Age | Commit message (Collapse) | Author | Files | Lines |
|
commit d68be4c4d31295ff6ae34a8ddfaa4c1a8ff42812 upstream.
Configure x86 runtime CPU speculation bug mitigations in accordance with
the 'mitigations=' cmdline option. This affects Meltdown, Spectre v2,
Speculative Store Bypass, and L1TF.
The default behavior is unchanged.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jiri Kosina <jkosina@suse.cz> (on x86)
Reviewed-by: Jiri Kosina <jkosina@suse.cz>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Waiman Long <longman@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Jon Masters <jcm@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: linux-s390@vger.kernel.org
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-arch@vger.kernel.org
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Tyler Hicks <tyhicks@canonical.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Steven Price <steven.price@arm.com>
Cc: Phil Auld <pauld@redhat.com>
Link: https://lkml.kernel.org/r/6616d0ae169308516cfdf5216bedd169f8a8291b.1555085500.git.jpoimboe@redhat.com
[bwh: Backported to 3.16:
- Drop the auto,nosmt option and the l1tf mitigation selection, which we can't
support
- Adjust filenames, context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 4c71a2b6fd7e42814aa68a6dec88abf3b42ea573 upstream.
The IBPB speculation barrier is issued from switch_mm() when the kernel
switches to a user space task with a different mm than the user space task
which ran last on the same CPU.
An additional optimization is to avoid IBPB when the incoming task can be
ptraced by the outgoing task. This optimization only works when switching
directly between two user space tasks. When switching from a kernel task to
a user space task the optimization fails because the previous task cannot
be accessed anymore. So for quite some scenarios the optimization is just
adding overhead.
The upcoming conditional IBPB support will issue IBPB only for user space
tasks which have the TIF_SPEC_IB bit set. This requires to handle the
following cases:
1) Switch from a user space task (potential attacker) which has
TIF_SPEC_IB set to a user space task (potential victim) which has
TIF_SPEC_IB not set.
2) Switch from a user space task (potential attacker) which has
TIF_SPEC_IB not set to a user space task (potential victim) which has
TIF_SPEC_IB set.
This needs to be optimized for the case where the IBPB can be avoided when
only kernel threads ran in between user space tasks which belong to the
same process.
The current check whether two tasks belong to the same context is using the
tasks context id. While correct, it's simpler to use the mm pointer because
it allows to mangle the TIF_SPEC_IB bit into it. The context id based
mechanism requires extra storage, which creates worse code.
When a task is scheduled out its TIF_SPEC_IB bit is mangled as bit 0 into
the per CPU storage which is used to track the last user space mm which was
running on a CPU. This bit can be used together with the TIF_SPEC_IB bit of
the incoming task to make the decision whether IBPB needs to be issued or
not to cover the two cases above.
As conditional IBPB is going to be the default, remove the dubious ptrace
check for the IBPB always case and simply issue IBPB always when the
process changes.
Move the storage to a different place in the struct as the original one
created a hole.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Casey Schaufler <casey.schaufler@intel.com>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Jon Masters <jcm@redhat.com>
Cc: Waiman Long <longman9394@gmail.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Dave Stewart <david.c.stewart@intel.com>
Cc: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/20181125185005.466447057@linutronix.de
[bwh: Backported to 3.16:
- Drop changes in initialize_tlbstate_and_flush()
- Adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit dbfe2953f63c640463c630746cd5d9de8b2f63ae upstream.
Currently, IBPB is only issued in cases when switching into a non-dumpable
process, the rationale being to protect such 'important and security
sensitive' processess (such as GPG) from data leaking into a different
userspace process via spectre v2.
This is however completely insufficient to provide proper userspace-to-userpace
spectrev2 protection, as any process can poison branch buffers before being
scheduled out, and the newly scheduled process immediately becomes spectrev2
victim.
In order to minimize the performance impact (for usecases that do require
spectrev2 protection), issue the barrier only in cases when switching between
processess where the victim can't be ptraced by the potential attacker (as in
such cases, the attacker doesn't have to bother with branch buffers at all).
[ tglx: Split up PTRACE_MODE_NOACCESS_CHK into PTRACE_MODE_SCHED and
PTRACE_MODE_IBPB to be able to do ptrace() context tracking reasonably
fine-grained ]
Fixes: 18bf3c3ea8 ("x86/speculation: Use Indirect Branch Prediction Barrier in context switch")
Originally-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "WoodhouseDavid" <dwmw@amazon.co.uk>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: "SchauflerCasey" <casey.schaufler@intel.com>
Link: https://lkml.kernel.org/r/nycvar.YFH.7.76.1809251437340.15880@cbobk.fhfr.pm
[bwh: Backported to 3.16: we still can't use ctx_id to optimise the check]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit cd4d09ec6f6c12a2cc3db5b7d8876a325a53545b upstream.
Move them to a separate header and have the following
dependency:
x86/cpufeatures.h <- x86/processor.h <- x86/cpufeature.h
This makes it easier to use the header in asm code and not
include the whole cpufeature.h and add guards for asm.
Suggested-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1453842730-28463-5-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
[bwh: Backported to 3.16 to avoid a dependency loop:
- Drop some inapplicable changes
- Move all the previously backported feature and bug flags across
- Also change <asm/nospec-branch.h> and lib/retpoline.S to use
<asm/cpufeatures.h>
- Also include <asm/cpufeatures.h> in <asm/barrier.h>, as the vdso fails to
build without that
- Adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 9bc4f28af75a91aea0ae383f50b0a430c4509303 upstream.
When page-table entries are set, the compiler might optimize their
assignment by using multiple instructions to set the PTE. This might
turn into a security hazard if the user somehow manages to use the
interim PTE. L1TF does not make our lives easier, making even an interim
non-present PTE a security hazard.
Using WRITE_ONCE() to set PTEs and friends should prevent this potential
security hazard.
I skimmed the differences in the binary with and without this patch. The
differences are (obviously) greater when CONFIG_PARAVIRT=n as more
code optimizations are possible. For better and worse, the impact on the
binary with this patch is pretty small. Skimming the code did not cause
anything to jump out as a security hazard, but it seems that at least
move_soft_dirty_pte() caused set_pte_at() to use multiple writes.
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20180902181451.80520-1-namit@vmware.com
[bwh: Backported to 3.16:
- Use ACCESS_ONCE() instead of WRITE_ONCE()
- Drop changes in pmdp_establish(), native_set_p4d(), pudp_set_access_flags()]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 9fe6299dde587788f245e9f7a5a1b296fad4e8c7 upstream.
When the kernel.print-fatal-signals sysctl has been enabled, a simple
userspace crash will cause the kernel to write a crash dump that contains,
among other things, the kernel gsbase into dmesg.
As suggested by Andy, limit output to pt_regs, FS_BASE and KERNEL_GS_BASE
in this case.
This also moves the bitness-specific logic from show_regs() into
process_{32,64}.c.
Fixes: 45807a1df9f5 ("vdso: print fatal signals")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Link: https://lkml.kernel.org/r/20180831194151.123586-1-jannh@google.com
[bwh: Backported to 3.16:
- Keep using user_mode_vm() to in 32-bit show_regs()
- Also update call to __show_regs() in kmemcheck
- Don't add redundant rdmsrl()s in 64-bit __show_regs()
- Adjust filenames, context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit d6ef1f194b7569af8b8397876dc9ab07649d63cb upstream.
The walk_pte_level() function just uses __va to get the virtual address of
the PTE page, but that breaks when the PTE page is not in the direct
mapping with HIGHPTE=y.
The result is an unhandled kernel paging request at some random address
when accessing the current_kernel or current_user file.
Use the correct API to access PTE pages.
Fixes: fe770bf0310d ('x86: clean up the page table dumper and add 32-bit support')
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: jgross@suse.com
Cc: JBeulich@suse.com
Cc: hpa@zytor.com
Cc: aryabinin@virtuozzo.com
Cc: kirill.shutemov@linux.intel.com
Link: https://lkml.kernel.org/r/1523971636-4137-1-git-send-email-joro@8bytes.org
[bwh: Backported to 3.16:
- Keep using pte_pgprot() to get protection flags
- Adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 1063711b57393c1999248cccb57bebfaf16739e7 upstream.
The mmio tracer sets io mapping PTEs and PMDs to non present when enabled
without inverting the address bits, which makes the PTE entry vulnerable
for L1TF.
Make it use the right low level macros to actually invert the address bits
to protect against L1TF.
In principle this could be avoided because MMIO tracing is not likely to be
enabled on production machines, but the fix is straigt forward and for
consistency sake it's better to get rid of the open coded PTE manipulation.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 958f79b9ee55dfaf00c8106ed1c22a2919e0028b upstream.
set_memory_np() is used to mark kernel mappings not present, but it has
it's own open coded mechanism which does not have the L1TF protection of
inverting the address bits.
Replace the open coded PTE manipulation with the L1TF protecting low level
PTE routines.
Passes the CPA self test.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[bwh: Backported to 3.16:
- cpa->pfn is actually a physical address here and needs to be shifted to
produce a PFN
- Adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
much RAM
commit b0a182f875689647b014bc01d36b340217792852 upstream.
Two users have reported [1] that they have an "extremely unlikely" system
with more than MAX_PA/2 memory and L1TF mitigation is not effective. In
fact it's a CPU with 36bits phys limit (64GB) and 32GB memory, but due to
holes in the e820 map, the main region is almost 500MB over the 32GB limit:
[ 0.000000] BIOS-e820: [mem 0x0000000100000000-0x000000081effffff] usable
Suggestions to use 'mem=32G' to enable the L1TF mitigation while losing the
500MB revealed, that there's an off-by-one error in the check in
l1tf_select_mitigation().
l1tf_pfn_limit() returns the last usable pfn (inclusive) and the range
check in the mitigation path does not take this into account.
Instead of amending the range check, make l1tf_pfn_limit() return the first
PFN which is over the limit which is less error prone. Adjust the other
users accordingly.
[1] https://bugzilla.suse.com/show_bug.cgi?id=1105536
Fixes: 17dbca119312 ("x86/speculation/l1tf: Add sysfs reporting for l1tf")
Reported-by: George Anchev <studio@anchev.net>
Reported-by: Christopher Snowhill <kode54@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Link: https://lkml.kernel.org/r/20180823134418.17008-1-vbabka@suse.cz
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 9df9516940a61d29aedf4d91b483ca6597e7d480 upstream.
On 32bit PAE kernels on 64bit hardware with enough physical bits,
l1tf_pfn_limit() will overflow unsigned long. This in turn affects
max_swapfile_size() and can lead to swapon returning -EINVAL. This has been
observed in a 32bit guest with 42 bits physical address size, where
max_swapfile_size() overflows exactly to 1 << 32, thus zero, and produces
the following warning to dmesg:
[ 6.396845] Truncating oversized swap area, only using 0k out of 2047996k
Fix this by using unsigned long long instead.
Fixes: 17dbca119312 ("x86/speculation/l1tf: Add sysfs reporting for l1tf")
Fixes: 377eeaa8e11f ("x86/speculation/l1tf: Limit swap file size to MAX_PA/2")
Reported-by: Dominique Leuenberger <dimstar@suse.de>
Reported-by: Adrian Schroeter <adrian@suse.de>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Link: https://lkml.kernel.org/r/20180820095835.5298-1-vbabka@suse.cz
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 0d0f6249058834ffe1ceaad0bb31464af66f6e7a upstream.
The PAE 3-level paging code currently doesn't mitigate L1TF by flipping the
offset bits, and uses the high PTE word, thus bits 32-36 for type, 37-63 for
offset. The lower word is zeroed, thus systems with less than 4GB memory are
safe. With 4GB to 128GB the swap type selects the memory locations vulnerable
to L1TF; with even more memory, also the swap offfset influences the address.
This might be a problem with 32bit PAE guests running on large 64bit hosts.
By continuing to keep the whole swap entry in either high or low 32bit word of
PTE we would limit the swap size too much. Thus this patch uses the whole PAE
PTE with the same layout as the 64bit version does. The macros just become a
bit tricky since they assume the arch-dependent swp_entry_t to be 32bit.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Michal Hocko <mhocko@suse.com>
[bwh: Backported to 3.16: CONFIG_PGTABLE_LEVELS is not defined; use other
config symbols in the condition.]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 1a7ed1ba4bba6c075d5ad61bb75e3fbc870840d6 upstream.
The previous patch has limited swap file size so that large offsets cannot
clear bits above MAX_PA/2 in the pte and interfere with L1TF mitigation.
It assumed that offsets are encoded starting with bit 12, same as pfn. But
on x86_64, offsets are encoded starting with bit 9.
Thus the limit can be raised by 3 bits. That means 16TB with 42bit MAX_PA
and 256TB with 46bit MAX_PA.
Fixes: 377eeaa8e11f ("x86/speculation/l1tf: Limit swap file size to MAX_PA/2")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 792adb90fa724ce07c0171cbc96b9215af4b1045 upstream.
The introduction of generic_max_swapfile_size and arch-specific versions has
broken linking on x86 with CONFIG_SWAP=n due to undefined reference to
'generic_max_swapfile_size'. Fix it by compiling the x86-specific
max_swapfile_size() only with CONFIG_SWAP=y.
Reported-by: Tomas Pruzina <pruzinat@gmail.com>
Fixes: 377eeaa8e11f ("x86/speculation/l1tf: Limit swap file size to MAX_PA/2")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 377eeaa8e11fe815b1d07c81c4a0e2843a8c15eb upstream.
For the L1TF workaround its necessary to limit the swap file size to below
MAX_PA/2, so that the higher bits of the swap offset inverted never point
to valid memory.
Add a mechanism for the architecture to override the swap file size check
in swapfile.c and add a x86 specific max swapfile check function that
enforces that limit.
The check is only enabled if the CPU is vulnerable to L1TF.
In VMs with 42bit MAX_PA the typical limit is 2TB now, on a native system
with 46bit PA it is 32TB. The limit is only per individual swap file, so
it's always possible to exceed these limits with multiple swap files or
partitions.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
[bwh: Backported to 3.16: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 42e4089c7890725fcd329999252dc489b72f2921 upstream.
For L1TF PROT_NONE mappings are protected by inverting the PFN in the page
table entry. This sets the high bits in the CPU's address space, thus
making sure to point to not point an unmapped entry to valid cached memory.
Some server system BIOSes put the MMIO mappings high up in the physical
address space. If such an high mapping was mapped to unprivileged users
they could attack low memory by setting such a mapping to PROT_NONE. This
could happen through a special device driver which is not access
protected. Normal /dev/mem is of course access protected.
To avoid this forbid PROT_NONE mappings or mprotect for high MMIO mappings.
Valid page mappings are allowed because the system is then unsafe anyways.
It's not expected that users commonly use PROT_NONE on MMIO. But to
minimize any impact this is only enforced if the mapping actually refers to
a high MMIO address (defined as the MAX_PA-1 bit being set), and also skip
the check for root.
For mmaps this is straight forward and can be handled in vm_insert_pfn and
in remap_pfn_range().
For mprotect it's a bit trickier. At the point where the actual PTEs are
accessed a lot of state has been changed and it would be difficult to undo
on an error. Since this is a uncommon case use a separate early page talk
walk pass for MMIO PROT_NONE mappings that checks for this condition
early. For non MMIO and non PROT_NONE there are no changes.
[dwmw2: Backport to 4.9]
[groeck: Backport to 4.4]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 8ef4227615e158faa4ee85a1d6466782f7e22f2f upstream.
A recent change to the mm code in:
87744ab3832b mm: fix cache mode tracking in vm_insert_mixed()
started enforcing checking the memory type against the registered list for
amixed pfn insertion mappings. It happens that the drm drivers for a number
of gpus relied on this being broken. Currently the driver only inserted
VRAM mappings into the tracking table when they came from the kernel,
and userspace mappings never landed in the table. This led to a regression
where all the mapping end up as UC instead of WC now.
I've considered a number of solutions but since this needs to be fixed
in fixes and not next, and some of the solutions were going to introduce
overhead that hadn't been there before I didn't consider them viable at
this stage. These mainly concerned hooking into the TTM io reserve APIs,
but these API have a bunch of fast paths I didn't want to unwind to add
this to.
The solution I've decided on is to add a new API like the arch_phys_wc
APIs (these would have worked but wc_del didn't take a range), and
use them from the drivers to add a WC compatible mapping to the table
for all VRAM on those GPUs. This means we can then create userspace
mapping that won't get degraded to UC.
v1.1: use CONFIG_X86_PAT + add some comments in io.h
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: x86@kernel.org
Cc: mcgrof@suse.com
Cc: Dan Williams <dan.j.williams@intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Airlie <airlied@redhat.com>
[bwh: Backported to 3.16: Memory types have type unsigned long, and the
constant is named _PAGE_CACHE_WC instead of _PAGE_CACHE_MODE_WC.]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 18bf3c3ea8ece8f03b6fc58508f2dfd23c7711c7 upstream.
Flush indirect branches when switching into a process that marked itself
non dumpable. This protects high value processes like gpg better,
without having too high performance overhead.
If done naïvely, we could switch to a kernel idle thread and then back
to the original process, such as:
process A -> idle -> process A
In such scenario, we do not have to do IBPB here even though the process
is non-dumpable, as we are switching back to the same process after a
hiatus.
To avoid the redundant IBPB, which is expensive, we track the last mm
user context ID. The cost is to have an extra u64 mm context id to track
the last mm we were using before switching to the init_mm used by idle.
Avoiding the extra IBPB is probably worth the extra memory for this
common scenario.
For those cases where tlb_defer_switch_to_init_mm() returns true (non
PCID), lazy tlb will defer switch to init_mm, so we will not be changing
the mm for the process A -> idle -> process A switch. So IBPB will be
skipped for this case.
Thanks to the reviewers and Andy Lutomirski for the suggestion of
using ctx_id which got rid of the problem of mm pointer recycling.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: ak@linux.intel.com
Cc: karahmed@amazon.de
Cc: arjan@linux.intel.com
Cc: torvalds@linux-foundation.org
Cc: linux@dominikbrodowski.net
Cc: peterz@infradead.org
Cc: bp@alien8.de
Cc: luto@kernel.org
Cc: pbonzini@redhat.com
Cc: gregkh@linux-foundation.org
Link: https://lkml.kernel.org/r/1517263487-3708-1-git-send-email-dwmw@amazon.co.uk
[bwh: Backported to 3.16: Drop the optimisation for switching via the idle
task, since we don't have mm_context_t::ctx_id here]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
This finally resolve crash if loaded under qemu + haxm. Haitao Shan pointed
out that the reason of that crash is that NX bit get set for page tables.
It seems we missed checking if _PAGE_NX is supported in kaiser_add_user_map
Link: https://www.spinics.net/lists/kernel/msg2689835.html
Reviewed-by: Guenter Roeck <groeck@chromium.org>
Signed-off-by: Lepton Wu <ytht.net@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
(backported from Greg K-H's 4.4 stable-queue)
Signed-off-by: Juerg Haefliger <juerg.haefliger@canonical.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
This resolves a crash if loaded under qemu + haxm under windows.
See https://www.spinics.net/lists/kernel/msg2689835.html for details.
Here is a boot log (the log is from chromeos-4.4, but Tao Wu says that
the same log is also seen with vanilla v4.4.110-rc1).
[ 0.712750] Freeing unused kernel memory: 552K
[ 0.721821] init: Corrupted page table at address 57b029b332e0
[ 0.722761] PGD 80000000bb238067 PUD bc36a067 PMD bc369067 PTE 45d2067
[ 0.722761] Bad pagetable: 000b [#1] PREEMPT SMP
[ 0.722761] Modules linked in:
[ 0.722761] CPU: 1 PID: 1 Comm: init Not tainted 4.4.96 #31
[ 0.722761] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
rel-1.7.5.1-0-g8936dbb-20141113_115728-nilsson.home.kraxel.org 04/01/2014
[ 0.722761] task: ffff8800bc290000 ti: ffff8800bc28c000 task.ti: ffff8800bc28c000
[ 0.722761] RIP: 0010:[<ffffffff83f4129e>] [<ffffffff83f4129e>] __clear_user+0x42/0x67
[ 0.722761] RSP: 0000:ffff8800bc28fcf8 EFLAGS: 00010202
[ 0.722761] RAX: 0000000000000000 RBX: 00000000000001a4 RCX: 00000000000001a4
[ 0.722761] RDX: 0000000000000000 RSI: 0000000000000008 RDI: 000057b029b332e0
[ 0.722761] RBP: ffff8800bc28fd08 R08: ffff8800bc290000 R09: ffff8800bb2f4000
[ 0.722761] R10: ffff8800bc290000 R11: ffff8800bb2f4000 R12: 000057b029b332e0
[ 0.722761] R13: 0000000000000000 R14: 000057b029b33340 R15: ffff8800bb1e2a00
[ 0.722761] FS: 0000000000000000(0000) GS:ffff8800bfb00000(0000) knlGS:0000000000000000
[ 0.722761] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
[ 0.722761] CR2: 000057b029b332e0 CR3: 00000000bb2f8000 CR4: 00000000000006e0
[ 0.722761] Stack:
[ 0.722761] 000057b029b332e0 ffff8800bb95fa80 ffff8800bc28fd18 ffffffff83f4120c
[ 0.722761] ffff8800bc28fe18 ffffffff83e9e7a1 ffff8800bc28fd68 0000000000000000
[ 0.722761] ffff8800bc290000 ffff8800bc290000 ffff8800bc290000 ffff8800bc290000
[ 0.722761] Call Trace:
[ 0.722761] [<ffffffff83f4120c>] clear_user+0x2e/0x30
[ 0.722761] [<ffffffff83e9e7a1>] load_elf_binary+0xa7f/0x18f7
[ 0.722761] [<ffffffff83de2088>] search_binary_handler+0x86/0x19c
[ 0.722761] [<ffffffff83de389e>] do_execveat_common.isra.26+0x909/0xf98
[ 0.722761] [<ffffffff844febe0>] ? rest_init+0x87/0x87
[ 0.722761] [<ffffffff83de40be>] do_execve+0x23/0x25
[ 0.722761] [<ffffffff83c002e3>] run_init_process+0x2b/0x2d
[ 0.722761] [<ffffffff844fec4d>] kernel_init+0x6d/0xda
[ 0.722761] [<ffffffff84505b2f>] ret_from_fork+0x3f/0x70
[ 0.722761] [<ffffffff844febe0>] ? rest_init+0x87/0x87
[ 0.722761] Code: 86 84 be 12 00 00 00 e8 87 0d e8 ff 66 66 90 48 89 d8 48 c1
eb 03 4c 89 e7 83 e0 07 48 89 d9 be 08 00 00 00 31 d2 48 85 c9 74 0a <48> 89 17
48 01 f7 ff c9 75 f6 48 89 c1 85 c9 74 09 88 17 48 ff
[ 0.722761] RIP [<ffffffff83f4129e>] __clear_user+0x42/0x67
[ 0.722761] RSP <ffff8800bc28fcf8>
[ 0.722761] ---[ end trace def703879b4ff090 ]---
[ 0.722761] BUG: sleeping function called from invalid context at /mnt/host/source/src/third_party/kernel/v4.4/kernel/locking/rwsem.c:21
[ 0.722761] in_atomic(): 0, irqs_disabled(): 1, pid: 1, name: init
[ 0.722761] CPU: 1 PID: 1 Comm: init Tainted: G D 4.4.96 #31
[ 0.722761] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5.1-0-g8936dbb-20141113_115728-nilsson.home.kraxel.org 04/01/2014
[ 0.722761] 0000000000000086 dcb5d76098c89836 ffff8800bc28fa30 ffffffff83f34004
[ 0.722761] ffffffff84839dc2 0000000000000015 ffff8800bc28fa40 ffffffff83d57dc9
[ 0.722761] ffff8800bc28fa68 ffffffff83d57e6a ffffffff84a53640 0000000000000000
[ 0.722761] Call Trace:
[ 0.722761] [<ffffffff83f34004>] dump_stack+0x4d/0x63
[ 0.722761] [<ffffffff83d57dc9>] ___might_sleep+0x13a/0x13c
[ 0.722761] [<ffffffff83d57e6a>] __might_sleep+0x9f/0xa6
[ 0.722761] [<ffffffff84502788>] down_read+0x20/0x31
[ 0.722761] [<ffffffff83cc5d9b>] __blocking_notifier_call_chain+0x35/0x63
[ 0.722761] [<ffffffff83cc5ddd>] blocking_notifier_call_chain+0x14/0x16
[ 0.800374] usb 1-1: new full-speed USB device number 2 using uhci_hcd
[ 0.722761] [<ffffffff83cefe97>] profile_task_exit+0x1a/0x1c
[ 0.802309] [<ffffffff83cac84e>] do_exit+0x39/0xe7f
[ 0.802309] [<ffffffff83ce5938>] ? vprintk_default+0x1d/0x1f
[ 0.802309] [<ffffffff83d7bb95>] ? printk+0x57/0x73
[ 0.802309] [<ffffffff83c46e25>] oops_end+0x80/0x85
[ 0.802309] [<ffffffff83c7b747>] pgtable_bad+0x8a/0x95
[ 0.802309] [<ffffffff83ca7f4a>] __do_page_fault+0x8c/0x352
[ 0.802309] [<ffffffff83eefba5>] ? file_has_perm+0xc4/0xe5
[ 0.802309] [<ffffffff83ca821c>] do_page_fault+0xc/0xe
[ 0.802309] [<ffffffff84507682>] page_fault+0x22/0x30
[ 0.802309] [<ffffffff83f4129e>] ? __clear_user+0x42/0x67
[ 0.802309] [<ffffffff83f4127f>] ? __clear_user+0x23/0x67
[ 0.802309] [<ffffffff83f4120c>] clear_user+0x2e/0x30
[ 0.802309] [<ffffffff83e9e7a1>] load_elf_binary+0xa7f/0x18f7
[ 0.802309] [<ffffffff83de2088>] search_binary_handler+0x86/0x19c
[ 0.802309] [<ffffffff83de389e>] do_execveat_common.isra.26+0x909/0xf98
[ 0.802309] [<ffffffff844febe0>] ? rest_init+0x87/0x87
[ 0.802309] [<ffffffff83de40be>] do_execve+0x23/0x25
[ 0.802309] [<ffffffff83c002e3>] run_init_process+0x2b/0x2d
[ 0.802309] [<ffffffff844fec4d>] kernel_init+0x6d/0xda
[ 0.802309] [<ffffffff84505b2f>] ret_from_fork+0x3f/0x70
[ 0.802309] [<ffffffff844febe0>] ? rest_init+0x87/0x87
[ 0.830559] Kernel panic - not syncing: Attempted to kill init! exitcode=0x00000009
[ 0.830559]
[ 0.831305] Kernel Offset: 0x2c00000 from 0xffffffff81000000 (relocation range: 0xffffffff80000000-0xffffffffbfffffff)
[ 0.831305] ---[ end Kernel panic - not syncing: Attempted to kill init! exitcode=0x00000009
The crash part of this problem may be solved with the following patch
(thanks to Hugh for the hint). There is still another problem, though -
with this patch applied, the qemu session aborts with "VCPU Shutdown
request", whatever that means.
Cc: lepton <ytht.net@gmail.com>
Signed-off-by: Guenter Roeck <groeck@chromium.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
(cherry picked from commit b33c3c64c4786cd724ccde6fa97c87ada49f6a73 linux-4.4.y)
Signed-off-by: Juerg Haefliger <juerg.haefliger@canonical.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
This reverts commit abe3029e4febfa18e4a9562a792465182b3992a0.
Signed-off-by: Juerg Haefliger <juerg.haefliger@canonical.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
Make sure dmesg reports when KPTI is enabled.
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[bwh: Backported to 3.16: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
This renames CONFIG_KAISER to CONFIG_PAGE_TABLE_ISOLATION.
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[bwh: Backported to 3.16]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
... before the first use of kaiser_enabled as otherwise funky
things happen:
about to get started...
(XEN) d0v0 Unhandled page fault fault/trap [#14, ec=0000]
(XEN) Pagetable walk from ffff88022a449090:
(XEN) L4[0x110] = 0000000229e0e067 0000000000001e0e
(XEN) L3[0x008] = 0000000000000000 ffffffffffffffff
(XEN) domain_crash_sync called from entry.S: fault at ffff82d08033fd08
entry.o#create_bounce_frame+0x135/0x14d
(XEN) Domain 0 (vcpu#0) crashed on cpu#0:
(XEN) ----[ Xen-4.9.1_02-3.21 x86_64 debug=n Not tainted ]----
(XEN) CPU: 0
(XEN) RIP: e033:[<ffffffff81007460>]
(XEN) RFLAGS: 0000000000000286 EM: 1 CONTEXT: pv guest (d0v0)
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[bwh: Backported to 3.16: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
Kaiser cannot be used on paravirtualized MMUs (namely reading and writing CR3).
This does not work with KAISER as the CR3 switch from and to user space PGD
would require to map the whole XEN_PV machinery into both.
More importantly, enabling KAISER on Xen PV doesn't make too much sense, as PV
guests use distinct %cr3 values for kernel and user already.
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hugh Dickins <hughd@google.com>
[bwh: Backported to 3.16: use xen_pv_domain()]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
Let kaiser_flush_tlb_on_return_to_user() do the X86_FEATURE_PCID
check, instead of each caller doing it inline first: nobody needs
to optimize for the noPCID case, it's clearer this way, and better
suits later changes. Replace those no-op X86_CR3_PCID_KERN_FLUSH lines
by a BUILD_BUG_ON() in load_new_mm_cr3(), in case something changes.
(cherry picked from Change-Id: I9b528ed9d7c1ae4a3b4738c2894ee1740b6fb0b9)
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
Now that we're playing the ALTERNATIVE game, use that more efficient
method: instead of user-mapping an extra page, and reading an extra
cacheline each time for x86_cr3_pcid_noflush.
Neel has found that __stringify(bts $X86_CR3_PCID_NOFLUSH_BIT, %rax)
is a working substitute for the "bts $63, %rax" in these ALTERNATIVEs;
but the one line with $63 in looks clearer, so let's stick with that.
Worried about what happens with an ALTERNATIVE between the jump and
jump label in another ALTERNATIVE? I was, but have checked the
combinations in SWITCH_KERNEL_CR3_NO_STACK at entry_SYSCALL_64,
and it does a good job.
(cherry picked from Change-Id: I46d06167615aa8d628eed9972125ab2faca93f05)
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
AMD (and possibly other vendors) are not affected by the leak
KAISER is protecting against.
Keep the "nopti" for traditional reasons and add pti=<on|off|auto>
like upstream.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
Concentrate it in arch/x86/mm/kaiser.c and use the upstream string "nopti".
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
Added "nokaiser" boot option: an early param like "noinvpcid".
Most places now check int kaiser_enabled (#defined 0 when not
CONFIG_KAISER) instead of #ifdef CONFIG_KAISER; but entry_64.S
and entry_64_compat.S are using the ALTERNATIVE technique, which
patches in the preferred instructions at runtime. That technique
is tied to x86 cpu features, so X86_FEATURE_KAISER fabricated
("" in its comment so "kaiser" not magicked into /proc/cpuinfo).
Prior to "nokaiser", Kaiser #defined _PAGE_GLOBAL 0: revert that,
but be careful with both _PAGE_GLOBAL and CR4.PGE: setting them when
nokaiser like when !CONFIG_KAISER, but not setting either when kaiser -
neither matters on its own, but it's hard to be sure that _PAGE_GLOBAL
won't get set in some obscure corner, or something add PGE into CR4.
By omitting _PAGE_GLOBAL from __supported_pte_mask when kaiser_enabled,
all page table setup which uses pte_pfn() masks it out of the ptes.
It's slightly shameful that the same declaration versus definition of
kaiser_enabled appears in not one, not two, but in three header files
(asm/kaiser.h, asm/pgtable.h, asm/tlbflush.h). I felt safer that way,
than with #including any of those in any of the others; and did not
feel it worth an asm/kaiser_enabled.h - kernel/cpu/common.c includes
them all, so we shall hear about it if they get out of synch.
Cleanups while in the area: removed the silly #ifdef CONFIG_KAISER
from kaiser.c; removed the unused native_get_normal_pgd(); removed
the spurious reg clutter from SWITCH_*_CR3 macro stubs; corrected some
comments. But more interestingly, set CR4.PSE in secondary_startup_64:
the manual is clear that it does not matter whether it's 0 or 1 when
4-level-pts are enabled, but I was distracted to find cr4 different on
BSP and auxiliaries - BSP alone was adding PSE, in probe_page_size_mask().
(cherry picked from Change-Id: I8e5bec716944444359cbd19f6729311eff943e9a)
Signed-off-by: Hugh Dickins <hughd@google.com>
[bwh: Backported to 3.16: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
Currently the pvclock pages aren't being added to user-space page
tables, and my attempt to fix this didn't work.
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Hugh Dickins <hughd@google.com>
[bwh: Backported to 3.16:
- Drop the case for disabled CONFIG_X86_VSYSCALL_EMULATION
- Adjust filename, context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
This patch introduces our implementation of KAISER (Kernel Address Isolation to
have Side-channels Efficiently Removed), a kernel isolation technique to close
hardware side channels on kernel address information.
More information about the patch can be found on:
https://github.com/IAIK/KAISER
From: Richard Fellner <richard.fellner@student.tugraz.at>
From: Daniel Gruss <daniel.gruss@iaik.tugraz.at>
Subject: [RFC, PATCH] x86_64: KAISER - do not map kernel in user mode
Date: Thu, 4 May 2017 14:26:50 +0200
Link: http://marc.info/?l=linux-kernel&m=149390087310405&w=2
Kaiser-4.10-SHA1: c4b1831d44c6144d3762ccc72f0c4e71a0c713e5
To: <linux-kernel@vger.kernel.org>
To: <kernel-hardening@lists.openwall.com>
Cc: <clementine.maurice@iaik.tugraz.at>
Cc: <moritz.lipp@iaik.tugraz.at>
Cc: Michael Schwarz <michael.schwarz@iaik.tugraz.at>
Cc: Richard Fellner <richard.fellner@student.tugraz.at>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: <kirill.shutemov@linux.intel.com>
Cc: <anders.fogh@gdata-adan.de>
After several recent works [1,2,3] KASLR on x86_64 was basically
considered dead by many researchers. We have been working on an
efficient but effective fix for this problem and found that not mapping
the kernel space when running in user mode is the solution to this
problem [4] (the corresponding paper [5] will be presented at ESSoS17).
With this RFC patch we allow anybody to configure their kernel with the
flag CONFIG_KAISER to add our defense mechanism.
If there are any questions we would love to answer them.
We also appreciate any comments!
Cheers,
Daniel (+ the KAISER team from Graz University of Technology)
[1] http://www.ieee-security.org/TC/SP2013/papers/4977a191.pdf
[2] https://www.blackhat.com/docs/us-16/materials/us-16-Fogh-Using-Undocumented-CPU-Behaviour-To-See-Into-Kernel-Mode-And-Break-KASLR-In-The-Process.pdf
[3] https://www.blackhat.com/docs/us-16/materials/us-16-Jang-Breaking-Kernel-Address-Space-Layout-Randomization-KASLR-With-Intel-TSX.pdf
[4] https://github.com/IAIK/KAISER
[5] https://gruss.cc/files/kaiser.pdf
(cherry picked from Change-Id: I0eb000c33290af01fc4454ca0c701d00f1d30b1d)
Conflicts:
arch/x86/entry/entry_64.S (not in this tree)
arch/x86/kernel/entry_64.S (patched instead of that)
arch/x86/entry/entry_64_compat.S (not in this tree)
arch/x86/ia32/ia32entry.S (patched instead of that)
arch/x86/include/asm/hw_irq.h
arch/x86/include/asm/pgtable_types.h
arch/x86/include/asm/processor.h
arch/x86/kernel/irqinit.c
arch/x86/kernel/process.c
arch/x86/mm/Makefile
arch/x86/mm/pgtable.c
init/main.c
Signed-off-by: Hugh Dickins <hughd@google.com>
[bwh: Folded in the follow-up patches from Hugh:
- kaiser: merged update
- kaiser: do not set _PAGE_NX on pgd_none
- kaiser: stack map PAGE_SIZE at THREAD_SIZE-PAGE_SIZE
- kaiser: fix build and FIXME in alloc_ldt_struct()
- kaiser: KAISER depends on SMP
- kaiser: fix regs to do_nmi() ifndef CONFIG_KAISER
- kaiser: fix perf crashes
- kaiser: ENOMEM if kaiser_pagetable_walk() NULL
- kaiser: tidied up asm/kaiser.h somewhat
- kaiser: tidied up kaiser_add/remove_mapping slightly
- kaiser: kaiser_remove_mapping() move along the pgd
- kaiser: align addition to x86/mm/Makefile
- kaiser: cleanups while trying for gold link
- kaiser: name that 0x1000 KAISER_SHADOW_PGD_OFFSET
- kaiser: delete KAISER_REAL_SWITCH option
- kaiser: vmstat show NR_KAISERTABLE as nr_overhead
- kaiser: enhanced by kernel and user PCIDs
- kaiser: load_new_mm_cr3() let SWITCH_USER_CR3 flush user
- kaiser: PCID 0 for kernel and 128 for user
- kaiser: x86_cr3_pcid_noflush and x86_cr3_pcid_user
- kaiser: paranoid_entry pass cr3 need to paranoid_exit
- kaiser: _pgd_alloc() without __GFP_REPEAT to avoid stalls
- kaiser: fix unlikely error in alloc_ldt_struct()
- kaiser: drop is_atomic arg to kaiser_pagetable_walk()
Backported to 3.16:
- Add missing #include in arch/x86/mm/kaiser.c
- Use variable PEBS buffer size since we have "perf/x86/intel: Use PAGE_SIZE
for PEBS buffer size on Core2"
- Renumber X86_FEATURE_INVPCID_SINGLE to avoid collision
- Adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit ce4a4e565f5264909a18c733b864c3f74467f69e upstream.
The UP asm/tlbflush.h generates somewhat nicer code than the SMP version.
Aside from that, it's fallen quite a bit behind the SMP code:
- flush_tlb_mm_range() didn't flush individual pages if the range
was small.
- The lazy TLB code was much weaker. This usually wouldn't matter,
but, if a kernel thread flushed its lazy "active_mm" more than
once (due to reclaim or similar), it wouldn't be unlazied and
would instead pointlessly flush repeatedly.
- Tracepoints were missing.
Aside from that, simply having the UP code around was a maintanence
burden, since it means that any change to the TLB flush code had to
make sure not to break it.
Simplify everything by deleting the UP code.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
[Hugh Dickins: Backported to 3.18]
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit ca6c99c0794875c6d1db6e22f246699691ab7e6b upstream.
flush_tlb_page() was very similar to flush_tlb_mm_range() except that
it had a couple of issues:
- It was missing an smp_mb() in the case where
current->active_mm != mm. (This is a longstanding bug reported by Nadav Amit)
- It was missing tracepoints and vm counter updates.
The only reason that I can see for keeping it at as a separate
function is that it could avoid a few branches that
flush_tlb_mm_range() needs to decide to flush just one page. This
hardly seems worthwhile. If we decide we want to get rid of those
branches again, a better way would be to introduce an
__flush_tlb_mm_range() helper and make both flush_tlb_page() and
flush_tlb_mm_range() use it.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/3cc3847cf888d8907577569b8bac3f01992ef8f9.1495492063.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit ce27374fabf553153c3f53efcaa9bfab9216bd8c upstream.
I'm about to rewrite the function almost completely, but first I
want to get a functional change out of the way. Currently, if
flush_tlb_mm_range() does not flush the local TLB at all, it will
never do individual page flushes on remote CPUs. This seems to be
an accident, and preserving it will be awkward. Let's change it
first so that any regressions in the rewrite will be easier to
bisect and so that the rewrite can attempt to change no visible
behavior at all.
The fix is simple: we can simply avoid short-circuiting the
calculation of base_pages_to_flush.
As a side effect, this also eliminates a potential corner case: if
tlb_single_page_flush_ceiling == TLB_FLUSH_ALL, flush_tlb_mm_range()
could have ended up flushing the entire address space one page at a
time.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/4b29b771d9975aad7154c314534fec235618175a.1492844372.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 29961b59a51f8c6838a26a45e871a7ed6771809b upstream.
I was trying to figure out what how flush_tlb_current_task() would
possibly work correctly if current->mm != current->active_mm, but I
realized I could spare myself the effort: it has no callers except
the unused flush_tlb() macro.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/e52d64c11690f85e9f1d69d7b48cc2269cd2e94b.1492844372.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
[bwh: Backported to 3.16: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 078194f8e9fe3cf54c8fd8bded48a1db5bd8eb8a upstream.
Potential races between switch_mm() and TLB-flush or LDT-flush IPIs
could be very messy. AFAICT the code is currently okay, whether by
accident or by careful design, but enabling PCID will make it
considerably more complicated and will no longer be obviously safe.
Fix it with a big hammer: run switch_mm() with IRQs off.
To avoid a performance hit in the scheduler, we take advantage of
our knowledge that the scheduler already has IRQs disabled when it
calls switch_mm().
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/f19baf759693c9dcae64bbff76189db77cb13398.1461688545.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 69c0319aabba45bcf33178916a2f06967b4adede upstream.
It's fairly large and it has quite a few callers. This may also
help untangle some headers down the road.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/54f3367803e7f80b2be62c8a21879aa74b1a5f57.1461688545.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Hugh Dickins <hughd@google.com>
[bwh: Backported to 3.16]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit e1074888c326038340a1ada9129d679e661f2ea6 upstream.
Currently all of the functions that live in tlb.c are inlined on
!SMP builds. One can debate whether this is a good idea (in many
respects the code in tlb.c is better than the inlined UP code).
Regardless, I want to add code that needs to be built on UP and SMP
kernels and relates to tlb flushing, so arrange for tlb.c to be
compiled unconditionally.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/f0d778f0d828fc46e5d1946bca80f0aaf9abf032.1461688545.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 375074cc736ab1d89a708c0a8d7baa4a70d5d476 upstream.
CR4 manipulation was split, seemingly at random, between direct
(write_cr4) and using a helper (set/clear_in_cr4). Unfortunately,
the set_in_cr4 and clear_in_cr4 helpers also poke at the boot code,
which only a small subset of users actually wanted.
This patch replaces all cr4 access in functions that don't leave cr4
exactly the way they found it with new helpers cr4_set_bits,
cr4_clear_bits, and cr4_set_bits_and_update_boot.
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Vince Weaver <vince@deater.net>
Cc: "hillf.zj" <hillf.zj@alibaba-inc.com>
Cc: Valdis Kletnieks <Valdis.Kletnieks@vt.edu>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/495a10bdc9e67016b8fd3945700d46cfd5c12c2f.1414190806.git.luto@amacapital.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
[bwh: Backported to 3.16: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
variable read-mostly
commit 86426851c38d3fe84dee34d7daa71d26c174d409 upstream.
A sparse warning is generated about
'tlb_single_page_flush_ceiling' not being declared.
arch/x86/mm/tlb.c:177:15: warning: symbol
'tlb_single_page_flush_ceiling' was not declared. Should it be static?
Since it isn't used anywhere outside this file, fix the warning
by making it static.
Also, optimize the use of this variable by adding the
__read_mostly directive, as suggested by David Rientjes.
Suggested-by: David Rientjes <rientjes@google.com>
Signed-off-by: Jeremiah Mahler <jmmahler@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Link: http://lkml.kernel.org/r/1407569913-4035-1-git-send-email-jmmahler@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit a5102476a24bce364b74f1110005542a2c964103 upstream.
This has been run through Intel's LKP tests across a wide range
of modern sytems and workloads and it wasn't shown to make a
measurable performance difference positive or negative.
Now that we have some shiny new tracepoints, we can actually
figure out what the heck is going on.
During a kernel compile, 60% of the flush_tlb_mm_range() calls
are for a single page. It breaks down like this:
size percent percent<=
V V V
GLOBAL: 2.20% 2.20% avg cycles: 2283
1: 56.92% 59.12% avg cycles: 1276
2: 13.78% 72.90% avg cycles: 1505
3: 8.26% 81.16% avg cycles: 1880
4: 7.41% 88.58% avg cycles: 2447
5: 1.73% 90.31% avg cycles: 2358
6: 1.32% 91.63% avg cycles: 2563
7: 1.14% 92.77% avg cycles: 2862
8: 0.62% 93.39% avg cycles: 3542
9: 0.08% 93.47% avg cycles: 3289
10: 0.43% 93.90% avg cycles: 3570
11: 0.20% 94.10% avg cycles: 3767
12: 0.08% 94.18% avg cycles: 3996
13: 0.03% 94.20% avg cycles: 4077
14: 0.02% 94.23% avg cycles: 4836
15: 0.04% 94.26% avg cycles: 5699
16: 0.06% 94.32% avg cycles: 5041
17: 0.57% 94.89% avg cycles: 5473
18: 0.02% 94.91% avg cycles: 5396
19: 0.03% 94.95% avg cycles: 5296
20: 0.02% 94.96% avg cycles: 6749
21: 0.18% 95.14% avg cycles: 6225
22: 0.01% 95.15% avg cycles: 6393
23: 0.01% 95.16% avg cycles: 6861
24: 0.12% 95.28% avg cycles: 6912
25: 0.05% 95.32% avg cycles: 7190
26: 0.01% 95.33% avg cycles: 7793
27: 0.01% 95.34% avg cycles: 7833
28: 0.01% 95.35% avg cycles: 8253
29: 0.08% 95.42% avg cycles: 8024
30: 0.03% 95.45% avg cycles: 9670
31: 0.01% 95.46% avg cycles: 8949
32: 0.01% 95.46% avg cycles: 9350
33: 3.11% 98.57% avg cycles: 8534
34: 0.02% 98.60% avg cycles: 10977
35: 0.02% 98.62% avg cycles: 11400
We get in to dimishing returns pretty quickly. On pre-IvyBridge
CPUs, we used to set the limit at 8 pages, and it was set at 128
on IvyBrige. That 128 number looks pretty silly considering that
less than 0.5% of the flushes are that large.
The previous code tried to size this number based on the size of
the TLB. Good idea, but it's error-prone, needs maintenance
(which it didn't get up to now), and probably would not matter in
practice much.
Settting it to 33 means that we cover the mallopt
M_TRIM_THRESHOLD, which is the most universally common size to do
flushes.
That's the short version. Here's the long one for why I chose 33:
1. These numbers have a constant bias in the timestamps from the
tracing. Probably counts for a couple hundred cycles in each of
these tests, but it should be fairly _even_ across all of them.
The smallest delta between the tracepoints I have ever seen is
335 cycles. This is one reason the cycles/page cost goes down in
general as the flushes get larger. The true cost is nearer to
100 cycles.
2. A full flush is more expensive than a single invlpg, but not
by much (single percentages).
3. A dtlb miss is 17.1ns (~45 cycles) and a itlb miss is 13.0ns
(~34 cycles). At those rates, refilling the 512-entry dTLB takes
22,000 cycles.
4. 22,000 cycles is approximately the equivalent of doing 85
invlpg operations. But, the odds are that the TLB can
actually be filled up faster than that because TLB misses that
are close in time also tend to leverage the same caches.
6. ~98% of flushes are <=33 pages. There are a lot of flushes of
33 pages, probably because libc's M_TRIM_THRESHOLD is set to
128k (32 pages)
7. I've found no consistent data to support changing the IvyBridge
vs. SandyBridge tunable by a factor of 16
I used the performance counters on this hardware (IvyBridge i5-3320M)
to figure out the tlb miss costs:
ocperf.py stat -e dtlb_load_misses.walk_duration,dtlb_load_misses.walk_completed,dtlb_store_misses.walk_duration,dtlb_store_misses.walk_completed,itlb_misses.walk_duration,itlb_misses.walk_completed,itlb.itlb_flush
7,720,030,970 dtlb_load_misses_walk_duration [57.13%]
169,856,353 dtlb_load_misses_walk_completed [57.15%]
708,832,859 dtlb_store_misses_walk_duration [57.17%]
19,346,823 dtlb_store_misses_walk_completed [57.17%]
2,779,687,402 itlb_misses_walk_duration [57.15%]
82,241,148 itlb_misses_walk_completed [57.13%]
770,717 itlb_itlb_flush [57.11%]
Show that a dtlb miss is 17.1ns (~45 cycles) and a itlb miss is 13.0ns
(~34 cycles). At those rates, refilling the 512-entry dTLB takes
22,000 cycles. On a SandyBridge system with more cores and larger
caches, those are dtlb=13.4ns and itlb=9.5ns.
cat perf.stat.txt | perl -pe 's/,//g'
| awk '/itlb_misses_walk_duration/ { icyc+=$1 }
/itlb_misses_walk_completed/ { imiss+=$1 }
/dtlb_.*_walk_duration/ { dcyc+=$1 }
/dtlb_.*.*completed/ { dmiss+=$1 }
END {print "itlb cyc/miss: ", icyc/imiss, " dtlb cyc/miss: ", dcyc/dmiss, " ----- ", icyc,imiss, dcyc,dmiss }
On Westmere CPUs, the counters to use are: itlb_flush,itlb_misses.walk_cycles,itlb_misses.any,dtlb_misses.walk_cycles,dtlb_misses.any
The assumptions that this code went in under:
https://lkml.org/lkml/2012/6/12/119 say that a flush and a refill are
about 100ns. Being generous, that is over by a factor of 6 on the
refill side, although it is fairly close on the cost of an invlpg.
An increase of a single invlpg operation seems to lengthen the flush
range operation by about 200 cycles. Here is one example of the data
collected for flushing 10 and 11 pages (full data are below):
10: 0.43% 93.90% avg cycles: 3570 cycles/page: 357 samples: 4714
11: 0.20% 94.10% avg cycles: 3767 cycles/page: 342 samples: 2145
How to generate this table:
echo 10000 > /sys/kernel/debug/tracing/buffer_size_kb
echo x86-tsc > /sys/kernel/debug/tracing/trace_clock
echo 'reason != 0' > /sys/kernel/debug/tracing/events/tlb/tlb_flush/filter
echo 1 > /sys/kernel/debug/tracing/events/tlb/tlb_flush/enable
Pipe the trace output in to this script:
http://sr71.net/~dave/intel/201402-tlb/trace-time-diff-process.pl.txt
Note that these data were gathered with the invlpg threshold set to
150 pages. Only data points with >=50 of samples were printed:
Flush % of %<=
in flush this
pages es size
------------------------------------------------------------------------------
-1: 2.20% 2.20% avg cycles: 2283 cycles/page: xxxx samples: 23960
1: 56.92% 59.12% avg cycles: 1276 cycles/page: 1276 samples: 620895
2: 13.78% 72.90% avg cycles: 1505 cycles/page: 752 samples: 150335
3: 8.26% 81.16% avg cycles: 1880 cycles/page: 626 samples: 90131
4: 7.41% 88.58% avg cycles: 2447 cycles/page: 611 samples: 80877
5: 1.73% 90.31% avg cycles: 2358 cycles/page: 471 samples: 18885
6: 1.32% 91.63% avg cycles: 2563 cycles/page: 427 samples: 14397
7: 1.14% 92.77% avg cycles: 2862 cycles/page: 408 samples: 12441
8: 0.62% 93.39% avg cycles: 3542 cycles/page: 442 samples: 6721
9: 0.08% 93.47% avg cycles: 3289 cycles/page: 365 samples: 917
10: 0.43% 93.90% avg cycles: 3570 cycles/page: 357 samples: 4714
11: 0.20% 94.10% avg cycles: 3767 cycles/page: 342 samples: 2145
12: 0.08% 94.18% avg cycles: 3996 cycles/page: 333 samples: 864
13: 0.03% 94.20% avg cycles: 4077 cycles/page: 313 samples: 289
14: 0.02% 94.23% avg cycles: 4836 cycles/page: 345 samples: 236
15: 0.04% 94.26% avg cycles: 5699 cycles/page: 379 samples: 390
16: 0.06% 94.32% avg cycles: 5041 cycles/page: 315 samples: 643
17: 0.57% 94.89% avg cycles: 5473 cycles/page: 321 samples: 6229
18: 0.02% 94.91% avg cycles: 5396 cycles/page: 299 samples: 224
19: 0.03% 94.95% avg cycles: 5296 cycles/page: 278 samples: 367
20: 0.02% 94.96% avg cycles: 6749 cycles/page: 337 samples: 185
21: 0.18% 95.14% avg cycles: 6225 cycles/page: 296 samples: 1964
22: 0.01% 95.15% avg cycles: 6393 cycles/page: 290 samples: 83
23: 0.01% 95.16% avg cycles: 6861 cycles/page: 298 samples: 61
24: 0.12% 95.28% avg cycles: 6912 cycles/page: 288 samples: 1307
25: 0.05% 95.32% avg cycles: 7190 cycles/page: 287 samples: 533
26: 0.01% 95.33% avg cycles: 7793 cycles/page: 299 samples: 94
27: 0.01% 95.34% avg cycles: 7833 cycles/page: 290 samples: 66
28: 0.01% 95.35% avg cycles: 8253 cycles/page: 294 samples: 73
29: 0.08% 95.42% avg cycles: 8024 cycles/page: 276 samples: 846
30: 0.03% 95.45% avg cycles: 9670 cycles/page: 322 samples: 296
31: 0.01% 95.46% avg cycles: 8949 cycles/page: 288 samples: 79
32: 0.01% 95.46% avg cycles: 9350 cycles/page: 292 samples: 60
33: 3.11% 98.57% avg cycles: 8534 cycles/page: 258 samples: 33936
34: 0.02% 98.60% avg cycles: 10977 cycles/page: 322 samples: 268
35: 0.02% 98.62% avg cycles: 11400 cycles/page: 325 samples: 177
36: 0.01% 98.63% avg cycles: 11504 cycles/page: 319 samples: 161
37: 0.02% 98.65% avg cycles: 11596 cycles/page: 313 samples: 182
38: 0.02% 98.66% avg cycles: 11850 cycles/page: 311 samples: 195
39: 0.01% 98.68% avg cycles: 12158 cycles/page: 311 samples: 128
40: 0.01% 98.68% avg cycles: 11626 cycles/page: 290 samples: 78
41: 0.04% 98.73% avg cycles: 11435 cycles/page: 278 samples: 477
42: 0.01% 98.73% avg cycles: 12571 cycles/page: 299 samples: 74
43: 0.01% 98.74% avg cycles: 12562 cycles/page: 292 samples: 78
44: 0.01% 98.75% avg cycles: 12991 cycles/page: 295 samples: 108
45: 0.01% 98.76% avg cycles: 13169 cycles/page: 292 samples: 78
46: 0.02% 98.78% avg cycles: 12891 cycles/page: 280 samples: 261
47: 0.01% 98.79% avg cycles: 13099 cycles/page: 278 samples: 67
48: 0.01% 98.80% avg cycles: 13851 cycles/page: 288 samples: 77
49: 0.01% 98.80% avg cycles: 13749 cycles/page: 280 samples: 66
50: 0.01% 98.81% avg cycles: 13949 cycles/page: 278 samples: 73
52: 0.00% 98.82% avg cycles: 14243 cycles/page: 273 samples: 52
54: 0.01% 98.83% avg cycles: 15312 cycles/page: 283 samples: 87
55: 0.01% 98.84% avg cycles: 15197 cycles/page: 276 samples: 109
56: 0.02% 98.86% avg cycles: 15234 cycles/page: 272 samples: 208
57: 0.00% 98.86% avg cycles: 14888 cycles/page: 261 samples: 53
58: 0.01% 98.87% avg cycles: 15037 cycles/page: 259 samples: 59
59: 0.01% 98.87% avg cycles: 15752 cycles/page: 266 samples: 63
62: 0.00% 98.89% avg cycles: 16222 cycles/page: 261 samples: 54
64: 0.02% 98.91% avg cycles: 17179 cycles/page: 268 samples: 248
65: 0.12% 99.03% avg cycles: 18762 cycles/page: 288 samples: 1324
85: 0.00% 99.10% avg cycles: 21649 cycles/page: 254 samples: 50
127: 0.01% 99.18% avg cycles: 32397 cycles/page: 255 samples: 75
128: 0.13% 99.31% avg cycles: 31711 cycles/page: 247 samples: 1466
129: 0.18% 99.49% avg cycles: 33017 cycles/page: 255 samples: 1927
181: 0.33% 99.84% avg cycles: 2489 cycles/page: 13 samples: 3547
256: 0.05% 99.91% avg cycles: 2305 cycles/page: 9 samples: 550
512: 0.03% 99.95% avg cycles: 2133 cycles/page: 4 samples: 304
1512: 0.01% 99.99% avg cycles: 3038 cycles/page: 2 samples: 65
Here are the tlb counters during a 10-second slice of a kernel compile
for a SandyBridge system. It's better than IvyBridge, but probably
due to the larger caches since this was one of the 'X' extreme parts.
10,873,007,282 dtlb_load_misses_walk_duration
250,711,333 dtlb_load_misses_walk_completed
1,212,395,865 dtlb_store_misses_walk_duration
31,615,772 dtlb_store_misses_walk_completed
5,091,010,274 itlb_misses_walk_duration
163,193,511 itlb_misses_walk_completed
1,321,980 itlb_itlb_flush
10.008045158 seconds time elapsed
itlb ns/miss: 9.45338 dtlb ns/miss: 12.9716
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: http://lkml.kernel.org/r/20140731154103.10C1115E@viggo.jf.intel.com
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 2d040a1ce903ca5d6e7c983621fb29c6883c4c48 upstream.
Most of the logic here is in the documentation file. Please take
a look at it.
I know we've come full-circle here back to a tunable, but this
new one is *WAY* simpler. I challenge anyone to describe in one
sentence how the old one worked. Here's the way the new one
works:
If we are flushing more pages than the ceiling, we use
the full flush, otherwise we use per-page flushes.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: http://lkml.kernel.org/r/20140731154101.12B52CAF@viggo.jf.intel.com
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 9dfa6dee5355f200cf19528ca7c678ef4007cec5 upstream.
If we take the
if (end == TLB_FLUSH_ALL || vmflag & VM_HUGETLB) {
local_flush_tlb();
goto out;
}
path out of flush_tlb_mm_range(), we will have flushed the tlb,
but not incremented NR_TLB_LOCAL_FLUSH_ALL. This unifies the
way out of the function so that we always take a single path when
doing a full tlb flush.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: http://lkml.kernel.org/r/20140731154056.FF763B76@viggo.jf.intel.com
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit e9f4e0a9fe2723078b7a1a1169828dd46a7b2f9e upstream.
I think the flush_tlb_mm_range() code that tries to tune the
flush sizes based on the CPU needs to get ripped out for
several reasons:
1. It is obviously buggy. It uses mm->total_vm to judge the
task's footprint in the TLB. It should certainly be using
some measure of RSS, *NOT* ->total_vm since only resident
memory can populate the TLB.
2. Haswell, and several other CPUs are missing from the
intel_tlb_flushall_shift_set() function. Thus, it has been
demonstrated to bitrot quickly in practice.
3. It is plain wrong in my vm:
[ 0.037444] Last level iTLB entries: 4KB 0, 2MB 0, 4MB 0
[ 0.037444] Last level dTLB entries: 4KB 0, 2MB 0, 4MB 0
[ 0.037444] tlb_flushall_shift: 6
Which leads to it to never use invlpg.
4. The assumptions about TLB refill costs are wrong:
http://lkml.kernel.org/r/1337782555-8088-3-git-send-email-alex.shi@intel.com
(more on this in later patches)
5. I can not reproduce the original data: https://lkml.org/lkml/2012/5/17/59
I believe the sample times were too short. Running the
benchmark in a loop yields times that vary quite a bit.
Note that this leaves us with a static ceiling of 1 page. This
is a conservative, dumb setting, and will be revised in a later
patch.
This also removes the code which attempts to predict whether we
are flushing data or instructions. We expect instruction flushes
to be relatively rare and not worth tuning for explicitly.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: http://lkml.kernel.org/r/20140731154055.ABC88E89@viggo.jf.intel.com
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 4995ab9cf512e9a6cc07dfd6b1d4e2fc48ce7fef upstream.
The
if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
line of code is not exactly the easiest to audit, especially when
it ends up at two different indentation levels. This eliminates
one of the the copy-n-paste versions. It also gives us a unified
exit point for each path through this function. We need this in
a minute for our tracepoint.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: http://lkml.kernel.org/r/20140731154054.44F1CDDC@viggo.jf.intel.com
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
[bwh: Backported to 3.16: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 861ce4a3244c21b0af64f880d5bfe5e6e2fb9e4a upstream.
'__vmalloc_start_set' currently only gets set in initmem_init() when
!CONFIG_NEED_MULTIPLE_NODES. This breaks detection of vmalloc address
with virt_addr_valid() with CONFIG_NEED_MULTIPLE_NODES=y, causing
a kernel crash:
[mm/usercopy] 517e1fbeb6: kernel BUG at arch/x86/mm/physaddr.c:78!
Set '__vmalloc_start_set' appropriately for that case as well.
Reported-by: kbuild test robot <fengguang.wu@intel.com>
Signed-off-by: Laura Abbott <labbott@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: dc16ecf7fd1f ("x86-32: use specific __vmalloc_start_set flag in __virt_addr_valid")
Link: http://lkml.kernel.org/r/1494278596-30373-1-git-send-email-labbott@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit dbd68d8e84c606673ebbcf15862f8c155fa92326 upstream.
flush_tlb_page() passes a bogus range to flush_tlb_others() and
expects the latter to fix it up. native_flush_tlb_others() has the
fixup but Xen's version doesn't. Move the fixup to
flush_tlb_others().
AFAICS the only real effect is that, without this fix, Xen would
flush everything instead of just the one page on remote vCPUs in
when flush_tlb_page() was called.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: e7b52ffd45a6 ("x86/flush_tlb: try flush_tlb_single one by one in flush_tlb_range")
Link: http://lkml.kernel.org/r/10ed0e4dfea64daef10b87fb85df1746999b4dba.1492844372.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
[bwh: Backported to 3.16: the special case was handled in flush_tlb_func(), not
native_flush_tlb_others()]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit a4866aa812518ed1a37d8ea0c881dc946409de94 upstream.
Under CONFIG_STRICT_DEVMEM, reading System RAM through /dev/mem is
disallowed. However, on x86, the first 1MB was always allowed for BIOS
and similar things, regardless of it actually being System RAM. It was
possible for heap to end up getting allocated in low 1MB RAM, and then
read by things like x86info or dd, which would trip hardened usercopy:
usercopy: kernel memory exposure attempt detected from ffff880000090000 (dma-kmalloc-256) (4096 bytes)
This changes the x86 exception for the low 1MB by reading back zeros for
System RAM areas instead of blindly allowing them. More work is needed to
extend this to mmap, but currently mmap doesn't go through usercopy, so
hardened usercopy won't Oops the kernel.
Reported-by: Tommi Rantala <tommi.t.rantala@nokia.com>
Tested-by: Tommi Rantala <tommi.t.rantala@nokia.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
[bwh: Backported to 3.16: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|