loop. This is needed
by the BPF JIT to generate the mitigation sequence in BPF programs.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e7956c92f396a44eeeb6eaf7a5b5e1ad24db6748 upstream.
is_spectre_bhb_fw_affected() allows the caller to determine if the CPU
is known to need a firmware mitigation. CPUs are either on the list
of CPUs we know about, or firmware has been queried and reported that
the platform is affected - and mitigated by firmware.
This helper is not useful to determine if the platform is mitigated
by firmware. A CPU could be on the know list, but the firmware may
not be implemented. Its affected but not mitigated.
spectre_bhb_enable_mitigation() handles this distinction by checking
the firmware state before enabling the mitigation.
Add a helper to expose this state. This will be used by the BPF JIT
to determine if calling firmware for a mitigation is necessary and
supported.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 63de8abd97ddb9b758bd8f915ecbd18e1f1a87a0 upstream.
To generate code in the eBPF epilogue that uses the DSB instruction,
insn.c needs a heler to encode the type and domain.
Re-use the crm encoding logic from the DMB instruction.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This reverts commit da780c4a075ba2deb05ae29f0af4a990578c7901 which is
commit 887c5c12e80c8424bd471122d2e8b6b462e12874 upstream.
Reason being that the patch depends on at least commit 0b8b2668f998
("um: insert scheduler ticks when userspace does not yield") in order to
build. Otherwise it fails with:
| /usr/bin/ld: arch/um/kernel/skas/syscall.o: in function `handle_syscall':
| linux-6.12.27/arch/um/kernel/skas/syscall.c:43:(.text+0xa2): undefined
| reference to `tt_extra_sched_jiffies'
| collect2: error: ld returned 1 exit status
The author Benjamin Berg commented: "I think it is better to just not
backport commit 0b8b2668f998 ("um: insert scheduler ticks when userspace
does not yield")"
Link: https://lore.kernel.org/linux-um/8ce0b6056a9726e540f61bce77311278654219eb.camel@sipsolutions.net/
Cc: <stable@vger.kernel.org> # 6.12.y
Cc: Benjamin Berg <benjamin.berg@intel.com>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 453805f0a28fc5091e46145e6560c776f7c7a611 ]
We can safely reenable IRQs if coming from userspace. This allows to
access user memory that could potentially trigger a page fault.
Fixes: b686ecdeacf6 ("riscv: misaligned: Restrict user access to kernel memory")
Signed-off-by: Clément Léger <cleger@rivosinc.com>
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/20250422162324.956065-3-cleger@rivosinc.com
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit fd94de9f9e7aac11ec659e386b9db1203d502023 ]
Since both load/store and user/kernel should use almost the same path and
that we are going to add some code around that, factorize it.
Signed-off-by: Clément Léger <cleger@rivosinc.com>
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/20250422162324.956065-2-cleger@rivosinc.com
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Stable-dep-of: 453805f0a28f ("riscv: misaligned: enable IRQs while handling misaligned accesses")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit eb16b3727c05ed36420c90eca1e8f0e279514c1c ]
Add support for the Zcb extension's compressed half-word instructions
(C.LHU, C.LH, and C.SH) in the RISC-V misaligned access trap handler.
Signed-off-by: Zong Li <zong.li@sifive.com>
Signed-off-by: Nylon Chen <nylon.chen@sifive.com>
Fixes: 956d705dd279 ("riscv: Unaligned load/store handling for M_MODE")
Reviewed-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Link: https://lore.kernel.org/r/20250411073850.3699180-2-nylon.chen@sifive.com
Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit c44572e0cc13c9afff83fd333135a0aa9b27ba26 ]
Fix MAX_REG_OFFSET to point to the last register in 'pt_regs' and not to
the marker itself, which could allow regs_get_register() to return an
invalid offset.
Fixes: 40e084a506eb ("MIPS: Add uprobes support.")
Suggested-by: Maciej W. Rozycki <macro@orcam.me.uk>
Signed-off-by: Thorsten Blum <thorsten.blum@linux.dev>
Signed-off-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 5214a9f6c0f56644acb9d2cbb58facf1856d322b upstream.
Consolidate the whole logic which determines whether the microcode loader
should be enabled or not into a single function and call it everywhere.
Well, almost everywhere - not in mk_early_pgtbl_32() because there the kernel
is running without paging enabled and checking dis_ucode_ldr et al would
require physical addresses and uglification of the code.
But since this is 32-bit, the easier thing to do is to simply map the initrd
unconditionally especially since that mapping is getting removed later anyway
by zap_early_initrd_mapping() and avoid the uglification.
In doing so, address the issue of old 486er machines without CPUID
support, not booting current kernels.
[ mingo: Fix no previous prototype for ‘microcode_loader_disabled’ [-Wmissing-prototypes] ]
Fixes: 4c585af7180c1 ("x86/boot/32: Temporarily map initrd for microcode loading")
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/CANpbe9Wm3z8fy9HbgS8cuhoj0TREYEEkBipDuhgkWFvqX0UoVQ@mail.gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
prevent wrong idmap generation
commit 363cd2b81cfdf706bbfc9ec78db000c9b1ecc552 upstream.
The PTE_MAYBE_NG macro sets the nG page table bit according to the value
of "arm64_use_ng_mappings". This variable is currently placed in the
.bss section. create_init_idmap() is called before the .bss section
initialisation which is done in early_map_kernel(). Therefore,
data/test_prot in create_init_idmap() could be set incorrectly through
the PAGE_KERNEL -> PROT_DEFAULT -> PTE_MAYBE_NG macros.
# llvm-objdump-21 --syms vmlinux-gcc | grep arm64_use_ng_mappings
ffff800082f242a8 g O .bss 0000000000000001 arm64_use_ng_mappings
The create_init_idmap() function disassembly compiled with llvm-21:
// create_init_idmap()
ffff80008255c058: d10103ff sub sp, sp, #0x40
ffff80008255c05c: a9017bfd stp x29, x30, [sp, #0x10]
ffff80008255c060: a90257f6 stp x22, x21, [sp, #0x20]
ffff80008255c064: a9034ff4 stp x20, x19, [sp, #0x30]
ffff80008255c068: 910043fd add x29, sp, #0x10
ffff80008255c06c: 90003fc8 adrp x8, 0xffff800082d54000
ffff80008255c070: d280e06a mov x10, #0x703 // =1795
ffff80008255c074: 91400409 add x9, x0, #0x1, lsl #12 // =0x1000
ffff80008255c078: 394a4108 ldrb w8, [x8, #0x290] ------------- (1)
ffff80008255c07c: f2e00d0a movk x10, #0x68, lsl #48
ffff80008255c080: f90007e9 str x9, [sp, #0x8]
ffff80008255c084: aa0103f3 mov x19, x1
ffff80008255c088: aa0003f4 mov x20, x0
ffff80008255c08c: 14000000 b 0xffff80008255c08c <__pi_create_init_idmap+0x34>
ffff80008255c090: aa082d56 orr x22, x10, x8, lsl #11 -------- (2)
Note (1) is loading the arm64_use_ng_mappings value in w8 and (2) is set
the text or data prot with the w8 value to set PTE_NG bit. If the .bss
section isn't initialized, x8 could include a garbage value and generate
an incorrect mapping.
Annotate arm64_use_ng_mappings as __read_mostly so that it is placed in
the .data section.
Fixes: 84b04d3e6bdb ("arm64: kernel: Create initial ID map from C code")
Cc: stable@vger.kernel.org # 6.9.x
Tested-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Yeoreum Yun <yeoreum.yun@arm.com>
Link: https://lore.kernel.org/r/20250502180412.3774883-1-yeoreum.yun@arm.com
[catalin.marinas@arm.com: use __read_mostly instead of __ro_after_init]
[catalin.marinas@arm.com: slight tweaking of the code comment]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a2620f8932fa9fdabc3d78ed6efb004ca409019f upstream.
Previously, commit ed129ec9057f ("KVM: x86: forcibly leave nested mode
on vCPU reset") addressed an issue where a triple fault occurring in
nested mode could lead to use-after-free scenarios. However, the commit
did not handle the analogous situation for System Management Mode (SMM).
This omission results in triggering a WARN when KVM forces a vCPU INIT
after SHUTDOWN interception while the vCPU is in SMM. This situation was
reprodused using Syzkaller by:
1) Creating a KVM VM and vCPU
2) Sending a KVM_SMI ioctl to explicitly enter SMM
3) Executing invalid instructions causing consecutive exceptions and
eventually a triple fault
The issue manifests as follows:
WARNING: CPU: 0 PID: 25506 at arch/x86/kvm/x86.c:12112
kvm_vcpu_reset+0x1d2/0x1530 arch/x86/kvm/x86.c:12112
Modules linked in:
CPU: 0 PID: 25506 Comm: syz-executor.0 Not tainted
6.1.130-syzkaller-00157-g164fe5dde9b6 #0
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996),
BIOS 1.12.0-1 04/01/2014
RIP: 0010:kvm_vcpu_reset+0x1d2/0x1530 arch/x86/kvm/x86.c:12112
Call Trace:
<TASK>
shutdown_interception+0x66/0xb0 arch/x86/kvm/svm/svm.c:2136
svm_invoke_exit_handler+0x110/0x530 arch/x86/kvm/svm/svm.c:3395
svm_handle_exit+0x424/0x920 arch/x86/kvm/svm/svm.c:3457
vcpu_enter_guest arch/x86/kvm/x86.c:10959 [inline]
vcpu_run+0x2c43/0x5a90 arch/x86/kvm/x86.c:11062
kvm_arch_vcpu_ioctl_run+0x50f/0x1cf0 arch/x86/kvm/x86.c:11283
kvm_vcpu_ioctl+0x570/0xf00 arch/x86/kvm/../../../virt/kvm/kvm_main.c:4122
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:870 [inline]
__se_sys_ioctl fs/ioctl.c:856 [inline]
__x64_sys_ioctl+0x19a/0x210 fs/ioctl.c:856
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x35/0x80 arch/x86/entry/common.c:81
entry_SYSCALL_64_after_hwframe+0x6e/0xd8
Architecturally, INIT is blocked when the CPU is in SMM, hence KVM's WARN()
in kvm_vcpu_reset() to guard against KVM bugs, e.g. to detect improper
emulation of INIT. SHUTDOWN on SVM is a weird edge case where KVM needs to
do _something_ sane with the VMCB, since it's technically undefined, and
INIT is the least awful choice given KVM's ABI.
So, double down on stuffing INIT on SHUTDOWN, and force the vCPU out of
SMM to avoid any weirdness (and the WARN).
Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
Fixes: ed129ec9057f ("KVM: x86: forcibly leave nested mode on vCPU reset")
Cc: stable@vger.kernel.org
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Mikhail Lobanov <m.lobanov@rosa.ru>
Link: https://lore.kernel.org/r/20250414171207.155121-1-m.lobanov@rosa.ru
[sean: massage changelog, make it clear this isn't architectural behavior]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit fea4e317f9e7e1f449ce90dedc27a2d2a95bee5a upstream.
tl;dr: There is a window in the mm switching code where the new CR3 is
set and the CPU should be getting TLB flushes for the new mm. But
should_flush_tlb() has a bug and suppresses the flush. Fix it by
widening the window where should_flush_tlb() sends an IPI.
Long Version:
=== History ===
There were a few things leading up to this.
First, updating mm_cpumask() was observed to be too expensive, so it was
made lazier. But being lazy caused too many unnecessary IPIs to CPUs
due to the now-lazy mm_cpumask(). So code was added to cull
mm_cpumask() periodically[2]. But that culling was a bit too aggressive
and skipped sending TLB flushes to CPUs that need them. So here we are
again.
=== Problem ===
The too-aggressive code in should_flush_tlb() strikes in this window:
// Turn on IPIs for this CPU/mm combination, but only
// if should_flush_tlb() agrees:
cpumask_set_cpu(cpu, mm_cpumask(next));
next_tlb_gen = atomic64_read(&next->context.tlb_gen);
choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
load_new_mm_cr3(need_flush);
// ^ After 'need_flush' is set to false, IPIs *MUST*
// be sent to this CPU and not be ignored.
this_cpu_write(cpu_tlbstate.loaded_mm, next);
// ^ Not until this point does should_flush_tlb()
// become true!
should_flush_tlb() will suppress TLB flushes between load_new_mm_cr3()
and writing to 'loaded_mm', which is a window where they should not be
suppressed. Whoops.
=== Solution ===
Thankfully, the fuzzy "just about to write CR3" window is already marked
with loaded_mm==LOADED_MM_SWITCHING. Simply checking for that state in
should_flush_tlb() is sufficient to ensure that the CPU is targeted with
an IPI.
This will cause more TLB flush IPIs. But the window is relatively small
and I do not expect this to cause any kind of measurable performance
impact.
Update the comment where LOADED_MM_SWITCHING is written since it grew
yet another user.
Peter Z also raised a concern that should_flush_tlb() might not observe
'loaded_mm' and 'is_lazy' in the same order that switch_mm_irqs_off()
writes them. Add a barrier to ensure that they are observed in the
order they are written.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Rik van Riel <riel@surriel.com>
Link: https://lore.kernel.org/oe-lkp/202411282207.6bd28eae-lkp@intel.com/ [1]
Fixes: 6db2526c1d69 ("x86/mm/tlb: Only trim the mm_cpumask once a second") [2]
Reported-by: Stephen Dolan <sdolan@janestreet.com>
Cc: stable@vger.kernel.org
Acked-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit ae952eea6f4a7e2193f8721a5366049946e012e7 ]
In case of stack corruption stack_invalid() is called and the expectation
is that register r10 contains the last breaking event address. This
dependency is quite subtle and broke a couple of years ago without that
anybody noticed.
Fix this by getting rid of the dependency and read the last breaking event
address from lowcore.
Fixes: 56e62a737028 ("s390: convert to generic entry")
Acked-by: Ilya Leoshkevich <iii@linux.ibm.com>
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 42420c50c68f3e95e90de2479464f420602229fc upstream.
The zpci_create_device() function returns an error pointer that needs to
be checked before dereferencing it as a struct zpci_dev pointer. Add the
missing check in __clp_add() where it was missed when adding the
scan_list in the fixed commit. Simply not adding the device to the scan
list results in the previous behavior.
Cc: stable@vger.kernel.org
Fixes: 0467cdde8c43 ("s390/pci: Sort PCI functions prior to creating virtual busses")
Signed-off-by: Niklas Schnelle <schnelle@linux.ibm.com>
Reviewed-by: Gerd Bayer <gbayer@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 5591ce0069ddda97cdbbea596bed53e698f399c2 upstream.
Define vqmmc regulator-gpio for usdhc2 with vin-supply
coming from LDO5.
Without this definition LDO5 will be powered down, disabling
SD card after bootup. This has been introduced in commit
f5aab0438ef1 ("regulator: pca9450: Fix enable register for LDO5").
Fixes: 6a57f224f734 ("arm64: dts: freescale: add initial support for verdin imx8m mini")
Fixes: f5aab0438ef1 ("regulator: pca9450: Fix enable register for LDO5")
Tested-by: Manuel Traut <manuel.traut@mt.com>
Reviewed-by: Philippe Schenker <philippe.schenker@impulsing.ch>
Tested-by: Francesco Dolcini <francesco.dolcini@toradex.com>
Reviewed-by: Francesco Dolcini <francesco.dolcini@toradex.com>
Cc: stable@vger.kernel.org
Signed-off-by: Wojciech Dubowik <Wojciech.Dubowik@mt.com>
Signed-off-by: Shawn Guo <shawnguo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
stm32mp25 SoCs
[ Upstream commit 06c231fe953a26f4bc9d7a37ba1b9b288a59c7c2 ]
Adjust the size of 8kB GIC regions to 128kB so that each 4kB is mapped 16
times over a 64kB region.
The offset is then adjusted in the irq-gic driver.
see commit 12e14066f4835 ("irqchip/GIC: Add workaround for aliased GIC400")
Fixes: 5d30d03aaf785 ("arm64: dts: st: introduce stm32mp25 SoCs family")
Suggested-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Christian Bruel <christian.bruel@foss.st.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20250415111654.2103767-3-christian.bruel@foss.st.com
Signed-off-by: Alexandre Torgue <alexandre.torgue@foss.st.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit de2b2107d5a41a91ab603e135fb6e408abbee28e ]
Use gic-400 compatible and remove address-cells = <1> on aarch64
Fixes: 5d30d03aaf785 ("arm64: dts: st: introduce stm32mp25 SoCs family")
Signed-off-by: Christian Bruel <christian.bruel@foss.st.com>
Link: https://lore.kernel.org/r/20250415111654.2103767-2-christian.bruel@foss.st.com
Signed-off-by: Alexandre Torgue <alexandre.torgue@foss.st.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 6e1a7bc8382b0d4208258f7d2a4474fae788dd90 ]
Commit c7e73b5051d6 ("ARM: imx: mach-imx6ul: remove 14x14 EVK specific
PHY fixup") removed a PHY fixup that setted the clock mode and the LED
mode.
Make the Ethernet interface work again by doing as advised in the
commit's log, set clock mode and the LED mode in the device tree.
Fixes: c7e73b5051d6 ("ARM: imx: mach-imx6ul: remove 14x14 EVK specific PHY fixup")
Signed-off-by: Sébastien Szymanski <sebastien.szymanski@armadeus.com>
Reviewed-by: Oleksij Rempel <o.rempel@pengutronix.de>
Signed-off-by: Shawn Guo <shawnguo@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 02e4232998db357bb8199778722d81ffcff0cb98 ]
Correct the range of PCIe app-reg region from 0x2000 to 0x4000 refer to
SerDes_SS memory map of i.MX95 Rerference Manual.
Fixes: 3b1d5deb29ff ("arm64: dts: imx95: add pcie[0,1] and pcie-ep[0,1] support")
Signed-off-by: Richard Zhu <hongxing.zhu@nxp.com>
Reviewed-by: Frank Li <Frank.Li@nxp.com>
Signed-off-by: Shawn Guo <shawnguo@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit fd87b7783802b45cdd261b273e6b2b792823064d upstream.
The devmem socket options and socket control message definitions
introduced in the TCP devmem series[1] incorrectly continued the socket
definitions for arch/parisc.
The UAPI change seems safe as there are currently no drivers that
declare support for devmem TCP RX via PP_FLAG_ALLOW_UNREADABLE_NETMEM.
Hence, fixing this UAPI should be safe.
Fix the devmem socket options and socket control message definitions to
reflect the series followed by arch/parisc.
[1]
https://lore.kernel.org/lkml/20240910171458.219195-10-almasrymina@google.com/
Fixes: 8f0b3cc9a4c10 ("tcp: RX path for devmem TCP")
Signed-off-by: Pranjal Shrivastava <praan@google.com>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Reviewed-by: Jason Xing <kerneljasonxing@gmail.com>
Reviewed-by: Mina Almasry <almasrymina@google.com>
Link: https://patch.msgid.link/20250324074228.3139088-1-praan@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Pranjal Shrivastava <praan@google.com>
Signed-off-by: Helge Deller <deller@gmx.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit e3f506b78d921e48a00d005bea5c45ec36a99240 ]
'commit b2accfe7ca5b ("powerpc/boot: Check for ld-option support")' suppressed
linker warnings, but the expressed used did not go well with POSIX shell (dash)
resulting with this warning
arch/powerpc/boot/wrapper: 237: [: 0: unexpected operator
ld: warning: arch/powerpc/boot/zImage.epapr has a LOAD segment with RWX permissions
Fix the check to handle the reported warning. Patch also fixes
couple of shellcheck reported errors for the same line.
In arch/powerpc/boot/wrapper line 237:
if [ $(${CROSS}ld -v --no-warn-rwx-segments &>/dev/null; echo $?) -eq 0 ]; then
^-- SC2046 (warning): Quote this to prevent word splitting.
^------^ SC2086 (info): Double quote to prevent globbing and word splitting.
^---------^ SC3020 (warning): In POSIX sh, &> is undefined.
Fixes: b2accfe7ca5b ("powerpc/boot: Check for ld-option support")
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Suggested-by: Stephen Rothwell <sfr@canb.auug.org.au>
Tested-by: Venkat Rao Bagalkote <venkat88@linux.ibm.com>
Reviewed-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Madhavan Srinivasan <maddy@linux.ibm.com>
Link: https://patch.msgid.link/20250423082154.30625-1-maddy@linux.ibm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit b2accfe7ca5bc9f9af28e603b79bdd5ad8df5c0b ]
Commit 579aee9fc594 ("powerpc: suppress some linker warnings in recent linker versions")
enabled support to add linker option "--no-warn-rwx-segments",
if the version is greater than 2.39. Similar build warning were
reported recently from linker version 2.35.2.
ld: warning: arch/powerpc/boot/zImage.epapr has a LOAD segment with RWX permissions
ld: warning: arch/powerpc/boot/zImage.pseries has a LOAD segment with RWX permissions
Fix the warning by checking for "--no-warn-rwx-segments"
option support in linker to enable it, instead of checking
for the version range.
Fixes: 579aee9fc594 ("powerpc: suppress some linker warnings in recent linker versions")
Reported-by: Venkat Rao Bagalkote <venkat88@linux.ibm.com>
Suggested-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Tested-by: Venkat Rao Bagalkote <venkat88@linux.ibm.com>
Closes: https://lore.kernel.org/linuxppc-dev/61cf556c-4947-4bd6-af63-892fc0966dad@linux.ibm.com/
Signed-off-by: Madhavan Srinivasan <maddy@linux.ibm.com>
Link: https://patch.msgid.link/20250401004218.24869-1-maddy@linux.ibm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 9cf7e13fecbab0894f6986fc6986ab2eba8de52e ]
A vmemmap altmap is a device-provided region used to provide
backing storage for struct pages. For each namespace, the altmap
should belong to that same namespace. If the namespaces are
created unaligned, there is a chance that the section vmemmap
start address could also be unaligned. If the section vmemmap
start address is unaligned, the altmap page allocated from the
current namespace might be used by the previous namespace also.
During the free operation, since the altmap is shared between two
namespaces, the previous namespace may detect that the page does
not belong to its altmap and incorrectly assume that the page is a
normal page. It then attempts to free the normal page, which leads
to a kernel crash.
Kernel attempted to read user page (18) - exploit attempt? (uid: 0)
BUG: Kernel NULL pointer dereference on read at 0x00000018
Faulting instruction address: 0xc000000000530c7c
Oops: Kernel access of bad area, sig: 11 [#1]
LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=2048 NUMA pSeries
CPU: 32 PID: 2104 Comm: ndctl Kdump: loaded Tainted: G W
NIP: c000000000530c7c LR: c000000000530e00 CTR: 0000000000007ffe
REGS: c000000015e57040 TRAP: 0300 Tainted: G W
MSR: 800000000280b033 <SF,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 84482404
CFAR: c000000000530dfc DAR: 0000000000000018 DSISR: 40000000 IRQMASK: 0
GPR00: c000000000530e00 c000000015e572e0 c000000002c5cb00 c00c000101008040
GPR04: 0000000000000000 0000000000000007 0000000000000001 000000000000001f
GPR08: 0000000000000005 0000000000000000 0000000000000018 0000000000002000
GPR12: c0000000001d2fb0 c0000060de6b0080 0000000000000000 c0000060dbf90020
GPR16: c00c000101008000 0000000000000001 0000000000000000 c000000125b20f00
GPR20: 0000000000000001 0000000000000000 ffffffffffffffff c00c000101007fff
GPR24: 0000000000000001 0000000000000000 0000000000000000 0000000000000000
GPR28: 0000000004040201 0000000000000001 0000000000000000 c00c000101008040
NIP [c000000000530c7c] get_pfnblock_flags_mask+0x7c/0xd0
LR [c000000000530e00] free_unref_page_prepare+0x130/0x4f0
Call Trace:
free_unref_page+0x50/0x1e0
free_reserved_page+0x40/0x68
free_vmemmap_pages+0x98/0xe0
remove_pte_table+0x164/0x1e8
remove_pmd_table+0x204/0x2c8
remove_pud_table+0x1c4/0x288
remove_pagetable+0x1c8/0x310
vmemmap_free+0x24/0x50
section_deactivate+0x28c/0x2a0
__remove_pages+0x84/0x110
arch_remove_memory+0x38/0x60
memunmap_pages+0x18c/0x3d0
devm_action_release+0x30/0x50
release_nodes+0x68/0x140
devres_release_group+0x100/0x190
dax_pmem_compat_release+0x44/0x80 [dax_pmem_compat]
device_for_each_child+0x8c/0x100
[dax_pmem_compat_remove+0x2c/0x50 [dax_pmem_compat]
nvdimm_bus_remove+0x78/0x140 [libnvdimm]
device_remove+0x70/0xd0
Another issue is that if there is no altmap, a PMD-sized vmemmap
page will be allocated from RAM, regardless of the alignment of
the section start address. If the section start address is not
aligned to the PMD size, a VM_BUG_ON will be triggered when
setting the PMD-sized page to page table.
In this patch, we are aligning the section vmemmap start address
to PAGE_SIZE. After alignment, the start address will not be
part of the current namespace, and a normal page will be allocated
for the vmemmap mapping of the current section. For the remaining
sections, altmaps will be allocated. During the free operation,
the normal page will be correctly freed.
In the same way, a PMD_SIZE vmemmap page will be allocated only if
the section start address is PMD_SIZE-aligned; otherwise, it will
fall back to a PAGE-sized vmemmap allocation.
Without this patch
==================
NS1 start NS2 start
_________________________________________________________
| NS1 | NS2 |
---------------------------------------------------------
| Altmap| Altmap | .....|Altmap| Altmap | ...........
| NS1 | NS1 | | NS2 | NS2 |
In the above scenario, NS1 and NS2 are two namespaces. The vmemmap
for NS1 comes from Altmap NS1, which belongs to NS1, and the
vmemmap for NS2 comes from Altmap NS2, which belongs to NS2.
The vmemmap start for NS2 is not aligned, so Altmap NS2 is shared
by both NS1 and NS2. During the free operation in NS1, Altmap NS2
is not part of NS1's altmap, causing it to attempt to free an
invalid page.
With this patch
===============
NS1 start NS2 start
_________________________________________________________
| NS1 | NS2 |
---------------------------------------------------------
| Altmap| Altmap | .....| Normal | Altmap | Altmap |.......
| NS1 | NS1 | | Page | NS2 | NS2 |
If the vmemmap start for NS2 is not aligned then we are allocating
a normal page. NS1 and NS2 vmemmap will be freed correctly.
Fixes: 368a0590d954 ("powerpc/book3s64/vmemmap: switch radix to use a different vmemmap handling function")
Co-developed-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Signed-off-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Signed-off-by: Donet Tom <donettom@linux.ibm.com>
Signed-off-by: Madhavan Srinivasan <maddy@linux.ibm.com>
Link: https://patch.msgid.link/8f98ec2b442977c618f7256cec88eb17dde3f2b9.1741609795.git.donettom@linux.ibm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 8ed12ab1319b2d8e4a529504777aacacf71371e4 upstream.
Commit:
d54d610243a4 ("x86/boot/sev: Avoid shared GHCB page for early memory acceptance")
provided a fix for SEV-SNP memory acceptance from the EFI stub when
running at VMPL #0. However, that fix was insufficient for SVSM SEV-SNP
guests running at VMPL >0, as those rely on a SVSM calling area, which
is a shared buffer whose address is programmed into a SEV-SNP MSR, and
the SEV init code that sets up this calling area executes much later
during the boot.
Given that booting via the EFI stub at VMPL >0 implies that the firmware
has configured this calling area already, reuse it for performing memory
acceptance in the EFI stub.
Fixes: fcd042e86422 ("x86/sev: Perform PVALIDATE using the SVSM when not at VMPL0")
Tested-by: Tom Lendacky <thomas.lendacky@amd.com>
Co-developed-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: <stable@vger.kernel.org>
Cc: Dionna Amalie Glaze <dionnaglaze@google.com>
Cc: Kevin Loughlin <kevinloughlin@google.com>
Cc: linux-efi@vger.kernel.org
Link: https://lore.kernel.org/r/20250428174322.2780170-2-ardb+git@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 58f6217e5d0132a9f14e401e62796916aa055c1b upstream.
When generating the MSR_IA32_PEBS_ENABLE value that will be loaded on
VM-Entry to a KVM guest, mask the value with the vCPU's desired PEBS_ENABLE
value. Consulting only the host kernel's host vs. guest masks results in
running the guest with PEBS enabled even when the guest doesn't want to use
PEBS. Because KVM uses perf events to proxy the guest virtual PMU, simply
looking at exclude_host can't differentiate between events created by host
userspace, and events created by KVM on behalf of the guest.
Running the guest with PEBS unexpectedly enabled typically manifests as
crashes due to a near-infinite stream of #PFs. E.g. if the guest hasn't
written MSR_IA32_DS_AREA, the CPU will hit page faults on address '0' when
trying to record PEBS events.
The issue is most easily reproduced by running `perf kvm top` from before
commit 7b100989b4f6 ("perf evlist: Remove __evlist__add_default") (after
which, `perf kvm top` effectively stopped using PEBS). The userspace side
of perf creates a guest-only PEBS event, which intel_guest_get_msrs()
misconstrues a guest-*owned* PEBS event.
Arguably, this is a userspace bug, as enabling PEBS on guest-only events
simply cannot work, and userspace can kill VMs in many other ways (there
is no danger to the host). However, even if this is considered to be bad
userspace behavior, there's zero downside to perf/KVM restricting PEBS to
guest-owned events.
Note, commit 854250329c02 ("KVM: x86/pmu: Disable guest PEBS temporarily
in two rare situations") fixed the case where host userspace is profiling
KVM *and* userspace, but missed the case where userspace is profiling only
KVM.
Fixes: c59a1f106f5c ("KVM: x86/pmu: Add IA32_PEBS_ENABLE MSR emulation for extended PEBS")
Closes: https://lore.kernel.org/all/Z_VUswFkWiTYI0eD@do-x1carbon
Reported-by: Seth Forshee <sforshee@kernel.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Tested-by: "Seth Forshee (DigitalOcean)" <sforshee@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20250426001355.1026530-1-seanjc@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 75aea4b0656ead0facd13d2aae4cb77326e53d2f upstream.
A warning in intel_pmu_lbr_counters_reorder() may be triggered by below
perf command.
perf record -e "{cpu-clock,cycles/call-graph="lbr"/}" -- sleep 1
It's because the group is mistakenly treated as a branch counter group.
The hw.flags of the leader are used to determine whether a group is a
branch counters group. However, the hw.flags is only available for a
hardware event. The field to store the flags is a union type. For a
software event, it's a hrtimer. The corresponding bit may be set if the
leader is a software event.
For a branch counter group and other groups that have a group flag
(e.g., topdown, PEBS counters snapshotting, and ACR), the leader must
be a X86 event. Check the X86 event before checking the flag.
The patch only fixes the issue for the branch counter group.
The following patch will fix the other groups.
There may be an alternative way to fix the issue by moving the hw.flags
out of the union type. It should work for now. But it's still possible
that the flags will be used by other types of events later. As long as
that type of event is used as a leader, a similar issue will be
triggered. So the alternative way is dropped.
Fixes: 33744916196b ("perf/x86/intel: Support branch counters logging")
Closes: https://lore.kernel.org/lkml/20250412091423.1839809-1-luogengkun@huaweicloud.com/
Reported-by: Luo Gengkun <luogengkun@huaweicloud.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20250424134718.311934-2-kan.liang@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit de3629baf5a33af1919dec7136d643b0662e85ef upstream.
Camm noticed that on parisc a SIGFPE exception will crash an application with
a second SIGFPE in the signal handler. Dave analyzed it, and it happens
because glibc uses a double-word floating-point store to atomically update
function descriptors. As a result of lazy binding, we hit a floating-point
store in fpe_func almost immediately.
When the T bit is set, an assist exception trap occurs when when the
co-processor encounters *any* floating-point instruction except for a double
store of register %fr0. The latter cancels all pending traps. Let's fix this
by clearing the Trap (T) bit in the FP status register before returning to the
signal handler in userspace.
The issue can be reproduced with this test program:
root@parisc:~# cat fpe.c
static void fpe_func(int sig, siginfo_t *i, void *v) {
sigset_t set;
sigemptyset(&set);
sigaddset(&set, SIGFPE);
sigprocmask(SIG_UNBLOCK, &set, NULL);
printf("GOT signal %d with si_code %ld\n", sig, i->si_code);
}
int main() {
struct sigaction action = {
.sa_sigaction = fpe_func,
.sa_flags = SA_RESTART|SA_SIGINFO };
sigaction(SIGFPE, &action, 0);
feenableexcept(FE_OVERFLOW);
return printf("%lf\n",1.7976931348623158E308*1.7976931348623158E308);
}
root@parisc:~# gcc fpe.c -lm
root@parisc:~# ./a.out
Floating point exception
root@parisc:~# strace -f ./a.out
execve("./a.out", ["./a.out"], 0xf9ac7034 /* 20 vars */) = 0
getrlimit(RLIMIT_STACK, {rlim_cur=8192*1024, rlim_max=RLIM_INFINITY}) = 0
...
rt_sigaction(SIGFPE, {sa_handler=0x1110a, sa_mask=[], sa_flags=SA_RESTART|SA_SIGINFO}, NULL, 8) = 0
--- SIGFPE {si_signo=SIGFPE, si_code=FPE_FLTOVF, si_addr=0x1078f} ---
--- SIGFPE {si_signo=SIGFPE, si_code=FPE_FLTOVF, si_addr=0xf8f21237} ---
+++ killed by SIGFPE +++
Floating point exception
Signed-off-by: Helge Deller <deller@gmx.de>
Suggested-by: John David Anglin <dave.anglin@bell.net>
Reported-by: Camm Maguire <camm@maguirefamily.org>
Cc: stable@vger.kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit fee4d171451c1ad9e8aaf65fc0ab7d143a33bd72 upstream.
Commit a5951389e58d ("arm64: errata: Add newer ARM cores to the
spectre_bhb_loop_affected() lists") added some additional CPUs to the
Spectre-BHB workaround, including some new arrays for designs that
require new 'k' values for the workaround to be effective.
Unfortunately, the new arrays omitted the sentinel entry and so
is_midr_in_range_list() will walk off the end when it doesn't find a
match. With UBSAN enabled, this leads to a crash during boot when
is_midr_in_range_list() is inlined (which was more common prior to
c8c2647e69be ("arm64: Make _midr_in_range_list() an exported
function")):
| Internal error: aarch64 BRK: 00000000f2000001 [#1] PREEMPT SMP
| pstate: 804000c5 (Nzcv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
| pc : spectre_bhb_loop_affected+0x28/0x30
| lr : is_spectre_bhb_affected+0x170/0x190
| [...]
| Call trace:
| spectre_bhb_loop_affected+0x28/0x30
| update_cpu_capabilities+0xc0/0x184
| init_cpu_features+0x188/0x1a4
| cpuinfo_store_boot_cpu+0x4c/0x60
| smp_prepare_boot_cpu+0x38/0x54
| start_kernel+0x8c/0x478
| __primary_switched+0xc8/0xd4
| Code: 6b09011f 54000061 52801080 d65f03c0 (d4200020)
| ---[ end trace 0000000000000000 ]---
| Kernel panic - not syncing: aarch64 BRK: Fatal exception
Add the missing sentinel entries.
Cc: Lee Jones <lee@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Doug Anderson <dianders@chromium.org>
Cc: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com>
Cc: <stable@vger.kernel.org>
Reported-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Fixes: a5951389e58d ("arm64: errata: Add newer ARM cores to the spectre_bhb_loop_affected() lists")
Signed-off-by: Will Deacon <will@kernel.org>
Reviewed-by: Lee Jones <lee@kernel.org>
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Link: https://lore.kernel.org/r/20250501104747.28431-1-will@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 398898f9cca1a19a83184430c675562680e57c7b upstream.
Currently we get the warning:
"GICv3: [Firmware Bug]: GICR region 0x0000000001900000 has
overlapping address"
As per TRM GICD is 64 KB. Fix it by correcting the size of GICD.
Cc: stable@vger.kernel.org
Fixes: 9cc161a4509c ("arm64: dts: ti: Refactor J784s4 SoC files to a common file")
Link: https://lore.kernel.org/r/20250218052248.4734-1-j-keerthy@ti.com
Signed-off-by: Keerthy <j-keerthy@ti.com>
Signed-off-by: Vignesh Raghavendra <vigneshr@ti.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b73c3ccdca95c237750c981054997c71d33e09d7 upstream.
Commit e27fbe16af5c ("MIPS: cm: Detect CM quirks from device tree")
introduced
arch/mips/include/asm/mips-cm.h:119:13: error: ‘mips_cm_update_property’
defined but not used [-Werror=unused-function]
Fix this by making empty function implementation inline
Fixes: e27fbe16af5c ("MIPS: cm: Detect CM quirks from device tree")
Signed-off-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 17ec3e71ba797cdb62164fea9532c81b60f47167 upstream.
The ARCH_MAY_HAVE patch missed arm64, mips and s390. But it may
also lead to arch options being enabled but ineffective because
of modular/built-in conflicts.
As the primary user of all these options wireguard is selecting
the arch options anyway, make the same selections at the lib/crypto
option level and hide the arch options from the user.
Instead of selecting them centrally from lib/crypto, simply set
the default of each arch option as suggested by Eric Biggers.
Change the Crypto API generic algorithms to select the top-level
lib/crypto options instead of the generic one as otherwise there
is no way to enable the arch options (Eric Biggers). Introduce a
set of INTERNAL options to work around dependency cycles on the
CONFIG_CRYPTO symbol.
Fixes: 1047e21aecdf ("crypto: lib/Kconfig - Fix lib built-in failure when arch is modular")
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Arnd Bergmann <arnd@kernel.org>
Closes: https://lore.kernel.org/oe-kbuild-all/202502232152.JC84YDLp-lkp@intel.com/
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit d466304c4322ad391797437cd84cca7ce1660de0 ]
Bartlett Lake has a P-core only product with Raptor Cove.
[ mingo: Switch around the define as pointed out by Christian Ludloff:
Ratpr Cove is the core, Bartlett Lake is the product.
Signed-off-by: Pi Xiange <xiange.pi@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Christian Ludloff <ludloff@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: John Ogness <john.ogness@linutronix.de>
Cc: "Ahmed S. Darwish" <darwi@linutronix.de>
Cc: x86-cpuid@lists.linux.dev
Link: https://lore.kernel.org/r/20250414032839.5368-1-xiange.pi@intel.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|