Age | Commit message (Collapse) | Author | Files | Lines |
|
commit 742563777e8da62197d6cb4b99f4027f59454735 upstream.
There are a couple of nasty truncation bugs lurking in the pageattr
code that can be triggered when mapping EFI regions, e.g. when we pass
a cpa->pgd pointer. Because cpa->numpages is a 32-bit value, shifting
left by PAGE_SHIFT will truncate the resultant address to 32-bits.
Viorel-Cătălin managed to trigger this bug on his Dell machine that
provides a ~5GB EFI region which requires 1236992 pages to be mapped.
When calling populate_pud() the end of the region gets calculated
incorrectly in the following buggy expression,
end = start + (cpa->numpages << PAGE_SHIFT);
And only 188416 pages are mapped. Next, populate_pud() gets invoked
for a second time because of the loop in __change_page_attr_set_clr(),
only this time no pages get mapped because shifting the remaining
number of pages (1048576) by PAGE_SHIFT is zero. At which point the
loop in __change_page_attr_set_clr() spins forever because we fail to
map progress.
Hitting this bug depends very much on the virtual address we pick to
map the large region at and how many pages we map on the initial run
through the loop. This explains why this issue was only recently hit
with the introduction of commit
a5caa209ba9c ("x86/efi: Fix boot crash by mapping EFI memmap
entries bottom-up at runtime, instead of top-down")
It's interesting to note that safe uses of cpa->numpages do exist in
the pageattr code. If instead of shifting ->numpages we multiply by
PAGE_SIZE, no truncation occurs because PAGE_SIZE is a UL value, and
so the result is unsigned long.
To avoid surprises when users try to convert very large cpa->numpages
values to addresses, change the data type from 'int' to 'unsigned
long', thereby making it suitable for shifting by PAGE_SHIFT without
any type casting.
The alternative would be to make liberal use of casting, but that is
far more likely to cause problems in the future when someone adds more
code and fails to cast properly; this bug was difficult enough to
track down in the first place.
Reported-and-tested-by: Viorel-Cătălin Răpițeanu <rapiteanu.catalin@gmail.com>
Acked-by: Borislav Petkov <bp@alien8.de>
Cc: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=110131
Link: http://lkml.kernel.org/r/1454067370-10374-1-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 71b3c126e61177eb693423f2e18a1914205b165e upstream.
When switch_mm() activates a new PGD, it also sets a bit that
tells other CPUs that the PGD is in use so that TLB flush IPIs
will be sent. In order for that to work correctly, the bit
needs to be visible prior to loading the PGD and therefore
starting to fill the local TLB.
Document all the barriers that make this work correctly and add
a couple that were missing.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
[bwh: Backported to 3.2:
- There's no flush_tlb_mm_range(), only flush_tlb_mm() which does not use
INVLPG
- Adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 4e7c22d447bb6d7e37bfe39ff658486ae78e8d77 upstream.
The issue is that the stack for processes is not properly randomized on
64 bit architectures due to an integer overflow.
The affected function is randomize_stack_top() in file
"fs/binfmt_elf.c":
static unsigned long randomize_stack_top(unsigned long stack_top)
{
unsigned int random_variable = 0;
if ((current->flags & PF_RANDOMIZE) &&
!(current->personality & ADDR_NO_RANDOMIZE)) {
random_variable = get_random_int() & STACK_RND_MASK;
random_variable <<= PAGE_SHIFT;
}
return PAGE_ALIGN(stack_top) + random_variable;
return PAGE_ALIGN(stack_top) - random_variable;
}
Note that, it declares the "random_variable" variable as "unsigned int".
Since the result of the shifting operation between STACK_RND_MASK (which
is 0x3fffff on x86_64, 22 bits) and PAGE_SHIFT (which is 12 on x86_64):
random_variable <<= PAGE_SHIFT;
then the two leftmost bits are dropped when storing the result in the
"random_variable". This variable shall be at least 34 bits long to hold
the (22+12) result.
These two dropped bits have an impact on the entropy of process stack.
Concretely, the total stack entropy is reduced by four: from 2^28 to
2^30 (One fourth of expected entropy).
This patch restores back the entropy by correcting the types involved
in the operations in the functions randomize_stack_top() and
stack_maxrandom_size().
The successful fix can be tested with:
$ for i in `seq 1 10`; do cat /proc/self/maps | grep stack; done
7ffeda566000-7ffeda587000 rw-p 00000000 00:00 0 [stack]
7fff5a332000-7fff5a353000 rw-p 00000000 00:00 0 [stack]
7ffcdb7a1000-7ffcdb7c2000 rw-p 00000000 00:00 0 [stack]
7ffd5e2c4000-7ffd5e2e5000 rw-p 00000000 00:00 0 [stack]
...
Once corrected, the leading bytes should be between 7ffc and 7fff,
rather than always being 7fff.
Signed-off-by: Hector Marco-Gisbert <hecmargi@upv.es>
Signed-off-by: Ismael Ripoll <iripoll@upv.es>
[ Rebased, fixed 80 char bugs, cleaned up commit message, added test example and CVE ]
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Fixes: CVE-2015-1593
Link: http://lkml.kernel.org/r/20150214173350.GA18393@www.outflux.net
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
When backporting commit 33692f27597f ('vm: add VM_FAULT_SIGSEGV
handling support') I didn't notice that it depended on a recent change
to the locking context of mm_fault_error() (commit 7fb08eca4527,
'x86: mm: move mmap_sem unlock from mm_fault_error() to caller').
That isn't easily applicable to 3.2, so instead make sure we drop
mm->mmap_sem on the new branch of mm_fault_error().
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
This reverts commit e105c8187b7101e8a8a54ac0218c9d9c9463c636 which
was commit 72212675d1c96f5db8ec6fb35701879911193158 upstream.
This caused suspend/resume to stop working on at least some systems -
specifically, the system would reboot when woken.
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Cc: Steven Rostedt <rostedt@goodmis.org>
|
|
This reverts commit a5c187d92d2ce30315f333b9dff33af832e8b443 which
was commit 45e2a9d4701d8c624d4a4bcdd1084eae31e92f58 upstream.
The previous commit caused suspend/resume to stop working on at least
some systems - specifically, the system would reboot when woken.
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Cc: Steven Rostedt <rostedt@goodmis.org>
|
|
commit 33692f27597fcab536d7cbbcc8f52905133e4aa7 upstream.
The core VM already knows about VM_FAULT_SIGBUS, but cannot return a
"you should SIGSEGV" error, because the SIGSEGV case was generally
handled by the caller - usually the architecture fault handler.
That results in lots of duplication - all the architecture fault
handlers end up doing very similar "look up vma, check permissions, do
retries etc" - but it generally works. However, there are cases where
the VM actually wants to SIGSEGV, and applications _expect_ SIGSEGV.
In particular, when accessing the stack guard page, libsigsegv expects a
SIGSEGV. And it usually got one, because the stack growth is handled by
that duplicated architecture fault handler.
However, when the generic VM layer started propagating the error return
from the stack expansion in commit fee7e49d4514 ("mm: propagate error
from stack expansion even for guard page"), that now exposed the
existing VM_FAULT_SIGBUS result to user space. And user space really
expected SIGSEGV, not SIGBUS.
To fix that case, we need to add a VM_FAULT_SIGSEGV, and teach all those
duplicate architecture fault handlers about it. They all already have
the code to handle SIGSEGV, so it's about just tying that new return
value to the existing code, but it's all a bit annoying.
This is the mindless minimal patch to do this. A more extensive patch
would be to try to gather up the mostly shared fault handling logic into
one generic helper routine, and long-term we really should do that
cleanup.
Just from this patch, you can generally see that most architectures just
copied (directly or indirectly) the old x86 way of doing things, but in
the meantime that original x86 model has been improved to hold the VM
semaphore for shorter times etc and to handle VM_FAULT_RETRY and other
"newer" things, so it would be a good idea to bring all those
improvements to the generic case and teach other architectures about
them too.
Reported-and-tested-by: Takashi Iwai <tiwai@suse.de>
Tested-by: Jan Engelhardt <jengelh@inai.de>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # "s390 still compiles and boots"
Cc: linux-arch@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[bwh: Backported to 3.2:
- Adjust filenames, context
- Drop arc, metag, nios2 and lustre changes
- For sh, patch both 32-bit and 64-bit implementations to use goto bad_area
- For s390, pass int_code and trans_exc_code as arguments to do_no_context()
and do_sigsegv()]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 45e2a9d4701d8c624d4a4bcdd1084eae31e92f58 upstream.
When setting up permissions on kernel memory at boot, the end of the
PMD that was split from bss remained executable. It should be NX like
the rest. This performs a PMD alignment instead of a PAGE alignment to
get the correct span of memory.
Before:
---[ High Kernel Mapping ]---
...
0xffffffff8202d000-0xffffffff82200000 1868K RW GLB NX pte
0xffffffff82200000-0xffffffff82c00000 10M RW PSE GLB NX pmd
0xffffffff82c00000-0xffffffff82df5000 2004K RW GLB NX pte
0xffffffff82df5000-0xffffffff82e00000 44K RW GLB x pte
0xffffffff82e00000-0xffffffffc0000000 978M pmd
After:
---[ High Kernel Mapping ]---
...
0xffffffff8202d000-0xffffffff82200000 1868K RW GLB NX pte
0xffffffff82200000-0xffffffff82e00000 12M RW PSE GLB NX pmd
0xffffffff82e00000-0xffffffffc0000000 978M pmd
[ tglx: Changed it to roundup(_brk_end, PMD_SIZE) and added a comment.
We really should unmap the reminder along with the holes
caused by init,initdata etc. but thats a different issue ]
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Wang Nan <wangnan0@huawei.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/20141114194737.GA3091@www.outflux.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[bwh: BAckported to 3.2: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 72212675d1c96f5db8ec6fb35701879911193158 upstream.
HPA said, we should not have RW and +x set at the time.
for kernel layout:
[ 0.000000] Kernel Layout:
[ 0.000000] .text: [0x01000000-0x021434f8]
[ 0.000000] .rodata: [0x02200000-0x02a13fff]
[ 0.000000] .data: [0x02c00000-0x02dc763f]
[ 0.000000] .init: [0x02dc9000-0x0312cfff]
[ 0.000000] .bss: [0x0313b000-0x03dd6fff]
[ 0.000000] .brk: [0x03dd7000-0x03dfffff]
before the patch, we have
---[ High Kernel Mapping ]---
0xffffffff80000000-0xffffffff81000000 16M pmd
0xffffffff81000000-0xffffffff82200000 18M ro PSE GLB x pmd
0xffffffff82200000-0xffffffff82c00000 10M ro PSE GLB NX pmd
0xffffffff82c00000-0xffffffff82dc9000 1828K RW GLB x pte
0xffffffff82dc9000-0xffffffff82e00000 220K RW GLB NX pte
0xffffffff82e00000-0xffffffff83000000 2M RW PSE GLB NX pmd
0xffffffff83000000-0xffffffff8313a000 1256K RW GLB NX pte
0xffffffff8313a000-0xffffffff83200000 792K RW GLB x pte
0xffffffff83200000-0xffffffff83e00000 12M RW PSE GLB x pmd
0xffffffff83e00000-0xffffffffa0000000 450M pmd
after patch,, we get
---[ High Kernel Mapping ]---
0xffffffff80000000-0xffffffff81000000 16M pmd
0xffffffff81000000-0xffffffff82200000 18M ro PSE GLB x pmd
0xffffffff82200000-0xffffffff82c00000 10M ro PSE GLB NX pmd
0xffffffff82c00000-0xffffffff82e00000 2M RW GLB NX pte
0xffffffff82e00000-0xffffffff83000000 2M RW PSE GLB NX pmd
0xffffffff83000000-0xffffffff83200000 2M RW GLB NX pte
0xffffffff83200000-0xffffffff83e00000 12M RW PSE GLB NX pmd
0xffffffff83e00000-0xffffffffa0000000 450M pmd
so data, bss, brk get NX ...
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/1359058816-7615-33-git-send-email-yinghai@kernel.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 3891a04aafd668686239349ea58f3314ea2af86b upstream.
The IRET instruction, when returning to a 16-bit segment, only
restores the bottom 16 bits of the user space stack pointer. This
causes some 16-bit software to break, but it also leaks kernel state
to user space. We have a software workaround for that ("espfix") for
the 32-bit kernel, but it relies on a nonzero stack segment base which
is not available in 64-bit mode.
In checkin:
b3b42ac2cbae x86-64, modify_ldt: Ban 16-bit segments on 64-bit kernels
we "solved" this by forbidding 16-bit segments on 64-bit kernels, with
the logic that 16-bit support is crippled on 64-bit kernels anyway (no
V86 support), but it turns out that people are doing stuff like
running old Win16 binaries under Wine and expect it to work.
This works around this by creating percpu "ministacks", each of which
is mapped 2^16 times 64K apart. When we detect that the return SS is
on the LDT, we copy the IRET frame to the ministack and use the
relevant alias to return to userspace. The ministacks are mapped
readonly, so if IRET faults we promote #GP to #DF which is an IST
vector and thus has its own stack; we then do the fixup in the #DF
handler.
(Making #GP an IST exception would make the msr_safe functions unsafe
in NMI/MC context, and quite possibly have other effects.)
Special thanks to:
- Andy Lutomirski, for the suggestion of using very small stack slots
and copy (as opposed to map) the IRET frame there, and for the
suggestion to mark them readonly and let the fault promote to #DF.
- Konrad Wilk for paravirt fixup and testing.
- Borislav Petkov for testing help and useful comments.
Reported-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Link: http://lkml.kernel.org/r/1398816946-3351-1-git-send-email-hpa@linux.intel.com
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Andrew Lutomriski <amluto@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Dirk Hohndel <dirk@hohndel.org>
Cc: Arjan van de Ven <arjan.van.de.ven@intel.com>
Cc: comex <comexk@gmail.com>
Cc: Alexander van Heukelum <heukelum@fastmail.fm>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit c81c8a1eeede61e92a15103748c23d100880cc8a upstream.
In __ioremap_caller() (the guts of ioremap), we loop over the range of
pfns being remapped and checks each one individually with page_is_ram().
For large ioremaps, this can be very slow. For example, we have a
device with a 256 GiB PCI BAR, and ioremapping this BAR can take 20+
seconds -- sometimes long enough to trigger the soft lockup detector!
Internally, page_is_ram() calls walk_system_ram_range() on a single
page. Instead, we can make a single call to walk_system_ram_range()
from __ioremap_caller(), and do our further checks only for any RAM
pages that we find. For the common case of MMIO, this saves an enormous
amount of work, since the range being ioremapped doesn't intersect
system RAM at all.
With this change, ioremap on our 256 GiB BAR takes less than 1 second.
Signed-off-by: Roland Dreier <roland@purestorage.com>
Link: http://lkml.kernel.org/r/1399054721-1331-1-git-send-email-roland@kernel.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 41aacc1eea645c99edbe8fbcf78a97dc9b862adc upstream.
This is the updated version of df54d6fa5427 ("x86 get_unmapped_area():
use proper mmap base for bottom-up direction") that only randomizes the
mmap base address once.
Signed-off-by: Radu Caragea <sinaelgl@gmail.com>
Reported-and-tested-by: Jeff Shorey <shoreyjeff@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michel Lespinasse <walken@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Adrian Sendroiu <molecula2788@gmail.com>
Cc: Greg KH <greg@kroah.com>
Cc: Kamal Mostafa <kamal@canonical.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[bwh: Backported to 3.2: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
Patch for 3.0-stable. Function find_early_table_space removed upstream.
Fixes panic in alloc_low_page due to pgt_buf overflow during
init_memory_mapping.
find_early_table_space sizes pgt_buf based upon the size of the
memory being mapped, but it does not take into account the alignment
of the memory. When the region being mapped spans a 512GB (PGDIR_SIZE)
alignment, a panic from alloc_low_pages occurs.
kernel_physical_mapping_init takes into account PGDIR_SIZE alignment.
This causes an extra call to alloc_low_page to be made. This extra call
isn't accounted for by find_early_table_space and causes a kernel panic.
Change is to take into account PGDIR_SIZE alignment in find_early_table_space.
Signed-off-by: Jerry Hoemann <jerry.hoemann@hp.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 1160c2779b826c6f5c08e5cc542de58fd1f667d5 upstream.
In paravirtualized x86_64 kernels, vmalloc_fault may cause an oops
when lazy MMU updates are enabled, because set_pgd effects are being
deferred.
One instance of this problem is during process mm cleanup with memory
cgroups enabled. The chain of events is as follows:
- zap_pte_range enables lazy MMU updates
- zap_pte_range eventually calls mem_cgroup_charge_statistics,
which accesses the vmalloc'd mem_cgroup per-cpu stat area
- vmalloc_fault is triggered which tries to sync the corresponding
PGD entry with set_pgd, but the update is deferred
- vmalloc_fault oopses due to a mismatch in the PUD entries
The OOPs usually looks as so:
------------[ cut here ]------------
kernel BUG at arch/x86/mm/fault.c:396!
invalid opcode: 0000 [#1] SMP
.. snip ..
CPU 1
Pid: 10866, comm: httpd Not tainted 3.6.10-4.fc18.x86_64 #1
RIP: e030:[<ffffffff816271bf>] [<ffffffff816271bf>] vmalloc_fault+0x11f/0x208
.. snip ..
Call Trace:
[<ffffffff81627759>] do_page_fault+0x399/0x4b0
[<ffffffff81004f4c>] ? xen_mc_extend_args+0xec/0x110
[<ffffffff81624065>] page_fault+0x25/0x30
[<ffffffff81184d03>] ? mem_cgroup_charge_statistics.isra.13+0x13/0x50
[<ffffffff81186f78>] __mem_cgroup_uncharge_common+0xd8/0x350
[<ffffffff8118aac7>] mem_cgroup_uncharge_page+0x57/0x60
[<ffffffff8115fbc0>] page_remove_rmap+0xe0/0x150
[<ffffffff8115311a>] ? vm_normal_page+0x1a/0x80
[<ffffffff81153e61>] unmap_single_vma+0x531/0x870
[<ffffffff81154962>] unmap_vmas+0x52/0xa0
[<ffffffff81007442>] ? pte_mfn_to_pfn+0x72/0x100
[<ffffffff8115c8f8>] exit_mmap+0x98/0x170
[<ffffffff810050d9>] ? __raw_callee_save_xen_pmd_val+0x11/0x1e
[<ffffffff81059ce3>] mmput+0x83/0xf0
[<ffffffff810624c4>] exit_mm+0x104/0x130
[<ffffffff8106264a>] do_exit+0x15a/0x8c0
[<ffffffff810630ff>] do_group_exit+0x3f/0xa0
[<ffffffff81063177>] sys_exit_group+0x17/0x20
[<ffffffff8162bae9>] system_call_fastpath+0x16/0x1b
Calling arch_flush_lazy_mmu_mode immediately after set_pgd makes the
changes visible to the consistency checks.
RedHat-Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=914737
Tested-by: Josh Boyer <jwboyer@redhat.com>
Reported-and-Tested-by: Krishna Raman <kraman@redhat.com>
Signed-off-by: Samu Kallio <samu.kallio@aberdeencloud.com>
Link: http://lkml.kernel.org/r/1364045796-10720-1-git-send-email-konrad.wilk@oracle.com
Tested-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 0ee364eb316348ddf3e0dfcd986f5f13f528f821 upstream.
A user reported the following oops when a backup process reads
/proc/kcore:
BUG: unable to handle kernel paging request at ffffbb00ff33b000
IP: [<ffffffff8103157e>] kern_addr_valid+0xbe/0x110
[...]
Call Trace:
[<ffffffff811b8aaa>] read_kcore+0x17a/0x370
[<ffffffff811ad847>] proc_reg_read+0x77/0xc0
[<ffffffff81151687>] vfs_read+0xc7/0x130
[<ffffffff811517f3>] sys_read+0x53/0xa0
[<ffffffff81449692>] system_call_fastpath+0x16/0x1b
Investigation determined that the bug triggered when reading
system RAM at the 4G mark. On this system, that was the first
address using 1G pages for the virt->phys direct mapping so the
PUD is pointing to a physical address, not a PMD page.
The problem is that the page table walker in kern_addr_valid() is
not checking pud_large() and treats the physical address as if
it was a PMD. If it happens to look like pmd_none then it'll
silently fail, probably returning zeros instead of real data. If
the data happens to look like a present PMD though, it will be
walked resulting in the oops above.
This patch adds the necessary pud_large() check.
Unfortunately the problem was not readily reproducible and now
they are running the backup program without accessing
/proc/kcore so the patch has not been validated but I think it
makes sense.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.coM>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20130211145236.GX21389@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit e575a86fdc50d013bf3ad3aa81d9100e8e6cc60d upstream.
Without this patch, it is trivial to determine kernel page
mappings by examining the error code reported to dmesg[1].
Instead, declare the entire kernel memory space as a violation
of a present page.
Additionally, since show_unhandled_signals is enabled by
default, switch branch hinting to the more realistic
expectation, and unobfuscate the setting of the PF_PROT bit to
improve readability.
[1] http://vulnfactory.org/blog/2013/02/06/a-linux-memory-trick/
Reported-by: Dan Rosenberg <dan.j.rosenberg@gmail.com>
Suggested-by: Brad Spengler <spender@grsecurity.net>
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20130207174413.GA12485@www.outflux.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
[bwh: Backported to 3.2: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit f82f64dd9f485e13f29f369772d4a0e868e5633a upstream.
Commit
844ab6f9 x86, mm: Find_early_table_space based on ranges that are actually being mapped
added back some lines back wrongly that has been removed in commit
7b16bbf97 Revert "x86/mm: Fix the size calculation of mapping tables"
remove them again.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/CAE9FiQW_vuaYQbmagVnxT2DGsYc=9tNeAbdBq53sYkitPOwxSQ@mail.gmail.com
Acked-by: Jacob Shin <jacob.shin@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 844ab6f993b1d32eb40512503d35ff6ad0c57030 upstream.
Current logic finds enough space for direct mapping page tables from 0
to end. Instead, we only need to find enough space to cover mr[0].start
to mr[nr_range].end -- the range that is actually being mapped by
init_memory_mapping()
This is needed after 1bbbbe779aabe1f0768c2bf8f8c0a5583679b54a, to address
the panic reported here:
https://lkml.org/lkml/2012/10/20/160
https://lkml.org/lkml/2012/10/21/157
Signed-off-by: Jacob Shin <jacob.shin@amd.com>
Link: http://lkml.kernel.org/r/20121024195311.GB11779@jshin-Toonie
Tested-by: Tom Rini <trini@ti.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
[bwh: Backported to 3.2:
- Adjust context
- The log message format is a bit different]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit eb48c071464757414538c68a6033c8f8c15196f8 upstream.
Each page mapped in a process's address space must be correctly
accounted for in _mapcount. Normally the rules for this are
straightforward but hugetlbfs page table sharing is different. The page
table pages at the PMD level are reference counted while the mapcount
remains the same.
If this accounting is wrong, it causes bugs like this one reported by
Larry Woodman:
kernel BUG at mm/filemap.c:135!
invalid opcode: 0000 [#1] SMP
CPU 22
Modules linked in: bridge stp llc sunrpc binfmt_misc dcdbas microcode pcspkr acpi_pad acpi]
Pid: 18001, comm: mpitest Tainted: G W 3.3.0+ #4 Dell Inc. PowerEdge R620/07NDJ2
RIP: 0010:[<ffffffff8112cfed>] [<ffffffff8112cfed>] __delete_from_page_cache+0x15d/0x170
Process mpitest (pid: 18001, threadinfo ffff880428972000, task ffff880428b5cc20)
Call Trace:
delete_from_page_cache+0x40/0x80
truncate_hugepages+0x115/0x1f0
hugetlbfs_evict_inode+0x18/0x30
evict+0x9f/0x1b0
iput_final+0xe3/0x1e0
iput+0x3e/0x50
d_kill+0xf8/0x110
dput+0xe2/0x1b0
__fput+0x162/0x240
During fork(), copy_hugetlb_page_range() detects if huge_pte_alloc()
shared page tables with the check dst_pte == src_pte. The logic is if
the PMD page is the same, they must be shared. This assumes that the
sharing is between the parent and child. However, if the sharing is
with a different process entirely then this check fails as in this
diagram:
parent
|
------------>pmd
src_pte----------> data page
^
other--------->pmd--------------------|
^
child-----------|
dst_pte
For this situation to occur, it must be possible for Parent and Other to
have faulted and failed to share page tables with each other. This is
possible due to the following style of race.
PROC A PROC B
copy_hugetlb_page_range copy_hugetlb_page_range
src_pte == huge_pte_offset src_pte == huge_pte_offset
!src_pte so no sharing !src_pte so no sharing
(time passes)
hugetlb_fault hugetlb_fault
huge_pte_alloc huge_pte_alloc
huge_pmd_share huge_pmd_share
LOCK(i_mmap_mutex)
find nothing, no sharing
UNLOCK(i_mmap_mutex)
LOCK(i_mmap_mutex)
find nothing, no sharing
UNLOCK(i_mmap_mutex)
pmd_alloc pmd_alloc
LOCK(instantiation_mutex)
fault
UNLOCK(instantiation_mutex)
LOCK(instantiation_mutex)
fault
UNLOCK(instantiation_mutex)
These two processes are not poing to the same data page but are not
sharing page tables because the opportunity was missed. When either
process later forks, the src_pte == dst pte is potentially insufficient.
As the check falls through, the wrong PTE information is copied in
(harmless but wrong) and the mapcount is bumped for a page mapped by a
shared page table leading to the BUG_ON.
This patch addresses the issue by moving pmd_alloc into huge_pmd_share
which guarantees that the shared pud is populated in the same critical
section as pmd. This also means that huge_pte_offset test in
huge_pmd_share is serialized correctly now which in turn means that the
success of the sharing will be higher as the racing tasks see the pud
and pmd populated together.
Race identified and changelog written mostly by Mel Gorman.
{akpm@linux-foundation.org: attempt to make the huge_pmd_share() comment comprehensible, clean up coding style]
Reported-by: Larry Woodman <lwoodman@redhat.com>
Tested-by: Larry Woodman <lwoodman@redhat.com>
Reviewed-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Ken Chen <kenchen@google.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit cd298f60a2451a16e0f077404bf69b62ec868733 upstream.
In SRAT v1, we had 8bit proximity domain (PXM) fields; SRAT v2 provides
32bits for these. The new fields were reserved before.
According to the ACPI spec, the OS must disregrard reserved fields.
x86/x86-64 was rather inconsistent prior to this patch; it used 8 bits
for the pxm field in cpu_affinity, but 32 bits in mem_affinity.
This patch makes it consistent: Either use 8 bits consistently (SRAT
rev 1 or lower) or 32 bits (SRAT rev 2 or higher).
cc: x86@kernel.org
Signed-off-by: Kurt Garloff <kurt@garloff.de>
Signed-off-by: Len Brown <len.brown@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
commit 9af0c7a6fa860698d080481f24a342ba74b68982 upstream.
On x86_32 casting the unsigned int result of get_random_int() to
long may result in a negative value. On x86_32 the range of
mmap_rnd() therefore was -255 to 255. The 32bit mode on x86_64
used 0 to 255 as intended.
The bug was introduced by 675a081 ("x86: unify mmap_{32|64}.c")
in January 2008.
Signed-off-by: Ludwig Nussel <ludwig.nussel@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: harvey.harrison@gmail.com
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Harvey Harrison <harvey.harrison@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/201111152246.pAFMklOB028527@wpaz5.hot.corp.google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
With the 3.2-rc kernel, IOMMU 2M pages in KVM works. But when I tried
to use IOMMU 1GB pages in KVM, I encountered an oops and the 1GB page
failed to be used.
The root cause is that 1GB page allocation calls gup_huge_pud() while 2M
page calls gup_huge_pmd. If compound pages are used and the page is a
tail page, gup_huge_pmd() increases _mapcount to record tail page are
mapped while gup_huge_pud does not do that.
So when the mapped page is relesed, it will result in kernel oops
because the page is not marked mapped.
This patch add tail process for compound page in 1GB huge page which
keeps the same process as 2M page.
Reproduce like:
1. Add grub boot option: hugepagesz=1G hugepages=8
2. mount -t hugetlbfs -o pagesize=1G hugetlbfs /dev/hugepages
3. qemu-kvm -m 2048 -hda os-kvm.img -cpu kvm64 -smp 4 -mem-path /dev/hugepages
-net none -device pci-assign,host=07:00.1
kernel BUG at mm/swap.c:114!
invalid opcode: 0000 [#1] SMP
Call Trace:
put_page+0x15/0x37
kvm_release_pfn_clean+0x31/0x36
kvm_iommu_put_pages+0x94/0xb1
kvm_iommu_unmap_memslots+0x80/0xb6
kvm_assign_device+0xba/0x117
kvm_vm_ioctl_assigned_device+0x301/0xa47
kvm_vm_ioctl+0x36c/0x3a2
do_vfs_ioctl+0x49e/0x4e4
sys_ioctl+0x5a/0x7c
system_call_fastpath+0x16/0x1b
RIP put_compound_page+0xd4/0x168
Signed-off-by: Youquan Song <youquan.song@intel.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
regardless of lazy_mmu mode
Fix an outstanding issue that has been reported since 2.6.37.
Under a heavy loaded machine processing "fork()" calls could
crash with:
BUG: unable to handle kernel paging request at f573fc8c
IP: [<c01abc54>] swap_count_continued+0x104/0x180
*pdpt = 000000002a3b9027 *pde = 0000000001bed067 *pte = 0000000000000000 Oops: 0000 [#1] SMP
Modules linked in:
Pid: 1638, comm: apache2 Not tainted 3.0.4-linode37 #1
EIP: 0061:[<c01abc54>] EFLAGS: 00210246 CPU: 3
EIP is at swap_count_continued+0x104/0x180
.. snip..
Call Trace:
[<c01ac222>] ? __swap_duplicate+0xc2/0x160
[<c01040f7>] ? pte_mfn_to_pfn+0x87/0xe0
[<c01ac2e4>] ? swap_duplicate+0x14/0x40
[<c01a0a6b>] ? copy_pte_range+0x45b/0x500
[<c01a0ca5>] ? copy_page_range+0x195/0x200
[<c01328c6>] ? dup_mmap+0x1c6/0x2c0
[<c0132cf8>] ? dup_mm+0xa8/0x130
[<c013376a>] ? copy_process+0x98a/0xb30
[<c013395f>] ? do_fork+0x4f/0x280
[<c01573b3>] ? getnstimeofday+0x43/0x100
[<c010f770>] ? sys_clone+0x30/0x40
[<c06c048d>] ? ptregs_clone+0x15/0x48
[<c06bfb71>] ? syscall_call+0x7/0xb
The problem is that in copy_page_range() we turn lazy mode on,
and then in swap_entry_free() we call swap_count_continued()
which ends up in:
map = kmap_atomic(page, KM_USER0) + offset;
and then later we touch *map.
Since we are running in batched mode (lazy) we don't actually
set up the PTE mappings and the kmap_atomic is not done
synchronously and ends up trying to dereference a page that has
not been set.
Looking at kmap_atomic_prot_pfn(), it uses
'arch_flush_lazy_mmu_mode' and doing the same in
kmap_atomic_prot() and __kunmap_atomic() makes the problem go
away.
Interestingly, commit b8bcfe997e4615 ("x86/paravirt: remove lazy
mode in interrupts") removed part of this to fix an interrupt
issue - but it went to far and did not consider this scenario.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
This avoids duplicating the function in every arch gup_fast.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Michel while working on the working set estimation code, noticed that
calling get_page_unless_zero() on a random pfn_to_page(random_pfn)
wasn't safe, if the pfn ended up being a tail page of a transparent
hugepage under splitting by __split_huge_page_refcount().
He then found the problem could also theoretically materialize with
page_cache_get_speculative() during the speculative radix tree lookups
that uses get_page_unless_zero() in SMP if the radix tree page is freed
and reallocated and get_user_pages is called on it before
page_cache_get_speculative has a chance to call get_page_unless_zero().
So the best way to fix the problem is to keep page_tail->_count zero at
all times. This will guarantee that get_page_unless_zero() can never
succeed on any tail page. page_tail->_mapcount is guaranteed zero and
is unused for all tail pages of a compound page, so we can simply
account the tail page references there and transfer them to
tail_page->_count in __split_huge_page_refcount() (in addition to the
head_page->_mapcount).
While debugging this s/_count/_mapcount/ change I also noticed get_page is
called by direct-io.c on pages returned by get_user_pages. That wasn't
entirely safe because the two atomic_inc in get_page weren't atomic. As
opposed to other get_user_page users like secondary-MMU page fault to
establish the shadow pagetables would never call any superflous get_page
after get_user_page returns. It's safer to make get_page universally safe
for tail pages and to use get_page_foll() within follow_page (inside
get_user_pages()). get_page_foll() is safe to do the refcounting for tail
pages without taking any locks because it is run within PT lock protected
critical sections (PT lock for pte and page_table_lock for
pmd_trans_huge).
The standard get_page() as invoked by direct-io instead will now take
the compound_lock but still only for tail pages. The direct-io paths
are usually I/O bound and the compound_lock is per THP so very
finegrined, so there's no risk of scalability issues with it. A simple
direct-io benchmarks with all lockdep prove locking and spinlock
debugging infrastructure enabled shows identical performance and no
overhead. So it's worth it. Ideally direct-io should stop calling
get_page() on pages returned by get_user_pages(). The spinlock in
get_page() is already optimized away for no-THP builds but doing
get_page() on tail pages returned by GUP is generally a rare operation
and usually only run in I/O paths.
This new refcounting on page_tail->_mapcount in addition to avoiding new
RCU critical sections will also allow the working set estimation code to
work without any further complexity associated to the tail page
refcounting with THP.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Michel Lespinasse <walken@google.com>
Reviewed-by: Michel Lespinasse <walken@google.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: <stable@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
* 'x86-vdso-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86-64, doc: Remove int 0xcc from entry_64.S documentation
x86, vsyscall: Add missing <asm/fixmap.h> to arch/x86/mm/fault.c
Fix up trivial conflicts in arch/x86/mm/fault.c (asm/fixmap.h vs
asm/vsyscall.h: both work, which to use? Whatever..)
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, amd: Include linux/elf.h since we use stuff from asm/elf.h
x86: cache_info: Update calculation of AMD L3 cache indices
x86: cache_info: Kill the atomic allocation in amd_init_l3_cache()
x86: cache_info: Kill the moronic shadow struct
x86: cache_info: Remove bogus free of amd_l3_cache data
x86, amd: Include elf.h explicitly, prepare the code for the module.h split
x86-32, amd: Move va_align definition to unbreak 32-bit build
x86, amd: Move BSP code to cpu_dev helper
x86: Add a BSP cpu_dev helper
x86, amd: Avoid cache aliasing penalties on AMD family 15h
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86-64: Fix CFI data for interrupt frames
x86-64: Don't apply destructive erratum workaround on unaffected CPUs
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (59 commits)
MAINTAINERS: linux-m32r is moderated for non-subscribers
linux@lists.openrisc.net is moderated for non-subscribers
Drop default from "DM365 codec select" choice
parisc: Kconfig: cleanup Kernel page size default
Kconfig: remove redundant CONFIG_ prefix on two symbols
cris: remove arch/cris/arch-v32/lib/nand_init.S
microblaze: add missing CONFIG_ prefixes
h8300: drop puzzling Kconfig dependencies
MAINTAINERS: microblaze-uclinux@itee.uq.edu.au is moderated for non-subscribers
tty: drop superfluous dependency in Kconfig
ARM: mxc: fix Kconfig typo 'i.MX51'
Fix file references in Kconfig files
aic7xxx: fix Kconfig references to READMEs
Fix file references in drivers/ide/
thinkpad_acpi: Fix printk typo 'bluestooth'
bcmring: drop commented out line in Kconfig
btmrvl_sdio: fix typo 'btmrvl_sdio_sd6888'
doc: raw1394: Trivial typo fix
CIFS: Don't free volume_info->UNC until we are entirely done with it.
treewide: Correct spelling of successfully in comments
...
|
|
Commit 4b239f458 ("x86-64, mm: Put early page table high") causes a S4
regression since 2.6.39, namely the machine reboots occasionally at S4
resume. It doesn't happen always, overall rate is about 1/20. But,
like other bugs, once when this happens, it continues to happen.
This patch fixes the problem by essentially reverting the memory
assignment in the older way.
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Cc: <stable@kernel.org>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: Yinghai Lu <yinghai.lu@oracle.com>
[ We'll hopefully find the real fix, but that's too late for 3.1 now ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Erratum 93 applies to AMD K8 CPUs only, and its workaround
(forcing the upper 32 bits of %rip to all get set under certain
conditions) is actually getting in the way of analyzing page
faults occurring during EFI physical mode runtime calls (in
particular the page table walk shown is completely unrelated to
the actual fault). This is because typically EFI runtime code
lives in the space between 2G and 4G, which - modulo the above
manipulation - is likely to overlap with the kernel or modules
area.
While even for the other errata workarounds their taking effect
could be limited to just the affected CPUs, none of them appears
to be destructive, and they're generally getting called only
outside of performance critical paths, so they're being left
untouched.
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Link: http://lkml.kernel.org/r/4E835FE30200007800058464@nat28.tlf.novell.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Fast-forward merge with Linus to be able to merge patches
based on more recent version of the tree.
|
|
It was pointed out by 'make versioncheck' that the include of
linux/version.h is not needed in arch/x86/mm/mmio-mod.c .
This patch removes it.
Signed-off-by: Jesper Juhl <jj@chaosbits.net>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
|
|
arch/x86/mm/fault.c now depend on having the symbol VSYSCALL_START
defined, which is best handled by including <asm/fixmap.h> (it isn't
unreasonable we may want other fixed addresses in this file in the
future, and so it is cleaner than including <asm/vsyscall.h>
directly.)
This addresses an x86-64 allnoconfig build failure. On other
configurations it was masked by an indirect path:
<asm/smp.h> -> <asm/apic.h> -> <asm/fixmap.h> -> <asm/vsyscall.h>
... however, the first such include is conditional on CONFIG_X86_LOCAL_APIC.
Originally-by: Randy Dunlap <rdunlap@xenotime.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/CA%2B55aFxsOMc9=p02r8-QhJ=h=Mqwckk4_Pnx9LQt5%2BfqMp_exQ@mail.gmail.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
arch/x86/mm/fault.c needs to include asm/vsyscall.h to fix a
build error:
arch/x86/mm/fault.c: In function '__bad_area_nosemaphore':
arch/x86/mm/fault.c:728: error: 'VSYSCALL_START' undeclared (first use in this function)
Signed-off-by: Randy Dunlap <rdunlap@xenotime.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-tip
* 'x86-vdso-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-tip:
x86-64: Rework vsyscall emulation and add vsyscall= parameter
x86-64: Wire up getcpu syscall
x86: Remove unnecessary compile flag tweaks for vsyscall code
x86-64: Add vsyscall:emulate_vsyscall trace event
x86-64: Add user_64bit_mode paravirt op
x86-64, xen: Enable the vvar mapping
x86-64: Work around gold bug 13023
x86-64: Move the "user" vsyscall segment out of the data segment.
x86-64: Pad vDSO to a page boundary
|
|
There are three choices:
vsyscall=native: Vsyscalls are native code that issues the
corresponding syscalls.
vsyscall=emulate (default): Vsyscalls are emulated by instruction
fault traps, tested in the bad_area path. The actual contents of
the vsyscall page is the same as the vsyscall=native case except
that it's marked NX. This way programs that make assumptions about
what the code in the page does will not be confused when they read
that code.
vsyscall=none: Trying to execute a vsyscall will segfault.
Signed-off-by: Andy Lutomirski <luto@mit.edu>
Link: http://lkml.kernel.org/r/8449fb3abf89851fd6b2260972666a6f82542284.1312988155.git.luto@mit.edu
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
hpa reported that dfb09f9b7ab03fd367740e541a5caf830ed56726 breaks 32-bit
builds with the following error message:
/home/hpa/kernel/linux-tip.cpu/arch/x86/kernel/cpu/amd.c:437: undefined
reference to `va_align'
/home/hpa/kernel/linux-tip.cpu/arch/x86/kernel/cpu/amd.c:436: undefined
reference to `va_align'
This is due to the fact that va_align is a global in a 64-bit only
compilation unit. Move it to mmap.c where it is visible to both
subarches.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Link: http://lkml.kernel.org/r/1312633899-1131-1-git-send-email-bp@amd64.org
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|
|
This patch provides performance tuning for the "Bulldozer" CPU. With its
shared instruction cache there is a chance of generating an excessive
number of cache cross-invalidates when running specific workloads on the
cores of a compute module.
This excessive amount of cross-invalidations can be observed if cache
lines backed by shared physical memory alias in bits [14:12] of their
virtual addresses, as those bits are used for the index generation.
This patch addresses the issue by clearing all the bits in the [14:12]
slice of the file mapping's virtual address at generation time, thus
forcing those bits the same for all mappings of a single shared library
across processes and, in doing so, avoids instruction cache aliases.
It also adds the command line option "align_va_addr=(32|64|on|off)" with
which virtual address alignment can be enabled for 32-bit or 64-bit x86
individually, or both, or be completely disabled.
This change leaves virtual region address allocation on other families
and/or vendors unaffected.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Link: http://lkml.kernel.org/r/1312550110-24160-2-git-send-email-bp@amd64.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
Three places in the kernel assume that the only long mode CPL 3
selector is __USER_CS. This is not true on Xen -- Xen's sysretq
changes cs to the magic value 0xe033.
Two of the places are corner cases, but as of "x86-64: Improve
vsyscall emulation CS and RIP handling"
(c9712944b2a12373cb6ff8059afcfb7e826a6c54), vsyscalls will segfault
if called with Xen's extra CS selector. This causes a panic when
older init builds die.
It seems impossible to make Xen use __USER_CS reliably without
taking a performance hit on every system call, so this fixes the
tests instead with a new paravirt op. It's a little ugly because
ptrace.h can't include paravirt.h.
Signed-off-by: Andy Lutomirski <luto@mit.edu>
Link: http://lkml.kernel.org/r/f4fcb3947340d9e96ce1054a432f183f9da9db83.1312378163.git.luto@mit.edu
Reported-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
This allows us to move duplicated code in <asm/atomic.h>
(atomic_inc_not_zero() for now) to <linux/atomic.h>
Signed-off-by: Arun Sharma <asharma@fb.com>
Reviewed-by: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: David Miller <davem@davemloft.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'x86-numa-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, numa: Implement pfn -> nid mapping granularity check
x86, mm: s/PAGES_PER_ELEMENT/PAGES_PER_SECTION/
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, smpboot: Mark the names[] array in __inquire_remote_apic() as const
x86: Convert vmalloc()+memset() to vzalloc()
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (123 commits)
perf: Remove the nmi parameter from the oprofile_perf backend
x86, perf: Make copy_from_user_nmi() a library function
perf: Remove perf_event_attr::type check
x86, perf: P4 PMU - Fix typos in comments and style cleanup
perf tools: Make test use the preset debugfs path
perf tools: Add automated tests for events parsing
perf tools: De-opt the parse_events function
perf script: Fix display of IP address for non-callchain path
perf tools: Fix endian conversion reading event attr from file header
perf tools: Add missing 'node' alias to the hw_cache[] array
perf probe: Support adding probes on offline kernel modules
perf probe: Add probed module in front of function
perf probe: Introduce debuginfo to encapsulate dwarf information
perf-probe: Move dwarf library routines to dwarf-aux.{c, h}
perf probe: Remove redundant dwarf functions
perf probe: Move strtailcmp to string.c
perf probe: Rename DIE_FIND_CB_FOUND to DIE_FIND_CB_END
tracing/kprobe: Update symbol reference when loading module
tracing/kprobes: Support module init function probing
kprobes: Return -ENOENT if probe point doesn't exist
...
|
|
SPARSEMEM w/o VMEMMAP and DISCONTIGMEM, both used only on 32bit, use
sections array to map pfn to nid which is limited in granularity. If
NUMA nodes are laid out such that the mapping cannot be accurate, boot
will fail triggering BUG_ON() in mminit_verify_page_links().
On 32bit, it's 512MiB w/ PAE and SPARSEMEM. This seems to have been
granular enough until commit 2706a0bf7b (x86, NUMA: Enable
CONFIG_AMD_NUMA on 32bit too). Apparently, there is a machine which
aligns NUMA nodes to 128MiB and has only AMD NUMA but not SRAT. This
led to the following BUG_ON().
On node 0 totalpages: 2096615
DMA zone: 32 pages used for memmap
DMA zone: 0 pages reserved
DMA zone: 3927 pages, LIFO batch:0
Normal zone: 1740 pages used for memmap
Normal zone: 220978 pages, LIFO batch:31
HighMem zone: 16405 pages used for memmap
HighMem zone: 1853533 pages, LIFO batch:31
BUG: Int 6: CR2 (null)
EDI (null) ESI 00000002 EBP 00000002 ESP c1543ecc
EBX f2400000 EDX 00000006 ECX (null) EAX 00000001
err (null) EIP c16209aa CS 00000060 flg 00010002
Stack: f2400000 00220000 f7200800 c1620613 00220000 01000000 04400000 00238000
(null) f7200000 00000002 f7200b58 f7200800 c1620929 000375fe (null)
f7200b80 c16395f0 00200a02 f7200a80 (null) 000375fe 00000002 (null)
Pid: 0, comm: swapper Not tainted 2.6.39-rc5-00181-g2706a0b #17
Call Trace:
[<c136b1e5>] ? early_fault+0x2e/0x2e
[<c16209aa>] ? mminit_verify_page_links+0x12/0x42
[<c1620613>] ? memmap_init_zone+0xaf/0x10c
[<c1620929>] ? free_area_init_node+0x2b9/0x2e3
[<c1607e99>] ? free_area_init_nodes+0x3f2/0x451
[<c1601d80>] ? paging_init+0x112/0x118
[<c15f578d>] ? setup_arch+0x791/0x82f
[<c15f43d9>] ? start_kernel+0x6a/0x257
This patch implements node_map_pfn_alignment() which determines
maximum internode alignment and update numa_register_memblks() to
reject NUMA configuration if alignment exceeds the pfn -> nid mapping
granularity of the memory model as determined by PAGES_PER_SECTION.
This makes the problematic machine boot w/ flatmem by rejecting the
NUMA config and provides protection against crazy NUMA configurations.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20110712074534.GB2872@htj.dyndns.org
LKML-Reference: <20110628174613.GP478@escobedo.osrc.amd.com>
Reported-and-Tested-by: Hans Rosenfeld <hans.rosenfeld@amd.com>
Cc: Conny Seidel <conny.seidel@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
DISCONTIGMEM on x86-32 implements pfn -> nid mapping similarly to
SPARSEMEM; however, it calls each mapping unit ELEMENT instead of
SECTION. This patch renames it to SECTION so that PAGES_PER_SECTION
is valid for both DISCONTIGMEM and SPARSEMEM. This will be used by
the next patch to implement mapping granularity check.
This patch is trivial constant rename.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20110712074422.GA2872@htj.dyndns.org
Cc: Hans Rosenfeld <hans.rosenfeld@amd.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|
The macro MIN_MEMORY_BLOCK_SIZE is currently defined twice in two .c
files, and I need it in a third one to fix a powerpc bug, so let's
first move it into a header
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Ingo Molnar <mingo@elte.hu>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-2.6-trace into perf/core
|
|
The nmi parameter indicated if we could do wakeups from the current
context, if not, we would set some state and self-IPI and let the
resulting interrupt do the wakeup.
For the various event classes:
- hardware: nmi=0; PMI is in fact an NMI or we run irq_work_run from
the PMI-tail (ARM etc.)
- tracepoint: nmi=0; since tracepoint could be from NMI context.
- software: nmi=[0,1]; some, like the schedule thing cannot
perform wakeups, and hence need 0.
As one can see, there is very little nmi=1 usage, and the down-side of
not using it is that on some platforms some software events can have a
jiffy delay in wakeup (when arch_irq_work_raise isn't implemented).
The up-side however is that we can remove the nmi parameter and save a
bunch of conditionals in fast paths.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Michael Cree <mcree@orcon.net.nz>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com>
Cc: Anton Blanchard <anton@samba.org>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Jason Wessel <jason.wessel@windriver.com>
Cc: Don Zickus <dzickus@redhat.com>
Link: http://lkml.kernel.org/n/tip-agjev8eu666tvknpb3iaj0fg@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
Commit 916f676f8dc started reserving boot service code since some systems
require you to keep that code around until SetVirtualAddressMap is called.
However, in some cases those areas will overlap with reserved regions.
The proper medium-term fix is to fix the bootloader to prevent the
conflicts from occurring by moving the kernel to a better position,
but the kernel should check for this possibility, and only reserve regions
which can be reserved.
Signed-off-by: Maarten Lankhorst <m.b.lankhorst@gmail.com>
Link: http://lkml.kernel.org/r/4DF7A005.1050407@gmail.com
Acked-by: Matthew Garrett <mjg@redhat.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|