Age | Commit message (Collapse) | Author | Files | Lines |
|
commit 433f4ba1904100da65a311033f17a9bf586b287e upstream.
The bounds check was present in KVM_GET_SUPPORTED_CPUID but not
KVM_GET_EMULATED_CPUID.
Reported-by: syzbot+e3f4897236c4eeb8af4f@syzkaller.appspotmail.com
Fixes: 84cffe499b94 ("kvm: Emulate MOVBE", 2013-10-29)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ad5996d9a0e8019c3ae5151e687939369acfe044 upstream.
Acquire kvm->srcu for the duration of ->set_nested_state() to fix a bug
where nVMX derefences ->memslots without holding ->srcu or ->slots_lock.
The other half of nested migration, ->get_nested_state(), does not need
to acquire ->srcu as it is a purely a dump of internal KVM (and CPU)
state to userspace.
Detected as an RCU lockdep splat that is 100% reproducible by running
KVM's state_test selftest with CONFIG_PROVE_LOCKING=y. Note that the
failing function, kvm_is_visible_gfn(), is only checking the validity of
a gfn, it's not actually accessing guest memory (which is more or less
unsupported during vmx_set_nested_state() due to incorrect MMU state),
i.e. vmx_set_nested_state() itself isn't fundamentally broken. In any
case, setting nested state isn't a fast path so there's no reason to go
out of our way to avoid taking ->srcu.
=============================
WARNING: suspicious RCU usage
5.4.0-rc7+ #94 Not tainted
-----------------------------
include/linux/kvm_host.h:626 suspicious rcu_dereference_check() usage!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
1 lock held by evmcs_test/10939:
#0: ffff88826ffcb800 (&vcpu->mutex){+.+.}, at: kvm_vcpu_ioctl+0x85/0x630 [kvm]
stack backtrace:
CPU: 1 PID: 10939 Comm: evmcs_test Not tainted 5.4.0-rc7+ #94
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
Call Trace:
dump_stack+0x68/0x9b
kvm_is_visible_gfn+0x179/0x180 [kvm]
mmu_check_root+0x11/0x30 [kvm]
fast_cr3_switch+0x40/0x120 [kvm]
kvm_mmu_new_cr3+0x34/0x60 [kvm]
nested_vmx_load_cr3+0xbd/0x1f0 [kvm_intel]
nested_vmx_enter_non_root_mode+0xab8/0x1d60 [kvm_intel]
vmx_set_nested_state+0x256/0x340 [kvm_intel]
kvm_arch_vcpu_ioctl+0x491/0x11a0 [kvm]
kvm_vcpu_ioctl+0xde/0x630 [kvm]
do_vfs_ioctl+0xa2/0x6c0
ksys_ioctl+0x66/0x70
__x64_sys_ioctl+0x16/0x20
do_syscall_64+0x54/0x200
entry_SYSCALL_64_after_hwframe+0x49/0xbe
RIP: 0033:0x7f59a2b95f47
Fixes: 8fcc4b5923af5 ("kvm: nVMX: Introduce KVM_CAP_NESTED_STATE")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit cbbaa2727aa3ae9e0a844803da7cef7fd3b94f2b upstream.
KVM does not implement MSR_IA32_TSX_CTRL, so it must not be presented
to the guests. It is also confusing to have !ARCH_CAP_TSX_CTRL_MSR &&
!RTM && ARCH_CAP_TAA_NO: lack of MSR_IA32_TSX_CTRL suggests TSX was not
hidden (it actually was), yet the value says that TSX is not vulnerable
to microarchitectural data sampling. Fix both.
Cc: stable@vger.kernel.org
Tested-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit de1fca5d6e0105c9d33924e1247e2f386efc3ece upstream.
"Shared MSRs" are guest MSRs that are written to the host MSRs but
keep their value until the next return to userspace. They support
a mask, so that some bits keep the host value, but this mask is
only used to skip an unnecessary MSR write and the value written
to the MSR is always the guest MSR.
Fix this and, while at it, do not update smsr->values[slot].curr if
for whatever reason the wrmsr fails. This should only happen due to
reserved bits, so the value written to smsr->values[slot].curr
will not match when the user-return notifier and the host value will
always be restored. However, it is untidy and in rare cases this
can actually avoid spurious WRMSRs on return to userspace.
Cc: stable@vger.kernel.org
Reviewed-by: Jim Mattson <jmattson@google.com>
Tested-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
nested_vmx_enter_non_root_mode()"
This reverts commit 7392aa08f8a4386c99d5c6506a79e2ccd5b4701f which is
commit 7671ce21b13b9596163a29f4712cb2451a9b97dc upstream.
It should not have been selected for a stable kernel as it breaks the
nVMX regression tests.
Reported-by: Jack Wang <jack.wang.usish@gmail.com>
Reported-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Sasha Levin <sashal@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This reverts commit 9fe573d539a827d123ba7503cc8ac2301424d26b which is
commit b7031fd40fcc741b0f9b0c04c8d844e445858b84 upstream.
It should not have been selected for a stable kernel as it breaks the
nVMX regression tests.
Reported-by: Jack Wang <jack.wang.usish@gmail.com>
Reported-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Sasha Levin <sashal@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 0023ef39dc35c773c436eaa46ca539a26b308b55 ]
RDTSCP is supported in legacy mode as well as long mode. The
IA32_TSC_AUX MSR should be set to the correct guest value before
entering any guest that supports RDTSCP.
Fixes: 4e47c7a6d714 ("KVM: VMX: Add instruction rdtscp support for guest")
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Reviewed-by: Marc Orr <marcorr@google.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit a78986aae9b2988f8493f9f65a587ee433e83bc3 upstream.
Explicitly exempt ZONE_DEVICE pages from kvm_is_reserved_pfn() and
instead manually handle ZONE_DEVICE on a case-by-case basis. For things
like page refcounts, KVM needs to treat ZONE_DEVICE pages like normal
pages, e.g. put pages grabbed via gup(). But for flows such as setting
A/D bits or shifting refcounts for transparent huge pages, KVM needs to
to avoid processing ZONE_DEVICE pages as the flows in question lack the
underlying machinery for proper handling of ZONE_DEVICE pages.
This fixes a hang reported by Adam Borowski[*] in dev_pagemap_cleanup()
when running a KVM guest backed with /dev/dax memory, as KVM straight up
doesn't put any references to ZONE_DEVICE pages acquired by gup().
Note, Dan Williams proposed an alternative solution of doing put_page()
on ZONE_DEVICE pages immediately after gup() in order to simplify the
auditing needed to ensure is_zone_device_page() is called if and only if
the backing device is pinned (via gup()). But that approach would break
kvm_vcpu_{un}map() as KVM requires the page to be pinned from map() 'til
unmap() when accessing guest memory, unlike KVM's secondary MMU, which
coordinates with mmu_notifier invalidations to avoid creating stale
page references, i.e. doesn't rely on pages being pinned.
[*] http://lkml.kernel.org/r/20190919115547.GA17963@angband.pl
Reported-by: Adam Borowski <kilobyte@angband.pl>
Analyzed-by: David Hildenbrand <david@redhat.com>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Cc: stable@vger.kernel.org
Fixes: 3565fce3a659 ("mm, x86: get_user_pages() for dax mappings")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[sean: backport to 4.x; resolve conflict in mmu.c]
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 5ebb272b2ea7e02911a03a893f8d922d49f9bb4a ]
Register operand size of invvpid and invept instruction in 64-bit mode
has always 64 bits. Adjust inline function argument type to reflect
correct size.
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
nested_vmx_enter_non_root_mode()
[ Upstream commit 7671ce21b13b9596163a29f4712cb2451a9b97dc ]
In preparation of supporting checkpoint/restore for nested state,
commit ca0bde28f2ed ("kvm: nVMX: Split VMCS checks from nested_vmx_run()")
modified check_vmentry_postreqs() to only perform the guest EFER
consistency checks when nested_run_pending is true. But, in the
normal nested VMEntry flow, nested_run_pending is only set after
check_vmentry_postreqs(), i.e. the consistency check is being skipped.
Alternatively, nested_run_pending could be set prior to calling
check_vmentry_postreqs() in nested_vmx_run(), but placing the
consistency checks in nested_vmx_enter_non_root_mode() allows us
to split prepare_vmcs02() and interleave the preparation with
the consistency checks without having to change the call sites
of nested_vmx_enter_non_root_mode(). In other words, the rest
of the consistency check code in nested_vmx_run() will be joining
the postreqs checks in future patches.
Fixes: ca0bde28f2ed ("kvm: nVMX: Split VMCS checks from nested_vmx_run()")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Jim Mattson <jmattson@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit b7031fd40fcc741b0f9b0c04c8d844e445858b84 ]
Reset the vm_{entry,exit}_controls_shadow variables as well as the
segment cache after loading a new VMCS in vmx_switch_vmcs(). The
shadows/cache track VMCS data, i.e. they're stale every time we
switch to a new VMCS regardless of reason.
This fixes a bug where stale control shadows would be consumed after
a nested VMExit due to a failed consistency check.
Suggested-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit bf03d4f9334728bf7c8ffc7de787df48abd6340e ]
Checking for 32-bit PAE is quite common around code that fiddles with
the PDPTRs. Add a function to compress all checks into a single
invocation.
Moving to the common helper also fixes a subtle bug in kvm_set_cr3()
where it fails to check is_long_mode() and results in KVM incorrectly
attempting to load PDPTRs for a 64-bit guest.
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[sean: backport to 4.x; handle vmx.c split in 5.x, call out the bugfix]
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Tested-by: Thomas Lamprecht <t.lamprecht@proxmox.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 1aa9b9572b10529c2e64e2b8f44025d86e124308 upstream.
The page table pages corresponding to broken down large pages are zapped in
FIFO order, so that the large page can potentially be recovered, if it is
not longer being used for execution. This removes the performance penalty
for walking deeper EPT page tables.
By default, one large page will last about one hour once the guest
reaches a steady state.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b8e8c8303ff28c61046a4d0f6ea99aea609a7dc0 upstream.
With some Intel processors, putting the same virtual address in the TLB
as both a 4 KiB and 2 MiB page can confuse the instruction fetch unit
and cause the processor to issue a machine check resulting in a CPU lockup.
Unfortunately when EPT page tables use huge pages, it is possible for a
malicious guest to cause this situation.
Add a knob to mark huge pages as non-executable. When the nx_huge_pages
parameter is enabled (and we are using EPT), all huge pages are marked as
NX. If the guest attempts to execute in one of those pages, the page is
broken down into 4K pages, which are then marked executable.
This is not an issue for shadow paging (except nested EPT), because then
the host is in control of TLB flushes and the problematic situation cannot
happen. With nested EPT, again the nested guest can cause problems shadow
and direct EPT is treated in the same way.
[ tglx: Fixup default to auto and massage wording a bit ]
Originally-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 9167ab79936206118cc60e47dcb926c3489f3bd5 upstream.
VMX already does so if the host has SMEP, in order to support the combination of
CR0.WP=1 and CR4.SMEP=1. However, it is perfectly safe to always do so, and in
fact VMX also ends up running with EFER.NXE=1 on old processors that lack the
"load EFER" controls, because it may help avoiding a slow MSR write.
SVM does not have similar code, but it should since recent AMD processors do
support SMEP. So this patch makes the code for the two vendors simpler and
more similar, while fixing an issue with CR0.WP=1 and CR4.SMEP=1 on AMD.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: stable@vger.kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 335e192a3fa415e1202c8b9ecdaaecd643f823cc upstream.
These are useful in debugging shadow paging.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e9f2a760b158551bfbef6db31d2cae45ab8072e5 upstream.
Note that in such a case it is quite likely that KVM will BUG_ON
in __pte_list_remove when the VM is closed. However, there is no
immediate risk of memory corruption in the host so a WARN_ON is
enough and it lets you gather traces for debugging.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d679b32611c0102ce33b9e1a4e4b94854ed1812a upstream.
After the previous patch, the low bits of the gfn are masked in
both FNAME(fetch) and __direct_map, so we do not need to clear them
in transparent_hugepage_adjust.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3fcf2d1bdeb6a513523cb2c77012a6b047aa859c upstream.
These two functions are basically doing the same thing through
kvm_mmu_get_page, link_shadow_page and mmu_set_spte; yet, for historical
reasons, their code looks very different. This patch tries to take the
best of each and make them very similar, so that it is easy to understand
changes that apply to both of them.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 43fdcda96e2550c6d1c46fb8a78801aa2f7276ed upstream.
Release the page at the call-site where it was originally acquired.
This makes the exit code cleaner for most call sites, since they
do not need to duplicate code between success and the failure
label.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 0d9ce162cf46c99628cc5da9510b959c7976735b upstream.
It doesn't seem as if there is any particular need for kvm_lock to be a
spinlock, so convert the lock to a mutex so that sleepable functions (in
particular cond_resched()) can be called while holding it.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 833b45de69a6016c4b0cebe6765d526a31a81580 upstream.
The largepages debugfs entry is incremented/decremented as shadow
pages are created or destroyed. Clearing it will result in an
underflow, which is harmless to KVM but ugly (and could be
misinterpreted by tools that use debugfs information), so make
this particular statistic read-only.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm-ppc@vger.kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e1d38b63acd843cfdd4222bf19a26700fd5c699e upstream.
Export the IA32_ARCH_CAPABILITIES MSR bit MDS_NO=0 to guests on TSX
Async Abort(TAA) affected hosts that have TSX enabled and updated
microcode. This is required so that the guests don't complain,
"Vulnerable: Clear CPU buffers attempted, no microcode"
when the host has the updated microcode to clear CPU buffers.
Microcode update also adds support for MSR_IA32_TSX_CTRL which is
enumerated by the ARCH_CAP_TSX_CTRL bit in IA32_ARCH_CAPABILITIES MSR.
Guests can't do this check themselves when the ARCH_CAP_TSX_CTRL bit is
not exported to the guests.
In this case export MDS_NO=0 to the guests. When guests have
CPUID.MD_CLEAR=1, they deploy MDS mitigation which also mitigates TAA.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Neelima Krishnan <neelima.krishnan@intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 0c54914d0c52a15db9954a76ce80fee32cf318f4 upstream.
Similar to AMD bits, set the Intel bits from the vendor-independent
feature and bug flags, because KVM_GET_SUPPORTED_CPUID does not care
about the vendor and they should be set on AMD processors as well.
Suggested-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 567926cca99ba1750be8aae9c4178796bf9bb90b ]
Current versions of Intel's SDM incorrectly state that "bits 31:15 of
the VM-Entry exception error-code field" must be zero. In reality, bits
31:16 must be zero, i.e. error codes are 16-bit values.
The bogus error code check manifests as an unexpected VM-Entry failure
due to an invalid code field (error number 7) in L1, e.g. when injecting
a #GP with error_code=0x9f00.
Nadav previously reported the bug[*], both to KVM and Intel, and fixed
the associated kvm-unit-test.
[*] https://patchwork.kernel.org/patch/11124749/
Reported-by: Nadav Amit <namit@vmware.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
During backport f7eea636c3d5 ("KVM: nVMX: handle page fault in vmread"),
there was a mistake the exception reference should be passed to function
kvm_write_guest_virt_system, instead of NULL, other wise, we will get
NULL pointer deref, eg
kvm-unit-test triggered a NULL pointer deref below:
[ 948.518437] kvm [24114]: vcpu0, guest rIP: 0x407ef9 kvm_set_msr_common: MSR_IA32_DEBUGCTLMSR 0x3, nop
[ 949.106464] BUG: unable to handle kernel NULL pointer dereference at 0000000000000000
[ 949.106707] PGD 0 P4D 0
[ 949.106872] Oops: 0002 [#1] SMP
[ 949.107038] CPU: 2 PID: 24126 Comm: qemu-2.7 Not tainted 4.19.77-pserver #4.19.77-1+feature+daily+update+20191005.1625+a4168bb~deb9
[ 949.107283] Hardware name: Dell Inc. Precision Tower 3620/09WH54, BIOS 2.7.3 01/31/2018
[ 949.107549] RIP: 0010:kvm_write_guest_virt_system+0x12/0x40 [kvm]
[ 949.107719] Code: c0 5d 41 5c 41 5d 41 5e 83 f8 03 41 0f 94 c0 41 c1 e0 02 e9 b0 ed ff ff 0f 1f 44 00 00 48 89 f0 c6 87 59 56 00 00 01 48 89 d6 <49> c7 00 00 00 00 00 89 ca 49 c7 40 08 00 00 00 00 49 c7 40 10 00
[ 949.108044] RSP: 0018:ffffb31b0a953cb0 EFLAGS: 00010202
[ 949.108216] RAX: 000000000046b4d8 RBX: ffff9e9f415b0000 RCX: 0000000000000008
[ 949.108389] RDX: ffffb31b0a953cc0 RSI: ffffb31b0a953cc0 RDI: ffff9e9f415b0000
[ 949.108562] RBP: 00000000d2e14928 R08: 0000000000000000 R09: 0000000000000000
[ 949.108733] R10: 0000000000000000 R11: 0000000000000000 R12: ffffffffffffffc8
[ 949.108907] R13: 0000000000000002 R14: ffff9e9f4f26f2e8 R15: 0000000000000000
[ 949.109079] FS: 00007eff8694c700(0000) GS:ffff9e9f51a80000(0000) knlGS:0000000031415928
[ 949.109318] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 949.109495] CR2: 0000000000000000 CR3: 00000003be53b002 CR4: 00000000003626e0
[ 949.109671] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 949.109845] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 949.110017] Call Trace:
[ 949.110186] handle_vmread+0x22b/0x2f0 [kvm_intel]
[ 949.110356] ? vmexit_fill_RSB+0xc/0x30 [kvm_intel]
[ 949.110549] kvm_arch_vcpu_ioctl_run+0xa98/0x1b30 [kvm]
[ 949.110725] ? kvm_vcpu_ioctl+0x388/0x5d0 [kvm]
[ 949.110901] kvm_vcpu_ioctl+0x388/0x5d0 [kvm]
[ 949.111072] do_vfs_ioctl+0xa2/0x620
Signed-off-by: Jack Wang <jinpu.wang@cloud.ionos.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
commit 3ca94192278ca8de169d78c085396c424be123b3 upstream.
Reported by syzkaller:
WARNING: CPU: 0 PID: 6544 at /home/kernel/data/kvm/arch/x86/kvm//vmx/vmx.c:4689 handle_desc+0x37/0x40 [kvm_intel]
CPU: 0 PID: 6544 Comm: a.out Tainted: G OE 5.3.0-rc4+ #4
RIP: 0010:handle_desc+0x37/0x40 [kvm_intel]
Call Trace:
vmx_handle_exit+0xbe/0x6b0 [kvm_intel]
vcpu_enter_guest+0x4dc/0x18d0 [kvm]
kvm_arch_vcpu_ioctl_run+0x407/0x660 [kvm]
kvm_vcpu_ioctl+0x3ad/0x690 [kvm]
do_vfs_ioctl+0xa2/0x690
ksys_ioctl+0x6d/0x80
__x64_sys_ioctl+0x1a/0x20
do_syscall_64+0x74/0x720
entry_SYSCALL_64_after_hwframe+0x49/0xbe
When CR4.UMIP is set, guest should have UMIP cpuid flag. Current
kvm set_sregs function doesn't have such check when userspace inputs
sregs values. SECONDARY_EXEC_DESC is enabled on writes to CR4.UMIP
in vmx_set_cr4 though guest doesn't have UMIP cpuid flag. The testcast
triggers handle_desc warning when executing ltr instruction since
guest architectural CR4 doesn't set UMIP. This patch fixes it by
adding valid CR4 and CPUID combination checking in __set_sregs.
syzkaller source: https://syzkaller.appspot.com/x/repro.c?x=138efb99600000
Reported-by: syzbot+0f1819555fbdce992df9@syzkaller.appspotmail.com
Cc: stable@vger.kernel.org
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 16cfacc8085782dab8e365979356ce1ca87fd6cc upstream.
Manually generate the PDPTR reserved bit mask when explicitly loading
PDPTRs. The reserved bits that are being tracked by the MMU reflect the
current paging mode, which is unlikely to be PAE paging in the vast
majority of flows that use load_pdptrs(), e.g. CR0 and CR4 emulation,
__set_sregs(), etc... This can cause KVM to incorrectly signal a bad
PDPTR, or more likely, miss a reserved bit check and subsequently fail
a VM-Enter due to a bad VMCS.GUEST_PDPTR.
Add a one off helper to generate the reserved bits instead of sharing
code across the MMU's calculations and the PDPTR emulation. The PDPTR
reserved bits are basically set in stone, and pushing a helper into
the MMU's calculation adds unnecessary complexity without improving
readability.
Oppurtunistically fix/update the comment for load_pdptrs().
Note, the buggy commit also introduced a deliberate functional change,
"Also remove bit 5-6 from rsvd_bits_mask per latest SDM.", which was
effectively (and correctly) reverted by commit cd9ae5fe47df ("KVM: x86:
Fix page-tables reserved bits"). A bit of SDM archaeology shows that
the SDM from late 2008 had a bug (likely a copy+paste error) where it
listed bits 6:5 as AVL and A for PDPTEs used for 4k entries but reserved
for 2mb entries. I.e. the SDM contradicted itself, and bits 6:5 are and
always have been reserved.
Fixes: 20c466b56168d ("KVM: Use rsvd_bits_mask in load_pdptrs()")
Cc: stable@vger.kernel.org
Cc: Nadav Amit <nadav.amit@gmail.com>
Reported-by: Doug Reiland <doug.reiland@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c8848cee74ff05638e913582a476bde879c968ad upstream.
x86_emulate_instruction() takes into account ctxt->have_exception flag
during instruction decoding, but in practice this flag is never set in
x86_decode_insn().
Fixes: 6ea6e84309ca ("KVM: x86: inject exceptions produced by x86_decode_insn")
Cc: stable@vger.kernel.org
Cc: Denis Lunev <den@virtuozzo.com>
Cc: Roman Kagan <rkagan@virtuozzo.com>
Cc: Denis Plotnikov <dplotnikov@virtuozzo.com>
Signed-off-by: Jan Dakinevich <jan.dakinevich@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 8530a79c5a9f4e29e6ffb35ec1a79d81f4968ec8 upstream.
inject_emulated_exception() returns true if and only if nested page
fault happens. However, page fault can come from guest page tables
walk, either nested or not nested. In both cases we should stop an
attempt to read under RIP and give guest to step over its own page
fault handler.
This is also visible when an emulated instruction causes a #GP fault
and the VMware backdoor is enabled. To handle the VMware backdoor,
KVM intercepts #GP faults; with only the next patch applied,
x86_emulate_instruction() injects a #GP but returns EMULATE_FAIL
instead of EMULATE_DONE. EMULATE_FAIL causes handle_exception_nmi()
(or gp_interception() for SVM) to re-inject the original #GP because it
thinks emulation failed due to a non-VMware opcode. This patch prevents
the issue as x86_emulate_instruction() will return EMULATE_DONE after
injecting the #GP.
Fixes: 6ea6e84309ca ("KVM: x86: inject exceptions produced by x86_decode_insn")
Cc: stable@vger.kernel.org
Cc: Denis Lunev <den@virtuozzo.com>
Cc: Roman Kagan <rkagan@virtuozzo.com>
Cc: Denis Plotnikov <dplotnikov@virtuozzo.com>
Signed-off-by: Jan Dakinevich <jan.dakinevich@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f7eea636c3d505fe6f1d1066234f1aaf7171b681 upstream.
The implementation of vmread to memory is still incomplete, as it
lacks the ability to do vmread to I/O memory just like vmptrst.
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 541ab2aeb28251bf7135c7961f3a6080eebcc705 upstream.
Emulation of VMPTRST can incorrectly inject a page fault
when passed an operand that points to an MMIO address.
The page fault will use uninitialized kernel stack memory
as the CR2 and error code.
The right behavior would be to abort the VM with a KVM_EXIT_INTERNAL_ERROR
exit to userspace; however, it is not an easy fix, so for now just ensure
that the error code and CR2 are zero.
Signed-off-by: Fuqian Huang <huangfq.daxian@gmail.com>
Cc: stable@vger.kernel.org
[add comment]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 4d763b168e9c5c366b05812c7bba7662e5ea3669 ]
Raise #GP when guest read/write IA32_XSS, but the CPUID bits
say that it shouldn't exist.
Fixes: 203000993de5 (kvm: vmx: add MSR logic for XSAVES)
Reported-by: Xiaoyao Li <xiaoyao.li@linux.intel.com>
Reported-by: Tao Xu <tao3.xu@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit beb8d93b3e423043e079ef3dda19dad7b28467a8 ]
A previous fix to prevent KVM from consuming stale VMCS state after a
failed VM-Entry inadvertantly blocked KVM's handling of machine checks
that occur during VM-Entry.
Per Intel's SDM, a #MC during VM-Entry is handled in one of three ways,
depending on when the #MC is recognoized. As it pertains to this bug
fix, the third case explicitly states EXIT_REASON_MCE_DURING_VMENTRY
is handled like any other VM-Exit during VM-Entry, i.e. sets bit 31 to
indicate the VM-Entry failed.
If a machine-check event occurs during a VM entry, one of the following occurs:
- The machine-check event is handled as if it occurred before the VM entry:
...
- The machine-check event is handled after VM entry completes:
...
- A VM-entry failure occurs as described in Section 26.7. The basic
exit reason is 41, for "VM-entry failure due to machine-check event".
Explicitly handle EXIT_REASON_MCE_DURING_VMENTRY as a one-off case in
vmx_vcpu_run() instead of binning it into vmx_complete_atomic_exit().
Doing so allows vmx_vcpu_run() to handle VMX_EXIT_REASONS_FAILED_VMENTRY
in a sane fashion and also simplifies vmx_complete_atomic_exit() since
VMCS.VM_EXIT_INTR_INFO is guaranteed to be fresh.
Fixes: b060ca3b2e9e7 ("kvm: vmx: Handle VMLAUNCH/VMRESUME failure properly")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit d28f4290b53a157191ed9991ad05dffe9e8c0c89 ]
The behavior of WRMSR is in no way dependent on whether or not KVM
consumes the value.
Fixes: 4566654bb9be9 ("KVM: vmx: Inject #GP on invalid PAT CR")
Cc: stable@vger.kernel.org
Cc: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 674ea351cdeb01d2740edce31db7f2d79ce6095d ]
This check will soon be done on every nested vmentry and vmexit,
"parallelize" it using bitwise operations.
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 654f1f13ea56b92bacade8ce2725aea0457f91c0 ]
When assigning kvm irqfd we didn't check the irqchip mode but we allow
KVM_IRQFD to succeed with all the irqchip modes. However it does not
make much sense to create irqfd even without the kernel chips. Let's
provide a arch-dependent helper to check whether a specific irqfd is
allowed by the arch. At least for x86, it should make sense to check:
- when irqchip mode is NONE, all irqfds should be disallowed, and,
- when irqchip mode is SPLIT, irqfds that are with resamplefd should
be disallowed.
For either of the case, previously we'll silently ignore the irq or
the irq ack event if the irqchip mode is incorrect. However that can
cause misterious guest behaviors and it can be hard to triage. Let's
fail KVM_IRQFD even earlier to detect these incorrect configurations.
CC: Paolo Bonzini <pbonzini@redhat.com>
CC: Radim Krčmář <rkrcmar@redhat.com>
CC: Alex Williamson <alex.williamson@redhat.com>
CC: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Peter Xu <peterx@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit b68f3cc7d978943fcf85148165b00594c38db776 ]
Invoking the 64-bit variation on a 32-bit kenrel will crash the guest,
trigger a WARN, and/or lead to a buffer overrun in the host, e.g.
rsm_load_state_64() writes r8-r15 unconditionally, but enum kvm_reg and
thus x86_emulate_ctxt._regs only define r8-r15 for CONFIG_X86_64.
KVM allows userspace to report long mode support via CPUID, even though
the guest is all but guaranteed to crash if it actually tries to enable
long mode. But, a pure 32-bit guest that is ignorant of long mode will
happily plod along.
SMM complicates things as 64-bit CPUs use a different SMRAM save state
area. KVM handles this correctly for 64-bit kernels, e.g. uses the
legacy save state map if userspace has hid long mode from the guest,
but doesn't fare well when userspace reports long mode support on a
32-bit host kernel (32-bit KVM doesn't support 64-bit guests).
Since the alternative is to crash the guest, e.g. by not loading state
or explicitly requesting shutdown, unconditionally use the legacy SMRAM
save state map for 32-bit KVM. If a guest has managed to get far enough
to handle SMIs when running under a weird/buggy userspace hypervisor,
then don't deliberately crash the guest since there are no downsides
(from KVM's perspective) to allow it to continue running.
Fixes: 660a5d517aaab ("KVM: x86: save/load state on SMM switch")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 1811d979c71621aafc7b879477202d286f7e863b ]
guest xcr0 could leak into host when MCE happens in guest mode. Because
do_machine_check() could schedule out at a few places.
For example:
kvm_load_guest_xcr0
...
kvm_x86_ops->run(vcpu) {
vmx_vcpu_run
vmx_complete_atomic_exit
kvm_machine_check
do_machine_check
do_memory_failure
memory_failure
lock_page
In this case, host_xcr0 is 0x2ff, guest vcpu xcr0 is 0xff. After schedule
out, host cpu has guest xcr0 loaded (0xff).
In __switch_to {
switch_fpu_finish
copy_kernel_to_fpregs
XRSTORS
If any bit i in XSTATE_BV[i] == 1 and xcr0[i] == 0, XRSTORS will
generate #GP (In this case, bit 9). Then ex_handler_fprestore kicks in
and tries to reinitialize fpu by restoring init fpu state. Same story as
last #GP, except we get DOUBLE FAULT this time.
Cc: stable@vger.kernel.org
Signed-off-by: WANG Chao <chao.wang@ucloud.cn>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit bc8a3d8925a8fa09fa550e0da115d95851ce33c6 ]
KVM bases its memory usage limits on the total number of guest pages
across all memslots. However, those limits, and the calculations to
produce them, use 32 bit unsigned integers. This can result in overflow
if a VM has more guest pages that can be represented by a u32. As a
result of this overflow, KVM can use a low limit on the number of MMU
pages it will allocate. This makes KVM unable to map all of guest memory
at once, prompting spurious faults.
Tested: Ran all kvm-unit-tests on an Intel Haswell machine. This patch
introduced no new failures.
Signed-off-by: Ben Gardon <bgardon@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 61c08aa9606d4e48a8a50639c956448a720174c3 ]
The vCPU-run asm blob does a manual comparison of a VMCS' launched
status to execute the correct VM-Enter instruction, i.e. VMLAUNCH vs.
VMRESUME. The launched flag is a bool, which is a typedef of _Bool.
C99 does not define an exact size for _Bool, stating only that is must
be large enough to hold '0' and '1'. Most, if not all, compilers use
a single byte for _Bool, including gcc[1].
Originally, 'launched' was of type 'int' and so the asm blob used 'cmpl'
to check the launch status. When 'launched' was moved to be stored on a
per-VMCS basis, struct vcpu_vmx's "temporary" __launched flag was added
in order to avoid having to pass the current VMCS into the asm blob.
The new '__launched' was defined as a 'bool' and not an 'int', but the
'cmp' instruction was not updated.
This has not caused any known problems, likely due to compilers aligning
variables to 4-byte or 8-byte boundaries and KVM zeroing out struct
vcpu_vmx during allocation. I.e. vCPU-run accesses "junk" data, it just
happens to always be zero and so doesn't affect the result.
[1] https://gcc.gnu.org/ml/gcc-patches/2000-10/msg01127.html
Fixes: d462b8192368 ("KVM: VMX: Keep list of loaded VMCSs, instead of vcpus")
Cc: <stable@vger.kernel.org>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit a7c42bb6da6b1b54b2e7bd567636d72d87b10a79 ]
vcpu->arch.pv_eoi is accessible through both HV_X64_MSR_VP_ASSIST_PAGE and
MSR_KVM_PV_EOI_EN so on migration userspace may try to restore them in any
order. Values match, however, kvm_lapic_enable_pv_eoi() uses different
length: for Hyper-V case it's the whole struct hv_vp_assist_page, for KVM
native case it is 8. In case we restore KVM-native MSR last cache will
be reinitialized with len=8 so trying to access VP assist page beyond
8 bytes with kvm_read_guest_cached() will fail.
Check if we re-initializing cache for the same address and preserve length
in case it was greater.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 72bbf9358c3676bd89dc4bd8fb0b1f2a11c288fc ]
The state related to the VP assist page is still managed by the LAPIC
code in the pv_eoi field.
Signed-off-by: Ladi Prosek <lprosek@redhat.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 87ee613d076351950b74383215437f841ebbeb75 ]
In most common cases VP index of a vcpu matches its vcpu index. Userspace
is, however, free to set any mapping it wishes and we need to account for
that when we need to find a vCPU with a particular VP index. To keep search
algorithms optimal in both cases introduce 'num_mismatched_vp_indexes'
counter showing how many vCPUs with mismatching VP index we have. In case
the counter is zero we can assume vp_index == vcpu_idx.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 1779a39f786397760ae7a7cc03cf37697d8ae58d ]
Rename 'hv' to 'hv_vcpu' in kvm_hv_set_msr/kvm_hv_get_msr(); 'hv' is
'reserved' for 'struct kvm_hv' variables across the file.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 9170200ec0ebad70e5b9902bc93e2b1b11456a3b ]
Hyper-V TLFS (5.0b) states:
> Virtual processors are identified by using an index (VP index). The
> maximum number of virtual processors per partition supported by the
> current implementation of the hypervisor can be obtained through CPUID
> leaf 0x40000005. A virtual processor index must be less than the
> maximum number of virtual processors per partition.
Forbid userspace to set VP_INDEX above KVM_MAX_VCPUS. get_vcpu_by_vpidx()
can now be optimized to bail early when supplied vpidx is >= KVM_MAX_VCPUS.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 75ee23b30dc712d80d2421a9a547e7ab6e379b44 upstream.
Don't advance RIP or inject a single-step #DB if emulation signals a
fault. This logic applies to all state updates that are conditional on
clean retirement of the emulation instruction, e.g. updating RFLAGS was
previously handled by commit 38827dbd3fb85 ("KVM: x86: Do not update
EFLAGS on faulting emulation").
Not advancing RIP is likely a nop, i.e. ctxt->eip isn't updated with
ctxt->_eip until emulation "retires" anyways. Skipping #DB injection
fixes a bug reported by Andy Lutomirski where a #UD on SYSCALL due to
invalid state with EFLAGS.TF=1 would loop indefinitely due to emulation
overwriting the #UD with #DB and thus restarting the bad SYSCALL over
and over.
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: stable@vger.kernel.org
Reported-by: Andy Lutomirski <luto@kernel.org>
Fixes: 663f4c61b803 ("KVM: x86: handle singlestep during emulation")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit b14c876b994f208b6b95c222056e1deb0a45de0e upstream.
recalculate_apic_map does not santize ldr and it's possible that
multiple bits are set. In that case, a previous valid entry
can potentially be overwritten by an invalid one.
This condition is hit when booting a 32 bit, >8 CPU, RHEL6 guest and then
triggering a crash to boot a kdump kernel. This is the sequence of
events:
1. Linux boots in bigsmp mode and enables PhysFlat, however, it still
writes to the LDR which probably will never be used.
2. However, when booting into kdump, the stale LDR values remain as
they are not cleared by the guest and there isn't a apic reset.
3. kdump boots with 1 cpu, and uses Logical Destination Mode but the
logical map has been overwritten and points to an inactive vcpu.
Signed-off-by: Radim Krcmar <rkrcmar@redhat.com>
Signed-off-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 17e433b54393a6269acbcb792da97791fe1592d8 upstream.
After commit d73eb57b80b (KVM: Boost vCPUs that are delivering interrupts), a
five years old bug is exposed. Running ebizzy benchmark in three 80 vCPUs VMs
on one 80 pCPUs Skylake server, a lot of rcu_sched stall warning splatting
in the VMs after stress testing:
INFO: rcu_sched detected stalls on CPUs/tasks: { 4 41 57 62 77} (detected by 15, t=60004 jiffies, g=899, c=898, q=15073)
Call Trace:
flush_tlb_mm_range+0x68/0x140
tlb_flush_mmu.part.75+0x37/0xe0
tlb_finish_mmu+0x55/0x60
zap_page_range+0x142/0x190
SyS_madvise+0x3cd/0x9c0
system_call_fastpath+0x1c/0x21
swait_active() sustains to be true before finish_swait() is called in
kvm_vcpu_block(), voluntarily preempted vCPUs are taken into account
by kvm_vcpu_on_spin() loop greatly increases the probability condition
kvm_arch_vcpu_runnable(vcpu) is checked and can be true, when APICv
is enabled the yield-candidate vCPU's VMCS RVI field leaks(by
vmx_sync_pir_to_irr()) into spinning-on-a-taken-lock vCPU's current
VMCS.
This patch fixes it by checking conservatively a subset of events.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Marc Zyngier <Marc.Zyngier@arm.com>
Cc: stable@vger.kernel.org
Fixes: 98f4a1467 (KVM: add kvm_arch_vcpu_runnable() test to kvm_vcpu_on_spin() loop)
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit acec0ce081de0c36459eea91647faf99296445a3 upstream
It's a waste for the four X86_FEATURE_CQM_* feature bits to occupy two
whole feature bits words. To better utilize feature words, re-define
word 11 to host scattered features and move the four X86_FEATURE_CQM_*
features into Linux defined word 11. More scattered features can be
added in word 11 in the future.
Rename leaf 11 in cpuid_leafs to CPUID_LNX_4 to reflect it's a
Linux-defined leaf.
Rename leaf 12 as CPUID_DUMMY which will be replaced by a meaningful
name in the next patch when CPUID.7.1:EAX occupies world 12.
Maximum number of RMID and cache occupancy scale are retrieved from
CPUID.0xf.1 after scattered CQM features are enumerated. Carve out the
code into a separate function.
KVM doesn't support resctrl now. So it's safe to move the
X86_FEATURE_CQM_* features to scattered features word 11 for KVM.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Aaron Lewis <aaronlewis@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Babu Moger <babu.moger@amd.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: "Sean J Christopherson" <sean.j.christopherson@intel.com>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: Ravi V Shankar <ravi.v.shankar@intel.com>
Cc: Sherry Hurwitz <sherry.hurwitz@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Lendacky <Thomas.Lendacky@amd.com>
Cc: x86 <x86@kernel.org>
Link: https://lkml.kernel.org/r/1560794416-217638-2-git-send-email-fenghua.yu@intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|