Age | Commit message (Collapse) | Author | Files | Lines |
|
Commit 3f4c8211d982 ("x86/mm: Use mm_alloc() in poking_init()") broke
the kernel for running as Xen PV guest.
It seems as if the new address space is never activated before being
used, resulting in Xen rejecting to accept the new CR3 value (the PGD
isn't pinned).
Fix that by adding the now missing call of paravirt_arch_dup_mmap() to
poking_init(). That call was previously done by dup_mm()->dup_mmap() and
it is a NOP for all cases but for Xen PV, where it is just doing the
pinning of the PGD.
Fixes: 3f4c8211d982 ("x86/mm: Use mm_alloc() in poking_init()")
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230109150922.10578-1-jgross@suse.com
|
|
In commit 14243b387137a ("KVM: x86/xen: Add KVM_IRQ_ROUTING_XEN_EVTCHN
and event channel delivery") the clever version of me left some helpful
notes for those who would come after him:
/*
* For the irqfd workqueue, using the main kvm->lock mutex is
* fine since this function is invoked from kvm_set_irq() with
* no other lock held, no srcu. In future if it will be called
* directly from a vCPU thread (e.g. on hypercall for an IPI)
* then it may need to switch to using a leaf-node mutex for
* serializing the shared_info mapping.
*/
mutex_lock(&kvm->lock);
In commit 2fd6df2f2b47 ("KVM: x86/xen: intercept EVTCHNOP_send from guests")
the other version of me ran straight past that comment without reading it,
and introduced a potential deadlock by taking vcpu->mutex and kvm->lock
in the wrong order.
Solve this as originally suggested, by adding a leaf-node lock in the Xen
state rather than using kvm->lock for it.
Fixes: 2fd6df2f2b47 ("KVM: x86/xen: intercept EVTCHNOP_send from guests")
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20230111180651.14394-4-dwmw2@infradead.org>
[Rebase, add docs. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
is_mmconf_reserved() takes a "with_e820" parameter that only determines the
message logged if it finds the MMCONFIG region is reserved. Pass the
message directly, which will simplify a future patch that adds a new way of
looking for that reservation. No functional change intended.
Link: https://lore.kernel.org/r/20230110180243.1590045-2-helgaas@kernel.org
Tested-by: Tony Luck <tony.luck@intel.com>
Tested-by: Giovanni Cabiddu <giovanni.cabiddu@intel.com>
Tested-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
|
|
The kvm_xen_update_runstate_guest() function can be called when the vCPU
is being scheduled out, from a preempt notifier. It *opportunistically*
updates the runstate area in the guest memory, if the gfn_to_pfn_cache
which caches the appropriate address is still valid.
If there is *contention* when it attempts to obtain gpc->lock, then
locking inside the priority inheritance checks may cause a deadlock.
Lockdep reports:
[13890.148997] Chain exists of:
&gpc->lock --> &p->pi_lock --> &rq->__lock
[13890.149002] Possible unsafe locking scenario:
[13890.149003] CPU0 CPU1
[13890.149004] ---- ----
[13890.149005] lock(&rq->__lock);
[13890.149007] lock(&p->pi_lock);
[13890.149009] lock(&rq->__lock);
[13890.149011] lock(&gpc->lock);
[13890.149013]
*** DEADLOCK ***
In the general case, if there's contention for a read lock on gpc->lock,
that's going to be because something else is either invalidating or
revalidating the cache. Either way, we've raced with seeing it in an
invalid state, in which case we would have aborted the opportunistic
update anyway.
So in the 'atomic' case when called from the preempt notifier, just
switch to using read_trylock() and avoid the PI handling altogether.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20230111180651.14394-2-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
In commit 5ec3289b31 ("KVM: x86/xen: Compatibility fixes for shared runstate
area") we declared it safe to obtain two gfn_to_pfn_cache locks at the same
time:
/*
* The guest's runstate_info is split across two pages and we
* need to hold and validate both GPCs simultaneously. We can
* declare a lock ordering GPC1 > GPC2 because nothing else
* takes them more than one at a time.
*/
However, we forgot to tell lockdep. Do so, by setting a subclass on the
first lock before taking the second.
Fixes: 5ec3289b31 ("KVM: x86/xen: Compatibility fixes for shared runstate area")
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20230111180651.14394-1-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
When creating a new monitoring group, the RMID allocated for it may have
been used by a group which was previously removed. In this case, the
hardware counters will have non-zero values which should be deducted
from what is reported in the new group's counts.
resctrl_arch_reset_rmid() initializes the prev_msr value for counters to
0, causing the initial count to be charged to the new group. Resurrect
__rmid_read() and use it to initialize prev_msr correctly.
Unlike before, __rmid_read() checks for error bits in the MSR read so
that callers don't need to.
Fixes: 1d81d15db39c ("x86/resctrl: Move mbm_overflow_count() into resctrl_arch_rmid_read()")
Signed-off-by: Peter Newman <peternewman@google.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20221220164132.443083-1-peternewman@google.com
|
|
When the user moves a running task to a new rdtgroup using the task's
file interface or by deleting its rdtgroup, the resulting change in
CLOSID/RMID must be immediately propagated to the PQR_ASSOC MSR on the
task(s) CPUs.
x86 allows reordering loads with prior stores, so if the task starts
running between a task_curr() check that the CPU hoisted before the
stores in the CLOSID/RMID update then it can start running with the old
CLOSID/RMID until it is switched again because __rdtgroup_move_task()
failed to determine that it needs to be interrupted to obtain the new
CLOSID/RMID.
Refer to the diagram below:
CPU 0 CPU 1
----- -----
__rdtgroup_move_task():
curr <- t1->cpu->rq->curr
__schedule():
rq->curr <- t1
resctrl_sched_in():
t1->{closid,rmid} -> {1,1}
t1->{closid,rmid} <- {2,2}
if (curr == t1) // false
IPI(t1->cpu)
A similar race impacts rdt_move_group_tasks(), which updates tasks in a
deleted rdtgroup.
In both cases, use smp_mb() to order the task_struct::{closid,rmid}
stores before the loads in task_curr(). In particular, in the
rdt_move_group_tasks() case, simply execute an smp_mb() on every
iteration with a matching task.
It is possible to use a single smp_mb() in rdt_move_group_tasks(), but
this would require two passes and a means of remembering which
task_structs were updated in the first loop. However, benchmarking
results below showed too little performance impact in the simple
approach to justify implementing the two-pass approach.
Times below were collected using `perf stat` to measure the time to
remove a group containing a 1600-task, parallel workload.
CPU: Intel(R) Xeon(R) Platinum P-8136 CPU @ 2.00GHz (112 threads)
# mkdir /sys/fs/resctrl/test
# echo $$ > /sys/fs/resctrl/test/tasks
# perf bench sched messaging -g 40 -l 100000
task-clock time ranges collected using:
# perf stat rmdir /sys/fs/resctrl/test
Baseline: 1.54 - 1.60 ms
smp_mb() every matching task: 1.57 - 1.67 ms
[ bp: Massage commit message. ]
Fixes: ae28d1aae48a ("x86/resctrl: Use an IPI instead of task_work_add() to update PQR_ASSOC MSR")
Fixes: 0efc89be9471 ("x86/intel_rdt: Update task closid immediately on CPU in rmdir and unmount")
Signed-off-by: Peter Newman <peternewman@google.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/20221220161123.432120-1-peternewman@google.com
|
|
Since
72cbc8f04fe2 ("x86/PAT: Have pat_enabled() properly reflect state when running on Xen")
PAT can be enabled without MTRR.
This has resulted in problems e.g. for a SEV-SNP guest running under Hyper-V,
when trying to establish a new mapping via memremap() with WB caching mode, as
pat_x_mtrr_type() will call mtrr_type_lookup(), which in turn is returning
MTRR_TYPE_INVALID due to MTRR being disabled in this configuration.
The result is a mapping with UC- caching, leading to severe performance
degradation.
Fix that by handling MTRR_TYPE_INVALID the same way as MTRR_TYPE_WRBACK
in pat_x_mtrr_type() because MTRR_TYPE_INVALID means MTRRs are disabled.
[ bp: Massage commit message. ]
Fixes: 72cbc8f04fe2 ("x86/PAT: Have pat_enabled() properly reflect state when running on Xen")
Reported-by: Michael Kelley (LINUX) <mikelley@microsoft.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/20230110065427.20767-1-jgross@suse.com
|
|
With 'GNU assembler (GNU Binutils for Debian) 2.39.90.20221231' the
build now reports:
arch/x86/realmode/rm/../../boot/bioscall.S: Assembler messages:
arch/x86/realmode/rm/../../boot/bioscall.S:35: Warning: found `movsd'; assuming `movsl' was meant
arch/x86/realmode/rm/../../boot/bioscall.S:70: Warning: found `movsd'; assuming `movsl' was meant
arch/x86/boot/bioscall.S: Assembler messages:
arch/x86/boot/bioscall.S:35: Warning: found `movsd'; assuming `movsl' was meant
arch/x86/boot/bioscall.S:70: Warning: found `movsd'; assuming `movsl' was meant
Which is due to:
PR gas/29525
Note that with the dropped CMPSD and MOVSD Intel Syntax string insn
templates taking operands, mixed IsString/non-IsString template groups
(with memory operands) cannot occur anymore. With that
maybe_adjust_templates() becomes unnecessary (and is hence being
removed).
More details: https://sourceware.org/bugzilla/show_bug.cgi?id=29525
Borislav Petkov further explains:
" the particular problem here is is that the 'd' suffix is
"conflicting" in the sense that you can have SSE mnemonics like movsD %xmm...
and the same thing also for string ops (which is the case here) so apparently
the agreement in binutils land is to use the always accepted suffixes 'l' or 'q'
and phase out 'd' slowly... "
Fixes: 7a734e7dd93b ("x86, setup: "glove box" BIOS calls -- infrastructure")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/Y71I3Ex2pvIxMpsP@hirez.programming.kicks-ass.net
|
|
From the perspective of the uncore PMU, the new Emerald Rapids is the
same as the Sapphire Rapids. The only difference is the event list,
which will be supported in the perf tool later.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230106160449.3566477-4-kan.liang@linux.intel.com
|
|
The same as Sapphire Rapids, the SMI_COUNT MSR is also supported on
Emerald Rapids. Add Emerald Rapids model.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230106160449.3566477-3-kan.liang@linux.intel.com
|
|
Meteor Lake is Intel's successor to Raptor lake. PPERF and SMI_COUNT MSRs
are also supported.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lore.kernel.org/r/20230104201349.1451191-7-kan.liang@linux.intel.com
|
|
Meteor Lake is Intel's successor to Raptor lake. From the perspective of
Intel cstate residency counters, there is nothing changed compared with
Raptor lake.
Share adl_cstates with Raptor lake.
Update the comments for Meteor Lake.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lore.kernel.org/r/20230104201349.1451191-6-kan.liang@linux.intel.com
|
|
Passing the host topology to the guest is almost certainly wrong
and will confuse the scheduler. In addition, several fields of
these CPUID leaves vary on each processor; it is simply impossible to
return the right values from KVM_GET_SUPPORTED_CPUID in such a way that
they can be passed to KVM_SET_CPUID2.
The values that will most likely prevent confusion are all zeroes.
Userspace will have to override it anyway if it wishes to present a
specific topology to the guest.
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The mysterious comment "We only want the cr8 intercept bits of L1"
dates back to basically the introduction of nested SVM, back when
the handling of "less typical" hypervisors was very haphazard.
With the development of kvm-unit-tests for interrupt handling,
the same code grew another vmcb_clr_intercept for the interrupt
window (VINTR) vmexit, this time with a comment that is at least
decent.
It turns out however that the same comment applies to the CR8 write
intercept, which is also a "recheck if an interrupt should be
injected" intercept. The CR8 read intercept instead has not
been used by KVM for 14 years (commit 649d68643ebf, "KVM: SVM:
sync TPR value to V_TPR field in the VMCB"), so do not bother
clearing it and let one comment describe both CR8 write and VINTR
handling.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The function p2m_index is defined in the p2m.c file, but not called
elsewhere, so remove this unused function.
arch/x86/xen/p2m.c:137:24: warning: unused function 'p2m_index'.
Link: https://bugzilla.openanolis.cn/show_bug.cgi?id=3557
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com>
Reviewed-by: Juergen Gross <jgross@suse.com>
Link: https://lore.kernel.org/r/20230105090141.36248-1-jiapeng.chong@linux.alibaba.com
Signed-off-by: Juergen Gross <jgross@suse.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fix from Ingo Molnar:
"Intel RAPL updates for new model IDs"
* tag 'perf-urgent-2023-01-06' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/rapl: Add support for Intel Emerald Rapids
perf/x86/rapl: Add support for Intel Meteor Lake
perf/x86/rapl: Treat Tigerlake like Icelake
|
|
A subsequent fix for arm64 will use this parameter to parse the vma
information from the snapshot created by dump_vma_snapshot() rather than
traversing the vma list without the mmap_lock.
Fixes: 6dd8b1a0b6cb ("arm64: mte: Dump the MTE tags in the core file")
Cc: <stable@vger.kernel.org> # 5.18.x
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Seth Jenkins <sethjenkins@google.com>
Suggested-by: Seth Jenkins <sethjenkins@google.com>
Cc: Will Deacon <will@kernel.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20221222181251.1345752-3-catalin.marinas@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Emerald Rapids RAPL support is the same as previous Sapphire Rapids.
Add Emerald Rapids model for RAPL.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230104145831.25498-2-rui.zhang@intel.com
|
|
Meteor Lake RAPL support is the same as previous Sky Lake.
Add Meteor Lake model for RAPL.
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230104145831.25498-1-rui.zhang@intel.com
|
|
We missed the window between the TIF flag update and the next reschedule.
Signed-off-by: Rodrigo Branco <bsdaemon@google.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: <stable@vger.kernel.org>
|
|
Since Tigerlake seems to have inherited its cstates and other RAPL power
caps from Icelake, assume it also follows Icelake for its RAPL events.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Zhang Rui <rui.zhang@intel.com>
Link: https://lore.kernel.org/r/20221228113454.1199118-1-rodrigo.vivi@intel.com
|
|
from MMIO trace type
Both <linux/mmiotrace.h> and <asm/insn-eval.h> define various MMIO_ enum constants,
whose namespace overlaps.
Rename the <asm/insn-eval.h> ones to have a INSN_ prefix, so that the headers can be
used from the same source file.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230101162910.710293-2-Jason@zx2c4.com
|
|
Fix a warning: "found `movsd'; assuming `movsl' was meant"
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: linux-kernel@vger.kernel.org
|
|
After
b3e34a47f989 ("x86/kexec: fix memory leak of elf header buffer"),
freeing image->elf_headers in the error path of crash_load_segments()
is not needed because kimage_file_post_load_cleanup() will take
care of that later. And not clearing it could result in a double-free.
Drop the superfluous vfree() call at the error path of
crash_load_segments().
Fixes: b3e34a47f989 ("x86/kexec: fix memory leak of elf header buffer")
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Baoquan He <bhe@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/20221122115122.13937-1-tiwai@suse.de
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fixes from Borislav Petkov:
- Pass only an initialized perf event attribute to the LSM hook
- Fix a use-after-free on the perf syscall's error path
- A potential integer overflow fix in amd_core_pmu_init()
- Fix the cgroup events tracking after the context handling rewrite
- Return the proper value from the inherit_event() function on error
* tag 'perf_urgent_for_v6.2_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/core: Call LSM hook after copying perf_event_attr
perf: Fix use-after-free in error path
perf/x86/amd: fix potential integer overflow on shift of a int
perf/core: Fix cgroup events tracking
perf core: Return error pointer if inherit_event() fails to find pmu_ctx
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Borislav Petkov:
- Two fixes to correct how kprobes handles INT3 now that they're added
by other functionality like the rethunks and not only kgdb
- Remove __init section markings of two functions which are referenced
by a function in the .text section
* tag 'x86_urgent_for_v6.2_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/kprobes: Fix optprobe optimization check with CONFIG_RETHUNK
x86/kprobes: Fix kprobes instruction boudary check with CONFIG_RETHUNK
x86/calldepth: Fix incorrect init section references
|
|
x86:
* several fixes to nested VMX execution controls
* fixes and clarification to the documentation for Xen emulation
* do not unnecessarily release a pmu event with zero period
* MMU fixes
* fix Coverity warning in kvm_hv_flush_tlb()
selftests:
* fixes for the ucall mechanism in selftests
* other fixes mostly related to compilation with clang
|
|
While KVM_XEN_EVTCHN_RESET is usually called with no vCPUs running,
if that happened it could cause a deadlock. This is due to
kvm_xen_eventfd_reset() doing a synchronize_srcu() inside
a kvm->lock critical section.
To avoid this, first collect all the evtchnfd objects in an
array and free all of them once the kvm->lock critical section
is over and th SRCU grace period has expired.
Reported-by: Michal Luczaj <mhal@rbox.co>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Since the CONFIG_RETHUNK and CONFIG_SLS will use INT3 for stopping
speculative execution after function return, kprobe jump optimization
always fails on the functions with such INT3 inside the function body.
(It already checks the INT3 padding between functions, but not inside
the function)
To avoid this issue, as same as kprobes, check whether the INT3 comes
from kgdb or not, and if so, stop decoding and make it fail. The other
INT3 will come from CONFIG_RETHUNK/CONFIG_SLS and those can be
treated as a one-byte instruction.
Fixes: e463a09af2f0 ("x86: Add straight-line-speculation mitigation")
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/167146051929.1374301.7419382929328081706.stgit@devnote3
|
|
Since the CONFIG_RETHUNK and CONFIG_SLS will use INT3 for stopping
speculative execution after RET instruction, kprobes always failes to
check the probed instruction boundary by decoding the function body if
the probed address is after such sequence. (Note that some conditional
code blocks will be placed after function return, if compiler decides
it is not on the hot path.)
This is because kprobes expects kgdb puts the INT3 as a software
breakpoint and it will replace the original instruction.
But these INT3 are not such purpose, it doesn't need to recover the
original instruction.
To avoid this issue, kprobes checks whether the INT3 is owned by
kgdb or not, and if so, stop decoding and make it fail. The other
INT3 will come from CONFIG_RETHUNK/CONFIG_SLS and those can be
treated as a one-byte instruction.
Fixes: e463a09af2f0 ("x86: Add straight-line-speculation mitigation")
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/167146051026.1374301.392728975473572291.stgit@devnote3
|
|
The addition of callthunks_translate_call_dest means that
skip_addr() and patch_dest() can no longer be discarded
as part of the __init section freeing:
WARNING: modpost: vmlinux.o: section mismatch in reference: callthunks_translate_call_dest.cold (section: .text.unlikely) -> skip_addr (section: .init.text)
WARNING: modpost: vmlinux.o: section mismatch in reference: callthunks_translate_call_dest.cold (section: .text.unlikely) -> patch_dest (section: .init.text)
WARNING: modpost: vmlinux.o: section mismatch in reference: is_callthunk.cold (section: .text.unlikely) -> skip_addr (section: .init.text)
ERROR: modpost: Section mismatches detected.
Set CONFIG_SECTION_MISMATCH_WARN_ONLY=y to allow them.
Fixes: b2e9dfe54be4 ("x86/bpf: Emit call depth accounting if required")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20221215164334.968863-1-arnd@kernel.org
|
|
The left shift of int 32 bit integer constant 1 is evaluated using 32 bit
arithmetic and then passed as a 64 bit function argument. In the case where
i is 32 or more this can lead to an overflow. Avoid this by shifting
using the BIT_ULL macro instead.
Fixes: 471af006a747 ("perf/x86/amd: Constrain Large Increment per Cycle events")
Signed-off-by: Colin Ian King <colin.i.king@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Ian Rogers <irogers@google.com>
Acked-by: Kim Phillips <kim.phillips@amd.com>
Link: https://lore.kernel.org/r/20221202135149.1797974-1-colin.i.king@gmail.com
|
|
These are (uint64_t)-1 magic values are a userspace ABI, allowing the
shared info pages and other enlightenments to be disabled. This isn't
a Xen ABI because Xen doesn't let the guest turn these off except with
the full SHUTDOWN_soft_reset mechanism. Under KVM, the userspace VMM is
expected to handle soft reset, and tear down the kernel parts of the
enlightenments accordingly.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20221226120320.1125390-5-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Port number is validated in kvm_xen_setattr_evtchn().
Remove superfluous checks in kvm_xen_eventfd_assign() and
kvm_xen_eventfd_update().
Signed-off-by: Michal Luczaj <mhal@rbox.co>
Message-Id: <20221222203021.1944101-3-mhal@rbox.co>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20221226120320.1125390-4-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The evtchnfd structure itself must be protected by either kvm->lock or
SRCU. Use the former in kvm_xen_eventfd_update(), since the lock is
being taken anyway; kvm_xen_hcall_evtchn_send() instead is a reader and
does not need kvm->lock, and is called in SRCU critical section from the
kvm_x86_handle_exit function.
It is also important to use rcu_read_{lock,unlock}() in
kvm_xen_hcall_evtchn_send(), because idr_remove() will *not*
use synchronize_srcu() to wait for readers to complete.
Remove a superfluous if (kvm) check before calling synchronize_srcu()
in kvm_xen_eventfd_deassign() where kvm has been dereferenced already.
Co-developed-by: Michal Luczaj <mhal@rbox.co>
Signed-off-by: Michal Luczaj <mhal@rbox.co>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20221226120320.1125390-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
In particular, we shouldn't assume that being contiguous in guest virtual
address space means being contiguous in guest *physical* address space.
In dropping the manual calls to kvm_mmu_gva_to_gpa_system(), also drop
the srcu_read_lock() that was around them. All call sites are reached
from kvm_xen_hypercall() which is called from the handle_exit function
with the read lock already held.
536395260 ("KVM: x86/xen: handle PV timers oneshot mode")
1a65105a5 ("KVM: x86/xen: handle PV spinlocks slowpath")
Fixes: 2fd6df2f2 ("KVM: x86/xen: intercept EVTCHNOP_send from guests")
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20221226120320.1125390-2-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Release page irrespectively of kvm_vcpu_write_guest() return value.
Suggested-by: Paul Durrant <paul@xen.org>
Fixes: 23200b7a30de ("KVM: x86/xen: intercept xen hypercalls if enabled")
Signed-off-by: Michal Luczaj <mhal@rbox.co>
Message-Id: <20221220151454.712165-1-mhal@rbox.co>
Reviewed-by: Paul Durrant <paul@xen.org>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20221226120320.1125390-1-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
"be split be split" -> "be split"
Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Message-Id: <20221207120505.9175-1-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Don't install a leaf TDP MMU SPTE if the parent page's level doesn't
match the target level of the fault, and instead have the vCPU retry the
faulting instruction after warning. Continuing on is completely
unnecessary as the absolute worst case scenario of retrying is DoSing
the vCPU, whereas continuing on all but guarantees bigger explosions, e.g.
------------[ cut here ]------------
kernel BUG at arch/x86/kvm/mmu/tdp_mmu.c:559!
invalid opcode: 0000 [#1] SMP
CPU: 1 PID: 1025 Comm: nx_huge_pages_t Tainted: G W 6.1.0-rc4+ #64
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:__handle_changed_spte.cold+0x95/0x9c
RSP: 0018:ffffc9000072faf8 EFLAGS: 00010246
RAX: 00000000000000c1 RBX: ffffc90000731000 RCX: 0000000000000027
RDX: 0000000000000000 RSI: 00000000ffffdfff RDI: ffff888277c5b4c8
RBP: 0600000112400bf3 R08: ffff888277c5b4c0 R09: ffffc9000072f9a0
R10: 0000000000000001 R11: 0000000000000001 R12: 06000001126009f3
R13: 0000000000000002 R14: 0000000012600901 R15: 0000000012400b01
FS: 00007fba9f853740(0000) GS:ffff888277c40000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 000000010aa7a003 CR4: 0000000000172ea0
Call Trace:
<TASK>
kvm_tdp_mmu_map+0x3b0/0x510
kvm_tdp_page_fault+0x10c/0x130
kvm_mmu_page_fault+0x103/0x680
vmx_handle_exit+0x132/0x5a0 [kvm_intel]
vcpu_enter_guest+0x60c/0x16f0
kvm_arch_vcpu_ioctl_run+0x1e2/0x9d0
kvm_vcpu_ioctl+0x271/0x660
__x64_sys_ioctl+0x80/0xb0
do_syscall_64+0x2b/0x50
entry_SYSCALL_64_after_hwframe+0x46/0xb0
</TASK>
Modules linked in: kvm_intel
---[ end trace 0000000000000000 ]---
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221213033030.83345-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Re-check sp->nx_huge_page_disallowed under the tdp_mmu_pages_lock spinlock
when adding a new shadow page in the TDP MMU. To ensure the NX reclaim
kthread can't see a not-yet-linked shadow page, the page fault path links
the new page table prior to adding the page to possible_nx_huge_pages.
If the page is zapped by different task, e.g. because dirty logging is
disabled, between linking the page and adding it to the list, KVM can end
up triggering use-after-free by adding the zapped SP to the aforementioned
list, as the zapped SP's memory is scheduled for removal via RCU callback.
The bug is detected by the sanity checks guarded by CONFIG_DEBUG_LIST=y,
i.e. the below splat is just one possible signature.
------------[ cut here ]------------
list_add corruption. prev->next should be next (ffffc9000071fa70), but was ffff88811125ee38. (prev=ffff88811125ee38).
WARNING: CPU: 1 PID: 953 at lib/list_debug.c:30 __list_add_valid+0x79/0xa0
Modules linked in: kvm_intel
CPU: 1 PID: 953 Comm: nx_huge_pages_t Tainted: G W 6.1.0-rc4+ #71
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:__list_add_valid+0x79/0xa0
RSP: 0018:ffffc900006efb68 EFLAGS: 00010286
RAX: 0000000000000000 RBX: ffff888116cae8a0 RCX: 0000000000000027
RDX: 0000000000000027 RSI: 0000000100001872 RDI: ffff888277c5b4c8
RBP: ffffc90000717000 R08: ffff888277c5b4c0 R09: ffffc900006efa08
R10: 0000000000199998 R11: 0000000000199a20 R12: ffff888116cae930
R13: ffff88811125ee38 R14: ffffc9000071fa70 R15: ffff88810b794f90
FS: 00007fc0415d2740(0000) GS:ffff888277c40000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 0000000115201006 CR4: 0000000000172ea0
Call Trace:
<TASK>
track_possible_nx_huge_page+0x53/0x80
kvm_tdp_mmu_map+0x242/0x2c0
kvm_tdp_page_fault+0x10c/0x130
kvm_mmu_page_fault+0x103/0x680
vmx_handle_exit+0x132/0x5a0 [kvm_intel]
vcpu_enter_guest+0x60c/0x16f0
kvm_arch_vcpu_ioctl_run+0x1e2/0x9d0
kvm_vcpu_ioctl+0x271/0x660
__x64_sys_ioctl+0x80/0xb0
do_syscall_64+0x2b/0x50
entry_SYSCALL_64_after_hwframe+0x46/0xb0
</TASK>
---[ end trace 0000000000000000 ]---
Fixes: 61f94478547b ("KVM: x86/mmu: Set disallowed_nx_huge_page in TDP MMU before setting SPTE")
Reported-by: Greg Thelen <gthelen@google.com>
Analyzed-by: David Matlack <dmatlack@google.com>
Cc: David Matlack <dmatlack@google.com>
Cc: Ben Gardon <bgardon@google.com>
Cc: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221213033030.83345-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Map the leaf SPTE when handling a TDP MMU page fault if and only if the
target level is reached. A recent commit reworked the retry logic and
incorrectly assumed that walking SPTEs would never "fail", as the loop
either bails (retries) or installs parent SPs. However, the iterator
itself will bail early if it detects a frozen (REMOVED) SPTE when
stepping down. The TDP iterator also rereads the current SPTE before
stepping down specifically to avoid walking into a part of the tree that
is being removed, which means it's possible to terminate the loop without
the guts of the loop observing the frozen SPTE, e.g. if a different task
zaps a parent SPTE between the initial read and try_step_down()'s refresh.
Mapping a leaf SPTE at the wrong level results in all kinds of badness as
page table walkers interpret the SPTE as a page table, not a leaf, and
walk into the weeds.
------------[ cut here ]------------
WARNING: CPU: 1 PID: 1025 at arch/x86/kvm/mmu/tdp_mmu.c:1070 kvm_tdp_mmu_map+0x481/0x510
Modules linked in: kvm_intel
CPU: 1 PID: 1025 Comm: nx_huge_pages_t Tainted: G W 6.1.0-rc4+ #64
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:kvm_tdp_mmu_map+0x481/0x510
RSP: 0018:ffffc9000072fba8 EFLAGS: 00010286
RAX: 0000000000000000 RBX: ffffc9000072fcc0 RCX: 0000000000000027
RDX: 0000000000000027 RSI: 00000000ffffdfff RDI: ffff888277c5b4c8
RBP: ffff888107d45a10 R08: ffff888277c5b4c0 R09: ffffc9000072fa48
R10: 0000000000000001 R11: 0000000000000001 R12: ffffc9000073a0e0
R13: ffff88810fc54800 R14: ffff888107d1ae60 R15: ffff88810fc54f90
FS: 00007fba9f853740(0000) GS:ffff888277c40000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 000000010aa7a003 CR4: 0000000000172ea0
Call Trace:
<TASK>
kvm_tdp_page_fault+0x10c/0x130
kvm_mmu_page_fault+0x103/0x680
vmx_handle_exit+0x132/0x5a0 [kvm_intel]
vcpu_enter_guest+0x60c/0x16f0
kvm_arch_vcpu_ioctl_run+0x1e2/0x9d0
kvm_vcpu_ioctl+0x271/0x660
__x64_sys_ioctl+0x80/0xb0
do_syscall_64+0x2b/0x50
entry_SYSCALL_64_after_hwframe+0x46/0xb0
</TASK>
---[ end trace 0000000000000000 ]---
Invalid SPTE change: cannot replace a present leaf
SPTE with another present leaf SPTE mapping a
different PFN!
as_id: 0 gfn: 100200 old_spte: 600000112400bf3 new_spte: 6000001126009f3 level: 2
------------[ cut here ]------------
kernel BUG at arch/x86/kvm/mmu/tdp_mmu.c:559!
invalid opcode: 0000 [#1] SMP
CPU: 1 PID: 1025 Comm: nx_huge_pages_t Tainted: G W 6.1.0-rc4+ #64
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:__handle_changed_spte.cold+0x95/0x9c
RSP: 0018:ffffc9000072faf8 EFLAGS: 00010246
RAX: 00000000000000c1 RBX: ffffc90000731000 RCX: 0000000000000027
RDX: 0000000000000000 RSI: 00000000ffffdfff RDI: ffff888277c5b4c8
RBP: 0600000112400bf3 R08: ffff888277c5b4c0 R09: ffffc9000072f9a0
R10: 0000000000000001 R11: 0000000000000001 R12: 06000001126009f3
R13: 0000000000000002 R14: 0000000012600901 R15: 0000000012400b01
FS: 00007fba9f853740(0000) GS:ffff888277c40000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 000000010aa7a003 CR4: 0000000000172ea0
Call Trace:
<TASK>
kvm_tdp_mmu_map+0x3b0/0x510
kvm_tdp_page_fault+0x10c/0x130
kvm_mmu_page_fault+0x103/0x680
vmx_handle_exit+0x132/0x5a0 [kvm_intel]
vcpu_enter_guest+0x60c/0x16f0
kvm_arch_vcpu_ioctl_run+0x1e2/0x9d0
kvm_vcpu_ioctl+0x271/0x660
__x64_sys_ioctl+0x80/0xb0
do_syscall_64+0x2b/0x50
entry_SYSCALL_64_after_hwframe+0x46/0xb0
</TASK>
Modules linked in: kvm_intel
---[ end trace 0000000000000000 ]---
Fixes: 63d28a25e04c ("KVM: x86/mmu: simplify kvm_tdp_mmu_map flow when guest has to retry")
Cc: Robert Hoo <robert.hu@linux.intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221213033030.83345-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Hoist the is_removed_spte() check above the "level == goal_level" check
when walking SPTEs during a TDP MMU page fault to avoid attempting to map
a leaf entry if said entry is frozen by a different task/vCPU.
------------[ cut here ]------------
WARNING: CPU: 3 PID: 939 at arch/x86/kvm/mmu/tdp_mmu.c:653 kvm_tdp_mmu_map+0x269/0x4b0
Modules linked in: kvm_intel
CPU: 3 PID: 939 Comm: nx_huge_pages_t Not tainted 6.1.0-rc4+ #67
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:kvm_tdp_mmu_map+0x269/0x4b0
RSP: 0018:ffffc9000068fba8 EFLAGS: 00010246
RAX: 00000000000005a0 RBX: ffffc9000068fcc0 RCX: 0000000000000005
RDX: ffff88810741f000 RSI: ffff888107f04600 RDI: ffffc900006a3000
RBP: 060000010b000bf3 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 000ffffffffff000 R12: 0000000000000005
R13: ffff888113670000 R14: ffff888107464958 R15: 0000000000000000
FS: 00007f01c942c740(0000) GS:ffff888277cc0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 0000000117013006 CR4: 0000000000172ea0
Call Trace:
<TASK>
kvm_tdp_page_fault+0x10c/0x130
kvm_mmu_page_fault+0x103/0x680
vmx_handle_exit+0x132/0x5a0 [kvm_intel]
vcpu_enter_guest+0x60c/0x16f0
kvm_arch_vcpu_ioctl_run+0x1e2/0x9d0
kvm_vcpu_ioctl+0x271/0x660
__x64_sys_ioctl+0x80/0xb0
do_syscall_64+0x2b/0x50
entry_SYSCALL_64_after_hwframe+0x46/0xb0
</TASK>
---[ end trace 0000000000000000 ]---
Fixes: 63d28a25e04c ("KVM: x86/mmu: simplify kvm_tdp_mmu_map flow when guest has to retry")
Cc: Robert Hoo <robert.hu@linux.intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Robert Hoo <robert.hu@linux.intel.com>
Message-Id: <20221213033030.83345-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
When stuffing the allowed secondary execution controls for nested VMX in
response to CPUID updates, don't set the allowed-1 bit for a feature that
isn't supported by KVM, i.e. isn't allowed by the canonical vmcs_config.
WARN if KVM attempts to manipulate a feature that isn't supported. All
features that are currently stuffed are always advertised to L1 for
nested VMX if they are supported in KVM's base configuration, and no
additional features should ever be added to the CPUID-induced stuffing
(updating VMX MSRs in response to CPUID updates is a long-standing KVM
flaw that is slowly being fixed).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221213062306.667649-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Set ENABLE_USR_WAIT_PAUSE in KVM's supported VMX MSR configuration if the
feature is supported in hardware and enabled in KVM's base, non-nested
configuration, i.e. expose ENABLE_USR_WAIT_PAUSE to L1 if it's supported.
This fixes a bug where saving/restoring, i.e. migrating, a vCPU will fail
if WAITPKG (the associated CPUID feature) is enabled for the vCPU, and
obviously allows L1 to enable the feature for L2.
KVM already effectively exposes ENABLE_USR_WAIT_PAUSE to L1 by stuffing
the allowed-1 control ina vCPU's virtual MSR_IA32_VMX_PROCBASED_CTLS2 when
updating secondary controls in response to KVM_SET_CPUID(2), but (a) that
depends on flawed code (KVM shouldn't touch VMX MSRs in response to CPUID
updates) and (b) runs afoul of vmx_restore_control_msr()'s restriction
that the guest value must be a strict subset of the supported host value.
Although no past commit explicitly enabled nested support for WAITPKG,
doing so is safe and functionally correct from an architectural
perspective as no additional KVM support is needed to virtualize TPAUSE,
UMONITOR, and UMWAIT for L2 relative to L1, and KVM already forwards
VM-Exits to L1 as necessary (commit bf653b78f960, "KVM: vmx: Introduce
handle_unexpected_vmexit and handle WAITPKG vmexit").
Note, KVM always keeps the hosts MSR_IA32_UMWAIT_CONTROL resident in
hardware, i.e. always runs both L1 and L2 with the host's power management
settings for TPAUSE and UMWAIT. See commit bf09fb6cba4f ("KVM: VMX: Stop
context switching MSR_IA32_UMWAIT_CONTROL") for more details.
Fixes: e69e72faa3a0 ("KVM: x86: Add support for user wait instructions")
Cc: stable@vger.kernel.org
Reported-by: Aaron Lewis <aaronlewis@google.com>
Reported-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20221213062306.667649-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Explicitly drop the result of kvm_vcpu_write_guest() when writing the
"launch state" as part of VMCLEAR emulation, and add a comment to call
out that KVM's behavior is architecturally valid. Intel's pseudocode
effectively says that VMCLEAR is a nop if the target VMCS address isn't
in memory, e.g. if the address points at MMIO.
Add a FIXME to call out that suppressing failures on __copy_to_user() is
wrong, as memory (a memslot) does exist in that case. Punt the issue to
the future as open coding kvm_vcpu_write_guest() just to make sure the
guest dies with -EFAULT isn't worth the extra complexity. The flaw will
need to be addressed if KVM ever does something intelligent on uaccess
failures, e.g. to support post-copy demand paging, but in that case KVM
will need a more thorough overhaul, i.e. VMCLEAR shouldn't need to open
code a core KVM helper.
No functional change intended.
Reported-by: coverity-bot <keescook+coverity-bot@chromium.org>
Addresses-Coverity-ID: 1527765 ("Error handling issues")
Fixes: 587d7e72aedc ("kvm: nVMX: VMCLEAR should not cause the vCPU to shut down")
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221220154224.526568-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add a sanity check in kvm_handle_memory_failure() to assert that a valid
x86_exception structure is provided if the memory "failure" wants to
propagate a fault into the guest. If a memory failure happens during a
direct guest physical memory access, e.g. for nested VMX, KVM hardcodes
the failure to X86EMUL_IO_NEEDED and doesn't provide an exception pointer
(because the exception struct would just be filled with garbage).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221220153427.514032-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
kvm_apic_hw_enabled() only needs to return bool, there is no place
to use the return value of MSR_IA32_APICBASE_ENABLE.
Signed-off-by: Peng Hao <flyingpeng@tencent.com>
Message-Id: <CAPm50aJ=BLXNWT11+j36Dd6d7nz2JmOBk4u7o_NPQ0N61ODu1g@mail.gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
In kvm_hv_flush_tlb(), 'data_offset' and 'consumed_xmm_halves' variables
are used in a mutually exclusive way: in 'hc->fast' we count in 'XMM
halves' and increase 'data_offset' otherwise. Coverity discovered, that in
one case both variables are incremented unconditionally. This doesn't seem
to cause any issues as the only user of 'data_offset'/'consumed_xmm_halves'
data is kvm_hv_get_tlb_flush_entries() -> kvm_hv_get_hc_data() which also
takes into account 'hc->fast' but is still worth fixing.
To make things explicit, put 'data_offset' and 'consumed_xmm_halves' to
'struct kvm_hv_hcall' as a union and use at call sites. This allows to
remove explicit 'data_offset'/'consumed_xmm_halves' parameters from
kvm_hv_get_hc_data()/kvm_get_sparse_vp_set()/kvm_hv_get_tlb_flush_entries()
helpers.
Note: 'struct kvm_hv_hcall' is allocated on stack in kvm_hv_hypercall() and
is not zeroed, consumers are supposed to initialize the appropriate field
if needed.
Reported-by: coverity-bot <keescook+coverity-bot@chromium.org>
Addresses-Coverity-ID: 1527764 ("Uninitialized variables")
Fixes: 260970862c88 ("KVM: x86: hyper-v: Handle HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST{,EX} calls gently")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221208102700.959630-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
When scanning userspace I/OAPIC entries, intercept EOI for level-triggered
IRQs if the current vCPU has a pending and/or in-service IRQ for the
vector in its local API, even if the vCPU doesn't match the new entry's
destination. This fixes a race between userspace I/OAPIC reconfiguration
and IRQ delivery that results in the vector's bit being left set in the
remote IRR due to the eventual EOI not being forwarded to the userspace
I/OAPIC.
Commit 0fc5a36dd6b3 ("KVM: x86: ioapic: Fix level-triggered EOI and IOAPIC
reconfigure race") fixed the in-kernel IOAPIC, but not the userspace
IOAPIC configuration, which has a similar race.
Fixes: 0fc5a36dd6b3 ("KVM: x86: ioapic: Fix level-triggered EOI and IOAPIC reconfigure race")
Signed-off-by: Adamos Ttofari <attofari@amazon.de>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221208094415.12723-1-attofari@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|