summaryrefslogtreecommitdiff
path: root/arch/x86/lib/checksum_32.S
AgeCommit message (Collapse)AuthorFilesLines
2015-06-02x86/debug: Remove perpetually broken, unmaintainable dwarf annotationsIngo Molnar1-31/+21
So the dwarf2 annotations in low level assembly code have become an increasing hindrance: unreadable, messy macros mixed into some of the most security sensitive code paths of the Linux kernel. These debug info annotations don't even buy the upstream kernel anything: dwarf driven stack unwinding has caused problems in the past so it's out of tree, and the upstream kernel only uses the much more robust framepointers based stack unwinding method. In addition to that there's a steady, slow bitrot going on with these annotations, requiring frequent fixups. There's no tooling and no functionality upstream that keeps it correct. So burn down the sick forest, allowing new, healthier growth: 27 files changed, 350 insertions(+), 1101 deletions(-) Someone who has the willingness and time to do this properly can attempt to reintroduce dwarf debuginfo in x86 assembly code plus dwarf unwinding from first principles, with the following conditions: - it should be maximally readable, and maximally low-key to 'ordinary' code reading and maintenance. - find a build time method to insert dwarf annotations automatically in the most common cases, for pop/push instructions that manipulate the stack pointer. This could be done for example via a preprocessing step that just looks for common patterns - plus special annotations for the few cases where we want to depart from the default. We have hundreds of CFI annotations, so automating most of that makes sense. - it should come with build tooling checks that ensure that CFI annotations are sensible. We've seen such efforts from the framepointer side, and there's no reason it couldn't be done on the dwarf side. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frédéric Weisbecker <fweisbec@gmail.com Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jan Beulich <JBeulich@suse.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-07x86/asm: Optimize unnecessarily wide TEST instructionsDenys Vlasenko1-2/+2
By the nature of the TEST operation, it is often possible to test a narrower part of the operand: "testl $3, mem" -> "testb $3, mem", "testq $3, %rcx" -> "testb $3, %cl" This results in shorter instructions, because the TEST instruction has no sign-entending byte-immediate forms unlike other ALU ops. Note that this change does not create any LCP (Length-Changing Prefix) stalls, which happen when adding a 0x66 prefix, which happens when 16-bit immediates are used, which changes such TEST instructions: [test_opcode] [modrm] [imm32] to: [0x66] [test_opcode] [modrm] [imm16] where [imm16] has a *different length* now: 2 bytes instead of 4. This confuses the decoder and slows down execution. REX prefixes were carefully designed to almost never hit this case: adding REX prefix does not change instruction length except MOVABS and MOV [addr],RAX instruction. This patch does not add instructions which would use a 0x66 prefix, code changes in assembly are: -48 f7 07 01 00 00 00 testq $0x1,(%rdi) +f6 07 01 testb $0x1,(%rdi) -48 f7 c1 01 00 00 00 test $0x1,%rcx +f6 c1 01 test $0x1,%cl -48 f7 c1 02 00 00 00 test $0x2,%rcx +f6 c1 02 test $0x2,%cl -41 f7 c2 01 00 00 00 test $0x1,%r10d +41 f6 c2 01 test $0x1,%r10b -48 f7 c1 04 00 00 00 test $0x4,%rcx +f6 c1 04 test $0x4,%cl -48 f7 c1 08 00 00 00 test $0x8,%rcx +f6 c1 08 test $0x8,%cl Linus further notes: "There are no stalls from using 8-bit instruction forms. Now, changing from 64-bit or 32-bit 'test' instructions to 8-bit ones *could* cause problems if it ends up having forwarding issues, so that instead of just forwarding the result, you end up having to wait for it to be stable in the L1 cache (or possibly the register file). The forwarding from the store buffer is simplest and most reliable if the read is done at the exact same address and the exact same size as the write that gets forwarded. But that's true only if: (a) the write was very recent and is still in the write queue. I'm not sure that's the case here anyway. (b) on at least most Intel microarchitectures, you have to test a different byte than the lowest one (so forwarding a 64-bit write to a 8-bit read ends up working fine, as long as the 8-bit read is of the low 8 bits of the written data). A very similar issue *might* show up for registers too, not just memory writes, if you use 'testb' with a high-byte register (where instead of forwarding the value from the original producer it needs to go through the register file and then shifted). But it's mainly a problem for store buffers. But afaik, the way Denys changed the test instructions, neither of the above issues should be true. The real problem for store buffer forwarding tends to be "write 8 bits, read 32 bits". That can be really surprisingly expensive, because the read ends up having to wait until the write has hit the cacheline, and we might talk tens of cycles of latency here. But "write 32 bits, read the low 8 bits" *should* be fast on pretty much all x86 chips, afaik." Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com> Acked-by: Andy Lutomirski <luto@amacapital.net> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@linux.intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Will Drewry <wad@chromium.org> Link: http://lkml.kernel.org/r/1425675332-31576-1-git-send-email-dvlasenk@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-05x86/asm: Introduce push/pop macros which generate CFI_REL_OFFSET and CFI_RESTOREDenys Vlasenko1-40/+20
Sequences: pushl_cfi %reg CFI_REL_OFFSET reg, 0 and: popl_cfi %reg CFI_RESTORE reg happen quite often. This patch adds macros which generate them. No assembly changes (verified with objdump -dr vmlinux.o). Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com> Signed-off-by: Andy Lutomirski <luto@amacapital.net> Cc: Alexei Starovoitov <ast@plumgrid.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Will Drewry <wad@chromium.org> Link: http://lkml.kernel.org/r/1421017655-25561-1-git-send-email-dvlasenk@redhat.com Link: http://lkml.kernel.org/r/2202eb90f175cf45d1b2d1c64dbb5676a8ad07ad.1424989793.git.luto@amacapital.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-04-15x86/lib: Fix spelling, put space between a numeral and its unitsAndy Shevchenko1-1/+1
As suggested by Peter Anvin. Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: H . Peter Anvin <hpa@linux.intel.com> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-04-21x86, extable: Remove open-coded exception table entries in ↵H. Peter Anvin1-6/+3
arch/x86/lib/checksum_32.S Remove open-coded exception table entries in arch/x86/lib/checksum_32.S, and replace them with _ASM_EXTABLE() macros; this will allow us to change the format and type of the exception table entries. Signed-off-by: H. Peter Anvin <hpa@zytor.com> Cc: David Daney <david.daney@cavium.com> Link: http://lkml.kernel.org/r/CA%2B55aFyijf43qSu3N9nWHEBwaGbb7T2Oq9A=9EyR=Jtyqfq_cQ@mail.gmail.com
2011-02-28x86: Use {push,pop}_cfi in more placesJan Beulich1-42/+21
Cleaning up and shortening code... Signed-off-by: Jan Beulich <jbeulich@novell.com> Cc: Alexander van Heukelum <heukelum@fastmail.fm> LKML-Reference: <4D6BD35002000078000341DA@vpn.id2.novell.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2007-10-11i386: move libThomas Gleixner1-0/+546
Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@elte.hu>