Age | Commit message (Collapse) | Author | Files | Lines |
|
commit 6f5c9600621b4efb5c61b482d767432eb1ad3a9c upstream.
Drop KVM's propagation of GuestPhysBits (CPUID leaf 80000008, EAX[23:16])
to HostPhysBits (same leaf, EAX[7:0]) when advertising the address widths
to userspace via KVM_GET_SUPPORTED_CPUID.
Per AMD, GuestPhysBits is intended for software use, and physical CPUs do
not set that field. I.e. GuestPhysBits will be non-zero if and only if
KVM is running as a nested hypervisor, and in that case, GuestPhysBits is
NOT guaranteed to capture the CPU's effective MAXPHYADDR when running with
TDP enabled.
E.g. KVM will soon use GuestPhysBits to communicate the CPU's maximum
*addressable* guest physical address, which would result in KVM under-
reporting PhysBits when running as an L1 on a CPU with MAXPHYADDR=52,
but without 5-level paging.
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Cc: stable@vger.kernel.org
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20240313125844.912415-2-kraxel@redhat.com
[sean: rewrite changelog with --verbose, Cc stable@]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 455f9075f14484f358b3c1d6845b4a438de198a7 upstream.
When the BIOS configures the architectural TSC-adjust MSRs on secondary
sockets to correct a constant inter-chassis offset, after Linux brings the
cores online, the TSC sync check later resets the core-local MSR to 0,
triggering HPET fallback and leading to performance loss.
Fix this by unconditionally using the initial adjust values read from the
MSRs. Trusting the initial offsets in this architectural mechanism is a
better approach than special-casing workarounds for specific platforms.
Signed-off-by: Daniel J Blueman <daniel@quora.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Steffen Persvold <sp@numascale.com>
Reviewed-by: James Cleverdon <james.cleverdon.external@eviden.com>
Reviewed-by: Dimitri Sivanich <sivanich@hpe.com>
Reviewed-by: Prarit Bhargava <prarit@redhat.com>
Link: https://lore.kernel.org/r/20240419085146.175665-1-daniel@quora.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a0a8d15a798be4b8f20aca2ba91bf6b688c6a640 upstream.
The TDX guest platform takes one bit from the physical address to
indicate if the page is shared (accessible by VMM). This bit is not part
of the physical_mask and is not preserved during mprotect(). As a
result, the 'shared' bit is lost during mprotect() on shared mappings.
_COMMON_PAGE_CHG_MASK specifies which PTE bits need to be preserved
during modification. AMD includes 'sme_me_mask' in the define to
preserve the 'encrypt' bit.
To cover both Intel and AMD cases, include 'cc_mask' in
_COMMON_PAGE_CHG_MASK instead of 'sme_me_mask'.
Reported-and-tested-by: Chris Oo <cho@microsoft.com>
Fixes: 41394e33f3a0 ("x86/tdx: Extend the confidential computing API to support TDX guests")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Reviewed-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/20240424082035.4092071-1-kirill.shutemov%40linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit fe42754b94a42d08cf9501790afc25c4f6a5f631 upstream.
Rename x86's to CPU_MITIGATIONS, define it in generic code, and force it
on for all architectures exception x86. A recent commit to turn
mitigations off by default if SPECULATION_MITIGATIONS=n kinda sorta
missed that "cpu_mitigations" is completely generic, whereas
SPECULATION_MITIGATIONS is x86-specific.
Rename x86's SPECULATIVE_MITIGATIONS instead of keeping both and have it
select CPU_MITIGATIONS, as having two configs for the same thing is
unnecessary and confusing. This will also allow x86 to use the knob to
manage mitigations that aren't strictly related to speculative
execution.
Use another Kconfig to communicate to common code that CPU_MITIGATIONS
is already defined instead of having x86's menu depend on the common
CPU_MITIGATIONS. This allows keeping a single point of contact for all
of x86's mitigations, and it's not clear that other architectures *want*
to allow disabling mitigations at compile-time.
Fixes: f337a6a21e2f ("x86/cpu: Actually turn off mitigations by default for SPECULATION_MITIGATIONS=n")
Closes: https://lkml.kernel.org/r/20240413115324.53303a68%40canb.auug.org.au
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reported-by: Michael Ellerman <mpe@ellerman.id.au>
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240420000556.2645001-2-seanjc@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b53c6bd5d271d023857174b8fd3e32f98ae51372 upstream.
cpu_feature_enabled(X86_FEATURE_OSPKE) does not necessarily reflect
whether CR4.PKE is set on the CPU. In particular, they may differ on
non-BSP CPUs before setup_pku() is executed. In this scenario, RDPKRU
will #UD causing the system to hang.
Fix by checking CR4 for PKE enablement which is always correct for the
current CPU.
The scenario happens by inserting a WARN* before setup_pku() in
identiy_cpu() or some other diagnostic which would lead to calling
__show_regs().
[ bp: Massage commit message. ]
Signed-off-by: David Kaplan <david.kaplan@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20240421191728.32239-1-bp@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 49ff3b4aec51e3abfc9369997cc603319b02af9a upstream.
On AMD and Hygon platforms, the local APIC does not automatically set
the mask bit of the LVTPC register when handling a PMI and there is
no need to clear it in the kernel's PMI handler.
For guests, the mask bit is currently set by kvm_apic_local_deliver()
and unless it is cleared by the guest kernel's PMI handler, PMIs stop
arriving and break use-cases like sampling with perf record.
This does not affect non-PerfMonV2 guests because PMIs are handled in
the guest kernel by x86_pmu_handle_irq() which always clears the LVTPC
mask bit irrespective of the vendor.
Before:
$ perf record -e cycles:u true
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.001 MB perf.data (1 samples) ]
After:
$ perf record -e cycles:u true
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.002 MB perf.data (19 samples) ]
Fixes: a16eb25b09c0 ("KVM: x86: Mask LVTPC when handling a PMI")
Cc: stable@vger.kernel.org
Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
[sean: use is_intel_compatible instead of !is_amd_or_hygon()]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20240405235603.1173076-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 9e985cbf2942a1bb8fcef9adc2a17d90fd7ca8ee upstream.
Drop support for virtualizing adaptive PEBS, as KVM's implementation is
architecturally broken without an obvious/easy path forward, and because
exposing adaptive PEBS can leak host LBRs to the guest, i.e. can leak
host kernel addresses to the guest.
Bug #1 is that KVM doesn't account for the upper 32 bits of
IA32_FIXED_CTR_CTRL when (re)programming fixed counters, e.g
fixed_ctrl_field() drops the upper bits, reprogram_fixed_counters()
stores local variables as u8s and truncates the upper bits too, etc.
Bug #2 is that, because KVM _always_ sets precise_ip to a non-zero value
for PEBS events, perf will _always_ generate an adaptive record, even if
the guest requested a basic record. Note, KVM will also enable adaptive
PEBS in individual *counter*, even if adaptive PEBS isn't exposed to the
guest, but this is benign as MSR_PEBS_DATA_CFG is guaranteed to be zero,
i.e. the guest will only ever see Basic records.
Bug #3 is in perf. intel_pmu_disable_fixed() doesn't clear the upper
bits either, i.e. leaves ICL_FIXED_0_ADAPTIVE set, and
intel_pmu_enable_fixed() effectively doesn't clear ICL_FIXED_0_ADAPTIVE
either. I.e. perf _always_ enables ADAPTIVE counters, regardless of what
KVM requests.
Bug #4 is that adaptive PEBS *might* effectively bypass event filters set
by the host, as "Updated Memory Access Info Group" records information
that might be disallowed by userspace via KVM_SET_PMU_EVENT_FILTER.
Bug #5 is that KVM doesn't ensure LBR MSRs hold guest values (or at least
zeros) when entering a vCPU with adaptive PEBS, which allows the guest
to read host LBRs, i.e. host RIPs/addresses, by enabling "LBR Entries"
records.
Disable adaptive PEBS support as an immediate fix due to the severity of
the LBR leak in particular, and because fixing all of the bugs will be
non-trivial, e.g. not suitable for backporting to stable kernels.
Note! This will break live migration, but trying to make KVM play nice
with live migration would be quite complicated, wouldn't be guaranteed to
work (i.e. KVM might still kill/confuse the guest), and it's not clear
that there are any publicly available VMMs that support adaptive PEBS,
let alone live migrate VMs that support adaptive PEBS, e.g. QEMU doesn't
support PEBS in any capacity.
Link: https://lore.kernel.org/all/20240306230153.786365-1-seanjc@google.com
Link: https://lore.kernel.org/all/ZeepGjHCeSfadANM@google.com
Fixes: c59a1f106f5c ("KVM: x86/pmu: Add IA32_PEBS_ENABLE MSR emulation for extended PEBS")
Cc: stable@vger.kernel.org
Cc: Like Xu <like.xu.linux@gmail.com>
Cc: Mingwei Zhang <mizhang@google.com>
Cc: Zhenyu Wang <zhenyuw@linux.intel.com>
Cc: Zhang Xiong <xiong.y.zhang@intel.com>
Cc: Lv Zhiyuan <zhiyuan.lv@intel.com>
Cc: Dapeng Mi <dapeng1.mi@intel.com>
Cc: Jim Mattson <jmattson@google.com>
Acked-by: Like Xu <likexu@tencent.com>
Link: https://lore.kernel.org/r/20240307005833.827147-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit fd706c9b1674e2858766bfbf7430534c2b26fbef upstream.
Add kvm_vcpu_arch.is_amd_compatible to cache if a vCPU's vendor model is
compatible with AMD, i.e. if the vCPU vendor is AMD or Hygon, along with
helpers to check if a vCPU is compatible AMD vs. Intel. To handle Intel
vs. AMD behavior related to masking the LVTPC entry, KVM will need to
check for vendor compatibility on every PMI injection, i.e. querying for
AMD will soon be a moderately hot path.
Note! This subtly (or maybe not-so-subtly) makes "Intel compatible" KVM's
default behavior, both if userspace omits (or never sets) CPUID 0x0 and if
userspace sets a completely unknown vendor. One could argue that KVM
should treat such vCPUs as not being compatible with Intel *or* AMD, but
that would add useless complexity to KVM.
KVM needs to do *something* in the face of vendor specific behavior, and
so unless KVM conjured up a magic third option, choosing to treat unknown
vendors as neither Intel nor AMD means that checks on AMD compatibility
would yield Intel behavior, and checks for Intel compatibility would yield
AMD behavior. And that's far worse as it would effectively yield random
behavior depending on whether KVM checked for AMD vs. Intel vs. !AMD vs.
!Intel. And practically speaking, all x86 CPUs follow either Intel or AMD
architecture, i.e. "supporting" an unknown third architecture adds no
value.
Deliberately don't convert any of the existing guest_cpuid_is_intel()
checks, as the Intel side of things is messier due to some flows explicitly
checking for exactly vendor==Intel, versus some flows assuming anything
that isn't "AMD compatible" gets Intel behavior. The Intel code will be
cleaned up in the future.
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20240405235603.1173076-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 9543f6e26634537997b6e909c20911b7bf4876de ]
Fix cpuid_deps[] to list the correct dependencies for GFNI, VAES, and
VPCLMULQDQ. These features don't depend on AVX512, and there exist CPUs
that support these features but not AVX512. GFNI actually doesn't even
depend on AVX.
This prevents GFNI from being unnecessarily disabled if AVX is disabled
to mitigate the GDS vulnerability.
This also prevents all three features from being unnecessarily disabled
if AVX512VL (or its dependency AVX512F) were to be disabled, but it
looks like there isn't any case where this happens anyway.
Fixes: c128dbfa0f87 ("x86/cpufeatures: Enable new SSE/AVX/AVX512 CPU features")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/r/20240417060434.47101-1-ebiggers@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 69129794d94c544810e68b2b4eaa7e44063f9bf2 ]
Confusingly, X86_FEATURE_RETPOLINE doesn't mean retpolines are enabled,
as it also includes the original "AMD retpoline" which isn't a retpoline
at all.
Also replace cpu_feature_enabled() with boot_cpu_has() because this is
before alternatives are patched and cpu_feature_enabled()'s fallback
path is slower than plain old boot_cpu_has().
Fixes: ec9404e40e8f ("x86/bhi: Add BHI mitigation knob")
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/ad3807424a3953f0323c011a643405619f2a4927.1712944776.git.jpoimboe@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 056b44a4d10907ec8153863b2a0564e808ef1440 ]
arch_pnpbios_disabled() is defined in architecture code on x86, but this
does not include the appropriate header, causing a warning:
arch/x86/kernel/platform-quirks.c:42:13: error: no previous prototype for 'arch_pnpbios_disabled' [-Werror=missing-prototypes]
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Alexander Lobakin <aleksander.lobakin@intel.com>
Link: https://lore.kernel.org/all/20230516193549.544673-10-arnd%40kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Commit 9c55461040a9264b7e44444c53d26480b438eda6 upstream ]
Currently, the EFI stub invokes the EFI memory attributes protocol to
strip any NX restrictions from the entire loaded kernel, resulting in
all code and data being mapped read-write-execute.
The point of the EFI memory attributes protocol is to remove the need
for all memory allocations to be mapped with both write and execute
permissions by default, and make it the OS loader's responsibility to
transition data mappings to code mappings where appropriate.
Even though the UEFI specification does not appear to leave room for
denying memory attribute changes based on security policy, let's be
cautious and avoid relying on the ability to create read-write-execute
mappings. This is trivially achievable, given that the amount of kernel
code executing via the firmware's 1:1 mapping is rather small and
limited to the .head.text region. So let's drop the NX restrictions only
on that subregion, but not before remapping it as read-only first.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Commit 428080c9b19bfda37c478cd626dbd3851db1aff9 upstream ]
In preparation for implementing rigorous build time checks to enforce
that only code that can support it will be called from the early 1:1
mapping of memory, move SEV init code that is called in this manner to
the .head.text section.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20240227151907.387873-19-ardb+git@google.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Commit 48204aba801f1b512b3abed10b8e1a63e03f3dd1 upstream ]
The .head.text section is the initial primary entrypoint of the core
kernel, and is entered with the CPU executing from a 1:1 mapping of
memory. Such code must never access global variables using absolute
references, as these are based on the kernel virtual mapping which is
not active yet at this point.
Given that the SME startup code is also called from this early execution
context, move it into .head.text as well. This will allow more thorough
build time checks in the future to ensure that early startup code only
uses RIP-relative references to global variables.
Also replace some occurrences of __pa_symbol() [which relies on the
compiler generating an absolute reference, which is not guaranteed] and
an open coded RIP-relative access with RIP_REL_REF().
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20240227151907.387873-18-ardb+git@google.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Commit d2a285d65bfde3218fd0c3b88794d0135ced680b upstream ]
Move the __head section definition to a header to widen its use.
An upcoming patch will mark the code as __head in mem_encrypt_identity.c too.
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/0583f57977be184689c373fe540cbd7d85ca2047.1697525407.git.houwenlong.hwl@antgroup.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Commit 7f6874eddd81cb2ed784642a7a4321671e158ffe upstream ]
This function is currently only used in the head code and is only called
from startup_64_setup_env(). Although it would be inlined by the
compiler, it would be better to mark it as __head too in case it doesn't.
Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/efcc5b5e18af880e415d884e072bf651c1fa7c34.1689130310.git.houwenlong.hwl@antgroup.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Commit 82328227db8f0b9b5f77bb5afcd47e59d0e4d08f upstream ]
Other architectures and the common mm/ use P*D_MASK, and P*D_SIZE.
Remove the duplicated P*D_PAGE_MASK and P*D_PAGE_SIZE which are only
used in x86/*.
Signed-off-by: Pasha Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Link: https://lore.kernel.org/r/20220516185202.604654-1-tatashin@google.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Commit 1ad55cecf22f05f1c884adf63cc09d3c3e609ebf upstream ]
The .compat section is a dummy PE section that contains the address of
the 32-bit entrypoint of the 64-bit kernel image if it is bootable from
32-bit firmware (i.e., CONFIG_EFI_MIXED=y)
This section is only 8 bytes in size and is only referenced from the
loader, and so it is placed at the end of the memory view of the image,
to avoid the need for padding it to 4k, which is required for sections
appearing in the middle of the image.
Unfortunately, this violates the PE/COFF spec, and even if most EFI
loaders will work correctly (including the Tianocore reference
implementation), PE loaders do exist that reject such images, on the
basis that both the file and memory views of the file contents should be
described by the section headers in a monotonically increasing manner
without leaving any gaps.
So reorganize the sections to avoid this issue. This results in a slight
padding overhead (< 4k) which can be avoided if desired by disabling
CONFIG_EFI_MIXED (which is only needed in rare cases these days)
Fixes: 3e3eabe26dc8 ("x86/boot: Increase section and file alignment to 4k/512")
Reported-by: Mike Beaton <mjsbeaton@gmail.com>
Link: https://lkml.kernel.org/r/CAHzAAWQ6srV6LVNdmfbJhOwhBw5ZzxxZZ07aHt9oKkfYAdvuQQ%40mail.gmail.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Commit 3e3eabe26dc88692d34cf76ca0e0dd331481cc15 upstream ]
Align x86 with other EFI architectures, and increase the section
alignment to the EFI page size (4k), so that firmware is able to honour
the section permission attributes and map code read-only and data
non-executable.
There are a number of requirements that have to be taken into account:
- the sign tools get cranky when there are gaps between sections in the
file view of the image
- the virtual offset of each section must be aligned to the image's
section alignment
- the file offset *and size* of each section must be aligned to the
image's file alignment
- the image size must be aligned to the section alignment
- each section's virtual offset must be greater than or equal to the
size of the headers.
In order to meet all these requirements, while avoiding the need for
lots of padding to accommodate the .compat section, the latter is placed
at an arbitrary offset towards the end of the image, but aligned to the
minimum file alignment (512 bytes). The space before the .text section
is therefore distributed between the PE header, the .setup section and
the .compat section, leaving no gaps in the file coverage, making the
signing tools happy.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230915171623.655440-18-ardb@google.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Commit 34951f3c28bdf6481d949a20413b2ce7693687b2 upstream ]
Describe the code and data of the decompressor binary using separate
.text and .data PE/COFF sections, so that we will be able to map them
using restricted permissions once we increase the section and file
alignment sufficiently. This avoids the need for memory mappings that
are writable and executable at the same time, which is something that
is best avoided for security reasons.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230915171623.655440-17-ardb@google.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Commit fa5750521e0a4efbc1af05223da9c4bbd6c21c83 upstream ]
Ancient buggy EFI loaders may have required a .reloc section to be
present at some point in time, but this has not been true for a long
time so the .reloc section can just be dropped.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230915171623.655440-16-ardb@google.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Commit efa089e63b56bdc5eca754b995cb039dd7a5457e upstream ]
Now that the size of the setup block is visible to the assembler, it is
possible to populate the PE/COFF header fields from the asm code
directly, instead of poking the values into the binary using the build
tool. This will make it easier to reorganize the section layout without
having to tweak the build tool in lockstep.
This change has no impact on the resulting bzImage binary.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230915171623.655440-15-ardb@google.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Commit aeb92067f6ae994b541d7f9752fe54ed3d108bcc upstream ]
Tweak the linker script so that the value of _edata represents the
decompressor binary's file size rounded up to the appropriate alignment.
This removes the need to calculate it in the build tool, and will make
it easier to refer to the file size from the header directly in
subsequent changes to the PE header layout.
While adding _edata to the sed regex that parses the compressed
vmlinux's symbol list, tweak the regex a bit for conciseness.
This change has no impact on the resulting bzImage binary when
configured with CONFIG_EFI_STUB=y.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230915171623.655440-14-ardb@google.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Commit 093ab258e3fb1d1d3afdfd4a69403d44ce90e360 upstream ]
The setup block contains the real mode startup code that is used when
booting from a legacy BIOS, along with the boot_params/setup_data that
is used by legacy x86 bootloaders to pass the command line and initial
ramdisk parameters, among other things.
The setup block also contains the PE/COFF header of the entire combined
image, which includes the compressed kernel image, the decompressor and
the EFI stub.
This PE header describes the layout of the executable image in memory,
and currently, the fact that the setup block precedes it makes it rather
fiddly to get the right values into the right place in the final image.
Let's make things a bit easier by defining the setup_size in the linker
script so it can be referenced from the asm code directly, rather than
having to rely on the build tool to calculate it. For the time being,
add 64 bytes of fixed padding for the .reloc and .compat sections - this
will be removed in a subsequent patch after the PE/COFF header has been
reorganized.
This change has no impact on the resulting bzImage binary when
configured with CONFIG_EFI_MIXED=y.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230915171623.655440-13-ardb@google.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Commit eac956345f99dda3d68f4ae6cf7b494105e54780 upstream ]
The offsets of the EFI handover entrypoints are available to the
assembler when constructing the header, so there is no need to set them
from the build tool afterwards.
This change has no impact on the resulting bzImage binary.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230915171623.655440-12-ardb@google.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Commit 2e765c02dcbfc2a8a4527c621a84b9502f6b9bd2 upstream ]
Instead of parsing zoffset.h and poking the kernel_info offset value
into the header from the build tool, just grab the value directly in the
asm file that describes this header.
This change has no impact on the resulting bzImage binary.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230915171623.655440-11-ardb@google.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Commit b618d31f112bea3d2daea19190d63e567f32a4db upstream ]
The x86 boot image generation tool assign a default value to startup_64
and subsequently parses the actual value from zoffset.h but it never
actually uses the value anywhere. So remove this code.
This change has no impact on the resulting bzImage binary.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230912090051.4014114-25-ardb@google.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Commit 7448e8e5d15a3c4df649bf6d6d460f78396f7e1e upstream ]
The root device defaults to 0,0 and is no longer configurable at build
time [0], so there is no need for the build tool to ever write to this
field.
[0] 079f85e624189292 ("x86, build: Do not set the root_dev field in bzImage")
This change has no impact on the resulting bzImage binary.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230912090051.4014114-23-ardb@google.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Commit 8eace5b3555606e684739bef5bcdfcfe68235257 upstream ]
Now that the EFI stub decompresses the kernel and hands over to the
decompressed image directly, there is no longer a need to provide a
decompression buffer as part of the .BSS allocation of the PE/COFF
image. It also means the PE/COFF image can be loaded anywhere in memory,
and setting the preferred image base is unnecessary. So drop the
handling of this from the header and from the build tool.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230912090051.4014114-22-ardb@google.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Commit 768171d7ebbce005210e1cf8456f043304805c15 upstream ]
Ancient (pre-2003) x86 kernels could boot from a floppy disk straight from
the BIOS, using a small real mode boot stub at the start of the image
where the BIOS would expect the boot record (or boot block) to appear.
Due to its limitations (kernel size < 1 MiB, no support for IDE, USB or
El Torito floppy emulation), this support was dropped, and a Linux aware
bootloader is now always required to boot the kernel from a legacy BIOS.
To smoothen this transition, the boot stub was not removed entirely, but
replaced with one that just prints an error message telling the user to
install a bootloader.
As it is unlikely that anyone doing direct floppy boot with such an
ancient kernel is going to upgrade to v6.5+ and expect that this boot
method still works, printing this message is kind of pointless, and so
it should be possible to remove the logic that emits it.
Let's free up this space so it can be used to expand the PE header in a
subsequent patch.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Link: https://lore.kernel.org/r/20230912090051.4014114-21-ardb@google.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Commit bfab35f552ab3dd6d017165bf9de1d1d20f198cc upstream ]
The section header flags for alignment are documented in the PE/COFF
spec as being applicable to PE object files only, not to PE executables
such as the Linux bzImage, so let's drop them from the PE header.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230912090051.4014114-20-ardb@google.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Commit 5f51c5d0e905608ba7be126737f7c84a793ae1aa upstream ]
Now that the EFI stub always zero inits its BSS section upon entry,
there is no longer a need to place the BSS symbols carried by the stub
into the .data section.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230912090051.4014114-18-ardb@google.com
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 4f511739c54b549061993b53fc0380f48dfca23b upstream.
For consistency with the other CONFIG_MITIGATION_* options, replace the
CONFIG_SPECTRE_BHI_{ON,OFF} options with a single
CONFIG_MITIGATION_SPECTRE_BHI option.
[ mingo: Fix ]
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nikolay Borisov <nik.borisov@suse.com>
Link: https://lore.kernel.org/r/3833812ea63e7fdbe36bf8b932e63f70d18e2a2a.1712813475.git.jpoimboe@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 36d4fe147c870f6d3f6602befd7ef44393a1c87a upstream.
Unlike most other mitigations' "auto" options, spectre_bhi=auto only
mitigates newer systems, which is confusing and not particularly useful.
Remove it.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/412e9dc87971b622bbbaf64740ebc1f140bff343.1712813475.git.jpoimboe@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 5f882f3b0a8bf0788d5a0ee44b1191de5319bb8a upstream.
While syscall hardening helps prevent some BHI attacks, there's still
other low-hanging fruit remaining. Don't classify it as a mitigation
and make it clear that the system may still be vulnerable if it doesn't
have a HW or SW mitigation enabled.
Fixes: ec9404e40e8f ("x86/bhi: Add BHI mitigation knob")
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/b5951dae3fdee7f1520d5136a27be3bdfe95f88b.1712813475.git.jpoimboe@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1cea8a280dfd1016148a3820676f2f03e3f5b898 upstream.
The ARCH_CAP_RRSBA check isn't correct: RRSBA may have already been
disabled by the Spectre v2 mitigation (or can otherwise be disabled by
the BHI mitigation itself if needed). In that case retpolines are fine.
Fixes: ec9404e40e8f ("x86/bhi: Add BHI mitigation knob")
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/6f56f13da34a0834b69163467449be7f58f253dc.1712813475.git.jpoimboe@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d0485730d2189ffe5d986d4e9e191f1e4d5ffd24 upstream.
So we are using the 'ia32_cap' value in a number of places,
which got its name from MSR_IA32_ARCH_CAPABILITIES MSR register.
But there's very little 'IA32' about it - this isn't 32-bit only
code, nor does it originate from there, it's just a historic
quirk that many Intel MSR names are prefixed with IA32_.
This is already clear from the helper method around the MSR:
x86_read_arch_cap_msr(), which doesn't have the IA32 prefix.
So rename 'ia32_cap' to 'x86_arch_cap_msr' to be consistent with
its role and with the naming of the helper function.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Nikolay Borisov <nik.borisov@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/9592a18a814368e75f8f4b9d74d3883aa4fd1eaf.1712813475.git.jpoimboe@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit cb2db5bb04d7f778fbc1a1ea2507aab436f1bff3 upstream.
There's no need to keep reading MSR_IA32_ARCH_CAPABILITIES over and
over. It's even read in the BHI sysfs function which is a big no-no.
Just read it once and cache it.
Fixes: ec9404e40e8f ("x86/bhi: Add BHI mitigation knob")
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/9592a18a814368e75f8f4b9d74d3883aa4fd1eaf.1712813475.git.jpoimboe@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 04f4230e2f86a4e961ea5466eda3db8c1762004d upstream.
The definition of spectre_bhi_state() incorrectly returns a const char
* const. This causes the a compiler warning when building with W=1:
warning: type qualifiers ignored on function return type [-Wignored-qualifiers]
2812 | static const char * const spectre_bhi_state(void)
Remove the const qualifier from the pointer.
Fixes: ec9404e40e8f ("x86/bhi: Add BHI mitigation knob")
Reported-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20240409230806.1545822-1-daniel.sneddon@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 5ce344beaca688f4cdea07045e0b8f03dc537e74 upstream.
When done from a virtual machine, instructions that touch APIC memory
must be emulated. By convention, MMIO accesses are typically performed
via io.h helpers such as readl() or writeq() to simplify instruction
emulation/decoding (ex: in KVM hosts and SEV guests) [0].
Currently, native_apic_mem_read() does not follow this convention,
allowing the compiler to emit instructions other than the MOV
instruction generated by readl(). In particular, when the kernel is
compiled with clang and run as a SEV-ES or SEV-SNP guest, the compiler
would emit a TESTL instruction which is not supported by the SEV-ES
emulator, causing a boot failure in that environment. It is likely the
same problem would happen in a TDX guest as that uses the same
instruction emulator as SEV-ES.
To make sure all emulators can emulate APIC memory reads via MOV, use
the readl() function in native_apic_mem_read(). It is expected that any
emulator would support MOV in any addressing mode as it is the most
generic and is what is usually emitted currently.
The TESTL instruction is emitted when native_apic_mem_read() is inlined
into apic_mem_wait_icr_idle(). The emulator comes from
insn_decode_mmio() in arch/x86/lib/insn-eval.c. It's not worth it to
extend insn_decode_mmio() to support more instructions since, in theory,
the compiler could choose to output nearly any instruction for such
reads which would bloat the emulator beyond reason.
[0] https://lore.kernel.org/all/20220405232939.73860-12-kirill.shutemov@linux.intel.com/
[ bp: Massage commit message, fix typos. ]
Signed-off-by: Adam Dunlap <acdunlap@google.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Tested-by: Kevin Loughlin <kevinloughlin@google.com>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/20240318230927.2191933-1-acdunlap@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit dec8ced871e17eea46f097542dd074d022be4bd1 upstream.
On x86 each struct cpu_hw_events maintains a table for counter assignment but
it missed to update one for the deleted event in x86_pmu_del(). This
can make perf_clear_dirty_counters() reset used counter if it's called
before event scheduling or enabling. Then it would return out of range
data which doesn't make sense.
The following code can reproduce the problem.
$ cat repro.c
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <linux/perf_event.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/syscall.h>
struct perf_event_attr attr = {
.type = PERF_TYPE_HARDWARE,
.config = PERF_COUNT_HW_CPU_CYCLES,
.disabled = 1,
};
void *worker(void *arg)
{
int cpu = (long)arg;
int fd1 = syscall(SYS_perf_event_open, &attr, -1, cpu, -1, 0);
int fd2 = syscall(SYS_perf_event_open, &attr, -1, cpu, -1, 0);
void *p;
do {
ioctl(fd1, PERF_EVENT_IOC_ENABLE, 0);
p = mmap(NULL, 4096, PROT_READ, MAP_SHARED, fd1, 0);
ioctl(fd2, PERF_EVENT_IOC_ENABLE, 0);
ioctl(fd2, PERF_EVENT_IOC_DISABLE, 0);
munmap(p, 4096);
ioctl(fd1, PERF_EVENT_IOC_DISABLE, 0);
} while (1);
return NULL;
}
int main(void)
{
int i;
int n = sysconf(_SC_NPROCESSORS_ONLN);
pthread_t *th = calloc(n, sizeof(*th));
for (i = 0; i < n; i++)
pthread_create(&th[i], NULL, worker, (void *)(long)i);
for (i = 0; i < n; i++)
pthread_join(th[i], NULL);
free(th);
return 0;
}
And you can see the out of range data using perf stat like this.
Probably it'd be easier to see on a large machine.
$ gcc -o repro repro.c -pthread
$ ./repro &
$ sudo perf stat -A -I 1000 2>&1 | awk '{ if (length($3) > 15) print }'
1.001028462 CPU6 196,719,295,683,763 cycles # 194290.996 GHz (71.54%)
1.001028462 CPU3 396,077,485,787,730 branch-misses # 15804359784.80% of all branches (71.07%)
1.001028462 CPU17 197,608,350,727,877 branch-misses # 14594186554.56% of all branches (71.22%)
2.020064073 CPU4 198,372,472,612,140 cycles # 194681.113 GHz (70.95%)
2.020064073 CPU6 199,419,277,896,696 cycles # 195720.007 GHz (70.57%)
2.020064073 CPU20 198,147,174,025,639 cycles # 194474.654 GHz (71.03%)
2.020064073 CPU20 198,421,240,580,145 stalled-cycles-frontend # 100.14% frontend cycles idle (70.93%)
3.037443155 CPU4 197,382,689,923,416 cycles # 194043.065 GHz (71.30%)
3.037443155 CPU20 196,324,797,879,414 cycles # 193003.773 GHz (71.69%)
3.037443155 CPU5 197,679,956,608,205 stalled-cycles-backend # 1315606428.66% backend cycles idle (71.19%)
3.037443155 CPU5 198,571,860,474,851 instructions # 13215422.58 insn per cycle
It should move the contents in the cpuc->assign as well.
Fixes: 5471eea5d3bf ("perf/x86: Reset the dirty counter to prevent the leak for an RDPMC task")
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240306061003.1894224-1-namhyung@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 29297ffffb0bf388778bd4b581a43cee6929ae65 ]
The Revision Guide for AMD Family 19h Model 10-1Fh processors declares
Erratum 1452 which states that non-branch entries may erroneously be
recorded in the Last Branch Record (LBR) stack with the valid and
spec bits set.
Such entries can be recognized by inspecting bit 61 of the corresponding
LastBranchStackToIp register. This bit is currently reserved but if found
to be set, the associated branch entry should be discarded.
Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://bugzilla.kernel.org/attachment.cgi?id=305518
Link: https://lore.kernel.org/r/3ad2aa305f7396d41a40e3f054f740d464b16b7f.1706526029.git.sandipan.das@amd.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 2bb69f5fc72183e1c62547d900f560d0e9334925 upstream.
Part of a merge commit from Linus that adjusted the default setting of
SPECTRE_BHI_ON.
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Intel processors that aren't vulnerable to BHI will set
commit ed2e8d49b54d677f3123668a21a57822d679651f upstream.
MSR_IA32_ARCH_CAPABILITIES[BHI_NO] = 1;. Guests may use this BHI_NO bit to
determine if they need to implement BHI mitigations or not. Allow this bit
to be passed to the guests.
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 95a6ccbdc7199a14b71ad8901cb788ba7fb5167b upstream.
BHI mitigation mode spectre_bhi=auto does not deploy the software
mitigation by default. In a cloud environment, it is a likely scenario
where userspace is trusted but the guests are not trusted. Deploying
system wide mitigation in such cases is not desirable.
Update the auto mode to unconditionally mitigate against malicious
guests. Deploy the software sequence at VMexit in auto mode also, when
hardware mitigation is not available. Unlike the force =on mode,
software sequence is not deployed at syscalls in auto mode.
Suggested-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ec9404e40e8f36421a2b66ecb76dc2209fe7f3ef upstream.
Branch history clearing software sequences and hardware control
BHI_DIS_S were defined to mitigate Branch History Injection (BHI).
Add cmdline spectre_bhi={on|off|auto} to control BHI mitigation:
auto - Deploy the hardware mitigation BHI_DIS_S, if available.
on - Deploy the hardware mitigation BHI_DIS_S, if available,
otherwise deploy the software sequence at syscall entry and
VMexit.
off - Turn off BHI mitigation.
The default is auto mode which does not deploy the software sequence
mitigation. This is because of the hardening done in the syscall
dispatch path, which is the likely target of BHI.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit be482ff9500999f56093738f9219bbabc729d163 upstream.
Mitigation for BHI is selected based on the bug enumeration. Add bits
needed to enumerate BHI bug.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 0f4a837615ff925ba62648d280a861adf1582df7 upstream.
Newer processors supports a hardware control BHI_DIS_S to mitigate
Branch History Injection (BHI). Setting BHI_DIS_S protects the kernel
from userspace BHI attacks without having to manually overwrite the
branch history.
Define MSR_SPEC_CTRL bit BHI_DIS_S and its enumeration CPUID.BHI_CTRL.
Mitigation is enabled later.
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 7390db8aea0d64e9deb28b8e1ce716f5020c7ee5 upstream.
Branch History Injection (BHI) attacks may allow a malicious application to
influence indirect branch prediction in kernel by poisoning the branch
history. eIBRS isolates indirect branch targets in ring0. The BHB can
still influence the choice of indirect branch predictor entry, and although
branch predictor entries are isolated between modes when eIBRS is enabled,
the BHB itself is not isolated between modes.
Alder Lake and new processors supports a hardware control BHI_DIS_S to
mitigate BHI. For older processors Intel has released a software sequence
to clear the branch history on parts that don't support BHI_DIS_S. Add
support to execute the software sequence at syscall entry and VMexit to
overwrite the branch history.
For now, branch history is not cleared at interrupt entry, as malicious
applications are not believed to have sufficient control over the
registers, since previous register state is cleared at interrupt
entry. Researchers continue to poke at this area and it may become
necessary to clear at interrupt entry as well in the future.
This mitigation is only defined here. It is enabled later.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Co-developed-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1e3ad78334a69b36e107232e337f9d693dcc9df2 upstream.
Make <asm/syscall.h> build a switch statement instead, and the compiler can
either decide to generate an indirect jump, or - more likely these days due
to mitigations - just a series of conditional branches.
Yes, the conditional branches also have branch prediction, but the branch
prediction is much more controlled, in that it just causes speculatively
running the wrong system call (harmless), rather than speculatively running
possibly wrong random less controlled code gadgets.
This doesn't mitigate other indirect calls, but the system call indirection
is the first and most easily triggered case.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|