summaryrefslogtreecommitdiff
path: root/arch/x86/kvm
AgeCommit message (Collapse)AuthorFilesLines
3 daysKVM: x86: use array_index_nospec with indices that come from guestThijs Raymakers2-2/+7
commit c87bd4dd43a624109c3cc42d843138378a7f4548 upstream. min and dest_id are guest-controlled indices. Using array_index_nospec() after the bounds checks clamps these values to mitigate speculative execution side-channels. Signed-off-by: Thijs Raymakers <thijs@raymakers.nl> Cc: stable@vger.kernel.org Cc: Sean Christopherson <seanjc@google.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Fixes: 715062970f37 ("KVM: X86: Implement PV sched yield hypercall") Fixes: bdf7ffc89922 ("KVM: LAPIC: Fix pv ipis out-of-bounds access") Fixes: 4180bf1b655a ("KVM: X86: Implement "send IPI" hypercall") Link: https://lore.kernel.org/r/20250804064405.4802-1-thijs@raymakers.nl Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
10 dayskvm: retry nx_huge_page_recovery_thread creationKeith Busch1-6/+4
commit 916b7f42b3b3b539a71c204a9b49fdc4ca92cd82 upstream. A VMM may send a non-fatal signal to its threads, including vCPU tasks, at any time, and thus may signal vCPU tasks during KVM_RUN. If a vCPU task receives the signal while its trying to spawn the huge page recovery vhost task, then KVM_RUN will fail due to copy_process() returning -ERESTARTNOINTR. Rework call_once() to mark the call complete if and only if the called function succeeds, and plumb the function's true error code back to the call_once() invoker. This provides userspace with the correct, non-fatal error code so that the VMM doesn't terminate the VM on -ENOMEM, and allows subsequent KVM_RUN a succeed by virtue of retrying creation of the NX huge page task. Co-developed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Sean Christopherson <seanjc@google.com> [implemented the kvm user side] Signed-off-by: Keith Busch <kbusch@kernel.org> Message-ID: <20250227230631.303431-3-kbusch@meta.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Cc: Alistair Delva <adelva@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-08-20KVM: VMX: Preserve host's DEBUGCTLMSR_FREEZE_IN_SMM while running the guestMaxim Levitsky5-3/+34
[ Upstream commit 6b1dd26544d045f6a79e8c73572c0c0db3ef3c1a ] Set/clear DEBUGCTLMSR_FREEZE_IN_SMM in GUEST_IA32_DEBUGCTL based on the host's pre-VM-Enter value, i.e. preserve the host's FREEZE_IN_SMM setting while running the guest. When running with the "default treatment of SMIs" in effect (the only mode KVM supports), SMIs do not generate a VM-Exit that is visible to host (non-SMM) software, and instead transitions directly from VMX non-root to SMM. And critically, DEBUGCTL isn't context switched by hardware on SMI or RSM, i.e. SMM will run with whatever value was resident in hardware at the time of the SMI. Failure to preserve FREEZE_IN_SMM results in the PMU unexpectedly counting events while the CPU is executing in SMM, which can pollute profiling and potentially leak information into the guest. Check for changes in FREEZE_IN_SMM prior to every entry into KVM's inner run loop, as the bit can be toggled in IRQ context via IPI callback (SMP function call), by way of /sys/devices/cpu/freeze_on_smi. Add a field in kvm_x86_ops to communicate which DEBUGCTL bits need to be preserved, as FREEZE_IN_SMM is only supported and defined for Intel CPUs, i.e. explicitly checking FREEZE_IN_SMM in common x86 is at best weird, and at worst could lead to undesirable behavior in the future if AMD CPUs ever happened to pick up a collision with the bit. Exempt TDX vCPUs, i.e. protected guests, from the check, as the TDX Module owns and controls GUEST_IA32_DEBUGCTL. WARN in SVM if KVM_RUN_LOAD_DEBUGCTL is set, mostly to document that the lack of handling isn't a KVM bug (TDX already WARNs on any run_flag). Lastly, explicitly reload GUEST_IA32_DEBUGCTL on a VM-Fail that is missed by KVM but detected by hardware, i.e. in nested_vmx_restore_host_state(). Doing so avoids the need to track host_debugctl on a per-VMCS basis, as GUEST_IA32_DEBUGCTL is unconditionally written by prepare_vmcs02() and load_vmcs12_host_state(). For the VM-Fail case, even though KVM won't have actually entered the guest, vcpu_enter_guest() will have run with vmcs02 active and thus could result in vmcs01 being run with a stale value. Cc: stable@vger.kernel.org Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Co-developed-by: Sean Christopherson <seanjc@google.com> Link: https://lore.kernel.org/r/20250610232010.162191-9-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> [sean: resolve syntactic conflict in vt_x86_ops definition] Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2025-08-20KVM: VMX: Wrap all accesses to IA32_DEBUGCTL with getter/setter APIsMaxim Levitsky4-12/+24
[ Upstream commit 7d0cce6cbe71af6e9c1831bff101a2b9c249c4a2 ] Introduce vmx_guest_debugctl_{read,write}() to handle all accesses to vmcs.GUEST_IA32_DEBUGCTL. This will allow stuffing FREEZE_IN_SMM into GUEST_IA32_DEBUGCTL based on the host setting without bleeding the state into the guest, and without needing to copy+paste the FREEZE_IN_SMM logic into every patch that accesses GUEST_IA32_DEBUGCTL. No functional change intended. Cc: stable@vger.kernel.org Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> [sean: massage changelog, make inline, use in all prepare_vmcs02() cases] Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com> Link: https://lore.kernel.org/r/20250610232010.162191-8-seanjc@google.com Signed-off-by: Sasha Levin <sashal@kernel.org> Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2025-08-20KVM: nVMX: Check vmcs12->guest_ia32_debugctl on nested VM-EnterMaxim Levitsky3-5/+15
[ Upstream commit 095686e6fcb4150f0a55b1a25987fad3d8af58d6 ] Add a consistency check for L2's guest_ia32_debugctl, as KVM only supports a subset of hardware functionality, i.e. KVM can't rely on hardware to detect illegal/unsupported values. Failure to check the vmcs12 value would allow the guest to load any harware-supported value while running L2. Take care to exempt BTF and LBR from the validity check in order to match KVM's behavior for writes via WRMSR, but without clobbering vmcs12. Even if VM_EXIT_SAVE_DEBUG_CONTROLS is set in vmcs12, L1 can reasonably expect that vmcs12->guest_ia32_debugctl will not be modified if writes to the MSR are being intercepted. Arguably, KVM _should_ update vmcs12 if VM_EXIT_SAVE_DEBUG_CONTROLS is set *and* writes to MSR_IA32_DEBUGCTLMSR are not being intercepted by L1, but that would incur non-trivial complexity and wouldn't change the fact that KVM's handling of DEBUGCTL is blatantly broken. I.e. the extra complexity is not worth carrying. Cc: stable@vger.kernel.org Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Co-developed-by: Sean Christopherson <seanjc@google.com> Link: https://lore.kernel.org/r/20250610232010.162191-7-seanjc@google.com Stable-dep-of: 7d0cce6cbe71 ("KVM: VMX: Wrap all accesses to IA32_DEBUGCTL with getter/setter APIs") Signed-off-by: Sasha Levin <sashal@kernel.org> Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2025-08-20KVM: VMX: Extract checking of guest's DEBUGCTL into helperSean Christopherson1-12/+17
[ Upstream commit 8a4351ac302cd8c19729ba2636acfd0467c22ae8 ] Move VMX's logic to check DEBUGCTL values into a standalone helper so that the code can be used by nested VM-Enter to apply the same logic to the value being loaded from vmcs12. KVM needs to explicitly check vmcs12->guest_ia32_debugctl on nested VM-Enter, as hardware may support features that KVM does not, i.e. relying on hardware to detect invalid guest state will result in false negatives. Unfortunately, that means applying KVM's funky suppression of BTF and LBR to vmcs12 so as not to break existing guests. No functional change intended. Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com> Link: https://lore.kernel.org/r/20250610232010.162191-6-seanjc@google.com Stable-dep-of: 7d0cce6cbe71 ("KVM: VMX: Wrap all accesses to IA32_DEBUGCTL with getter/setter APIs") Signed-off-by: Sasha Levin <sashal@kernel.org> Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2025-08-20KVM: VMX: Allow guest to set DEBUGCTL.RTM_DEBUG if RTM is supportedSean Christopherson1-0/+4
[ Upstream commit 17ec2f965344ee3fd6620bef7ef68792f4ac3af0 ] Let the guest set DEBUGCTL.RTM_DEBUG if RTM is supported according to the guest CPUID model, as debug support is supposed to be available if RTM is supported, and there are no known downsides to letting the guest debug RTM aborts. Note, there are no known bug reports related to RTM_DEBUG, the primary motivation is to reduce the probability of breaking existing guests when a future change adds a missing consistency check on vmcs12.GUEST_DEBUGCTL (KVM currently lets L2 run with whatever hardware supports; whoops). Note #2, KVM already emulates DR6.RTM, and doesn't restrict access to DR7.RTM. Fixes: 83c529151ab0 ("KVM: x86: expose Intel cpu new features (HLE, RTM) to guest") Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20250610232010.162191-5-seanjc@google.com Signed-off-by: Sasha Levin <sashal@kernel.org> Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2025-08-20KVM: x86: Drop kvm_x86_ops.set_dr6() in favor of a new KVM_RUN flagSean Christopherson4-12/+10
[ Upstream commit 80c64c7afea1da6a93ebe88d3d29d8a60377ef80 ] Instruct vendor code to load the guest's DR6 into hardware via a new KVM_RUN flag, and remove kvm_x86_ops.set_dr6(), whose sole purpose was to load vcpu->arch.dr6 into hardware when DR6 can be read/written directly by the guest. Note, TDX already WARNs on any run_flag being set, i.e. will yell if KVM thinks DR6 needs to be reloaded. TDX vCPUs force KVM_DEBUGREG_AUTO_SWITCH and never clear the flag, i.e. should never observe KVM_RUN_LOAD_GUEST_DR6. Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20250610232010.162191-4-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> [sean: drop TDX changes] Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2025-08-20KVM: x86: Convert vcpu_run()'s immediate exit param into a generic bitmapSean Christopherson4-7/+13
[ Upstream commit 2478b1b220c49d25cb1c3f061ec4f9b351d9a131 ] Convert kvm_x86_ops.vcpu_run()'s "force_immediate_exit" boolean parameter into an a generic bitmap so that similar "take action" information can be passed to vendor code without creating a pile of boolean parameters. This will allow dropping kvm_x86_ops.set_dr6() in favor of a new flag, and will also allow for adding similar functionality for re-loading debugctl in the active VMCS. Opportunistically massage the TDX WARN and comment to prepare for adding more run_flags, all of which are expected to be mutually exclusive with TDX, i.e. should be WARNed on. No functional change intended. Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20250610232010.162191-3-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> [sean: drop TDX changes] Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2025-08-01KVM: x86: Free vCPUs before freeing VM stateSean Christopherson1-1/+1
commit 17bcd714426386fda741a4bccd96a2870179344b upstream. Free vCPUs before freeing any VM state, as both SVM and VMX may access VM state when "freeing" a vCPU that is currently "in" L2, i.e. that needs to be kicked out of nested guest mode. Commit 6fcee03df6a1 ("KVM: x86: avoid loading a vCPU after .vm_destroy was called") partially fixed the issue, but for unknown reasons only moved the MMU unloading before VM destruction. Complete the change, and free all vCPU state prior to destroying VM state, as nVMX accesses even more state than nSVM. In addition to the AVIC, KVM can hit a use-after-free on MSR filters: kvm_msr_allowed+0x4c/0xd0 __kvm_set_msr+0x12d/0x1e0 kvm_set_msr+0x19/0x40 load_vmcs12_host_state+0x2d8/0x6e0 [kvm_intel] nested_vmx_vmexit+0x715/0xbd0 [kvm_intel] nested_vmx_free_vcpu+0x33/0x50 [kvm_intel] vmx_free_vcpu+0x54/0xc0 [kvm_intel] kvm_arch_vcpu_destroy+0x28/0xf0 kvm_vcpu_destroy+0x12/0x50 kvm_arch_destroy_vm+0x12c/0x1c0 kvm_put_kvm+0x263/0x3c0 kvm_vm_release+0x21/0x30 and an upcoming fix to process injectable interrupts on nested VM-Exit will access the PIC: BUG: kernel NULL pointer dereference, address: 0000000000000090 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page CPU: 23 UID: 1000 PID: 2658 Comm: kvm-nx-lpage-re RIP: 0010:kvm_cpu_has_extint+0x2f/0x60 [kvm] Call Trace: <TASK> kvm_cpu_has_injectable_intr+0xe/0x60 [kvm] nested_vmx_vmexit+0x2d7/0xdf0 [kvm_intel] nested_vmx_free_vcpu+0x40/0x50 [kvm_intel] vmx_vcpu_free+0x2d/0x80 [kvm_intel] kvm_arch_vcpu_destroy+0x2d/0x130 [kvm] kvm_destroy_vcpus+0x8a/0x100 [kvm] kvm_arch_destroy_vm+0xa7/0x1d0 [kvm] kvm_destroy_vm+0x172/0x300 [kvm] kvm_vcpu_release+0x31/0x50 [kvm] Inarguably, both nSVM and nVMX need to be fixed, but punt on those cleanups for the moment. Conceptually, vCPUs should be freed before VM state. Assets like the I/O APIC and PIC _must_ be allocated before vCPUs are created, so it stands to reason that they must be freed _after_ vCPUs are destroyed. Reported-by: Aaron Lewis <aaronlewis@google.com> Closes: https://lore.kernel.org/all/20240703175618.2304869-2-aaronlewis@google.com Cc: Jim Mattson <jmattson@google.com> Cc: Yan Zhao <yan.y.zhao@intel.com> Cc: Rick P Edgecombe <rick.p.edgecombe@intel.com> Cc: Kai Huang <kai.huang@intel.com> Cc: Isaku Yamahata <isaku.yamahata@intel.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-ID: <20250224235542.2562848-2-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Kevin Cheng <chengkev@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-08-01KVM: x86/hyper-v: Skip non-canonical addresses during PV TLB flushManuel Andreas1-0/+3
[ Upstream commit fa787ac07b3ceb56dd88a62d1866038498e96230 ] In KVM guests with Hyper-V hypercalls enabled, the hypercalls HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST and HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX allow a guest to request invalidation of portions of a virtual TLB. For this, the hypercall parameter includes a list of GVAs that are supposed to be invalidated. However, when non-canonical GVAs are passed, there is currently no filtering in place and they are eventually passed to checked invocations of INVVPID on Intel / INVLPGA on AMD. While AMD's INVLPGA silently ignores non-canonical addresses (effectively a no-op), Intel's INVVPID explicitly signals VM-Fail and ultimately triggers the WARN_ONCE in invvpid_error(): invvpid failed: ext=0x0 vpid=1 gva=0xaaaaaaaaaaaaa000 WARNING: CPU: 6 PID: 326 at arch/x86/kvm/vmx/vmx.c:482 invvpid_error+0x91/0xa0 [kvm_intel] Modules linked in: kvm_intel kvm 9pnet_virtio irqbypass fuse CPU: 6 UID: 0 PID: 326 Comm: kvm-vm Not tainted 6.15.0 #14 PREEMPT(voluntary) RIP: 0010:invvpid_error+0x91/0xa0 [kvm_intel] Call Trace: vmx_flush_tlb_gva+0x320/0x490 [kvm_intel] kvm_hv_vcpu_flush_tlb+0x24f/0x4f0 [kvm] kvm_arch_vcpu_ioctl_run+0x3013/0x5810 [kvm] Hyper-V documents that invalid GVAs (those that are beyond a partition's GVA space) are to be ignored. While not completely clear whether this ruling also applies to non-canonical GVAs, it is likely fine to make that assumption, and manual testing on Azure confirms "real" Hyper-V interprets the specification in the same way. Skip non-canonical GVAs when processing the list of address to avoid tripping the INVVPID failure. Alternatively, KVM could filter out "bad" GVAs before inserting into the FIFO, but practically speaking the only downside of pushing validation to the final processing is that doing so is suboptimal for the guest, and no well-behaved guest will request TLB flushes for non-canonical addresses. Fixes: 260970862c88 ("KVM: x86: hyper-v: Handle HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST{,EX} calls gently") Cc: stable@vger.kernel.org Signed-off-by: Manuel Andreas <manuel.andreas@tum.de> Suggested-by: Vitaly Kuznetsov <vkuznets@redhat.com> Link: https://lore.kernel.org/r/c090efb3-ef82-499f-a5e0-360fc8420fb7@tum.de Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Sasha Levin <sashal@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-08-01KVM: x86: model canonical checks more preciselyMaxim Levitsky7-22/+66
[ Upstream commit 9245fd6b8531497d129a7a6e3eef258042862f85 ] As a result of a recent investigation, it was determined that x86 CPUs which support 5-level paging, don't always respect CR4.LA57 when doing canonical checks. In particular: 1. MSRs which contain a linear address, allow full 57-bitcanonical address regardless of CR4.LA57 state. For example: MSR_KERNEL_GS_BASE. 2. All hidden segment bases and GDT/IDT bases also behave like MSRs. This means that full 57-bit canonical address can be loaded to them regardless of CR4.LA57, both using MSRS (e.g GS_BASE) and instructions (e.g LGDT). 3. TLB invalidation instructions also allow the user to use full 57-bit address regardless of the CR4.LA57. Finally, it must be noted that the CPU doesn't prevent the user from disabling 5-level paging, even when the full 57-bit canonical address is present in one of the registers mentioned above (e.g GDT base). In fact, this can happen without any userspace help, when the CPU enters SMM mode - some MSRs, for example MSR_KERNEL_GS_BASE are left to contain a non-canonical address in regard to the new mode. Since most of the affected MSRs and all segment bases can be read and written freely by the guest without any KVM intervention, this patch makes the emulator closely follow hardware behavior, which means that the emulator doesn't take in the account the guest CPUID support for 5-level paging, and only takes in the account the host CPU support. Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Link: https://lore.kernel.org/r/20240906221824.491834-4-mlevitsk@redhat.com Signed-off-by: Sean Christopherson <seanjc@google.com> Stable-dep-of: fa787ac07b3c ("KVM: x86/hyper-v: Skip non-canonical addresses during PV TLB flush") Signed-off-by: Sasha Levin <sashal@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-08-01KVM: x86: Add X86EMUL_F_MSR and X86EMUL_F_DT_LOAD to aid canonical checksMaxim Levitsky3-8/+14
[ Upstream commit c534b37b7584e2abc5d487b4e017f61a61959ca9 ] Add emulation flags for MSR accesses and Descriptor Tables loads, and pass the new flags as appropriate to emul_is_noncanonical_address(). The flags will be used to perform the correct canonical check, as the type of access affects whether or not CR4.LA57 is consulted when determining the canonical bit. No functional change is intended. Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Link: https://lore.kernel.org/r/20240906221824.491834-3-mlevitsk@redhat.com [sean: split to separate patch, massage changelog] Signed-off-by: Sean Christopherson <seanjc@google.com> Stable-dep-of: fa787ac07b3c ("KVM: x86/hyper-v: Skip non-canonical addresses during PV TLB flush") Signed-off-by: Sasha Levin <sashal@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-08-01KVM: x86: Route non-canonical checks in emulator through emulate_opsMaxim Levitsky3-1/+10
[ Upstream commit 16ccadefa295af434ca296e566f078223ecd79ca ] Add emulate_ops.is_canonical_addr() to perform (non-)canonical checks in the emulator, which will allow extending is_noncanonical_address() to support different flavors of canonical checks, e.g. for descriptor table bases vs. MSRs, without needing duplicate logic in the emulator. No functional change is intended. Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Link: https://lore.kernel.org/r/20240906221824.491834-3-mlevitsk@redhat.com [sean: separate from additional of flags, massage changelog] Signed-off-by: Sean Christopherson <seanjc@google.com> Stable-dep-of: fa787ac07b3c ("KVM: x86/hyper-v: Skip non-canonical addresses during PV TLB flush") Signed-off-by: Sasha Levin <sashal@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-08-01KVM: x86: drop x86.h include from cpuid.hMaxim Levitsky6-4/+5
[ Upstream commit e52ad1ddd0a3b07777141ec9406d5dc2c9a0de17 ] Drop x86.h include from cpuid.h to allow the x86.h to include the cpuid.h instead. Also fix various places where x86.h was implicitly included via cpuid.h Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Link: https://lore.kernel.org/r/20240906221824.491834-2-mlevitsk@redhat.com [sean: fixup a missed include in mtrr.c] Signed-off-by: Sean Christopherson <seanjc@google.com> Stable-dep-of: fa787ac07b3c ("KVM: x86/hyper-v: Skip non-canonical addresses during PV TLB flush") Signed-off-by: Sasha Levin <sashal@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-08-01x86/traps: Initialize DR7 by writing its architectural reset valueXin Li (Intel)1-2/+2
commit fa7d0f83c5c4223a01598876352473cb3d3bd4d7 upstream. Initialize DR7 by writing its architectural reset value to always set bit 10, which is reserved to '1', when "clearing" DR7 so as not to trigger unanticipated behavior if said bit is ever unreserved, e.g. as a feature enabling flag with inverted polarity. Signed-off-by: Xin Li (Intel) <xin@zytor.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: H. Peter Anvin (Intel) <hpa@zytor.com> Reviewed-by: Sohil Mehta <sohil.mehta@intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Sean Christopherson <seanjc@google.com> Tested-by: Sohil Mehta <sohil.mehta@intel.com> Cc:stable@vger.kernel.org Link: https://lore.kernel.org/all/20250620231504.2676902-3-xin%40zytor.com [ context adjusted: no KVM_DEBUGREG_AUTO_SWITCH flag test" ] Signed-off-by: Sasha Levin <sashal@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-07-24KVM: x86/xen: Fix cleanup logic in emulation of Xen schedop poll hypercallsManuel Andreas1-1/+1
commit 5a53249d149f48b558368c5338b9921b76a12f8c upstream. kvm_xen_schedop_poll does a kmalloc_array() when a VM polls the host for more than one event channel potr (nr_ports > 1). After the kmalloc_array(), the error paths need to go through the "out" label, but the call to kvm_read_guest_virt() does not. Fixes: 92c58965e965 ("KVM: x86/xen: Use kvm_read_guest_virt() instead of open-coding it badly") Reviewed-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Manuel Andreas <manuel.andreas@tum.de> [Adjusted commit message. - Paolo] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-07-17KVM: SVM: Set synthesized TSA CPUID flagsBorislav Petkov (AMD)1-0/+4
VERW_CLEAR is supposed to be set only by the hypervisor to denote TSA mitigation support to a guest. SQ_NO and L1_NO are both synthesizable, and are going to be set by hw CPUID on future machines. So keep the kvm_cpu_cap_init_kvm_defined() invocation *and* set them when synthesized. This fix is stable-only. Co-developed-by: Jinpu Wang <jinpu.wang@ionos.com> Signed-off-by: Jinpu Wang <jinpu.wang@ionos.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-07-17KVM: SVM: Reject SEV{-ES} intra host migration if vCPU creation is in-flightSean Christopherson1-0/+4
commit ecf371f8b02d5e31b9aa1da7f159f1b2107bdb01 upstream. Reject migration of SEV{-ES} state if either the source or destination VM is actively creating a vCPU, i.e. if kvm_vm_ioctl_create_vcpu() is in the section between incrementing created_vcpus and online_vcpus. The bulk of vCPU creation runs _outside_ of kvm->lock to allow creating multiple vCPUs in parallel, and so sev_info.es_active can get toggled from false=>true in the destination VM after (or during) svm_vcpu_create(), resulting in an SEV{-ES} VM effectively having a non-SEV{-ES} vCPU. The issue manifests most visibly as a crash when trying to free a vCPU's NULL VMSA page in an SEV-ES VM, but any number of things can go wrong. BUG: unable to handle page fault for address: ffffebde00000000 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: Oops: 0000 [#1] SMP KASAN NOPTI CPU: 227 UID: 0 PID: 64063 Comm: syz.5.60023 Tainted: G U O 6.15.0-smp-DEV #2 NONE Tainted: [U]=USER, [O]=OOT_MODULE Hardware name: Google, Inc. Arcadia_IT_80/Arcadia_IT_80, BIOS 12.52.0-0 10/28/2024 RIP: 0010:constant_test_bit arch/x86/include/asm/bitops.h:206 [inline] RIP: 0010:arch_test_bit arch/x86/include/asm/bitops.h:238 [inline] RIP: 0010:_test_bit include/asm-generic/bitops/instrumented-non-atomic.h:142 [inline] RIP: 0010:PageHead include/linux/page-flags.h:866 [inline] RIP: 0010:___free_pages+0x3e/0x120 mm/page_alloc.c:5067 Code: <49> f7 06 40 00 00 00 75 05 45 31 ff eb 0c 66 90 4c 89 f0 4c 39 f0 RSP: 0018:ffff8984551978d0 EFLAGS: 00010246 RAX: 0000777f80000001 RBX: 0000000000000000 RCX: ffffffff918aeb98 RDX: 0000000000000000 RSI: 0000000000000008 RDI: ffffebde00000000 RBP: 0000000000000000 R08: ffffebde00000007 R09: 1ffffd7bc0000000 R10: dffffc0000000000 R11: fffff97bc0000001 R12: dffffc0000000000 R13: ffff8983e19751a8 R14: ffffebde00000000 R15: 1ffffd7bc0000000 FS: 0000000000000000(0000) GS:ffff89ee661d3000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffebde00000000 CR3: 000000793ceaa000 CR4: 0000000000350ef0 DR0: 0000000000000000 DR1: 0000000000000b5f DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Call Trace: <TASK> sev_free_vcpu+0x413/0x630 arch/x86/kvm/svm/sev.c:3169 svm_vcpu_free+0x13a/0x2a0 arch/x86/kvm/svm/svm.c:1515 kvm_arch_vcpu_destroy+0x6a/0x1d0 arch/x86/kvm/x86.c:12396 kvm_vcpu_destroy virt/kvm/kvm_main.c:470 [inline] kvm_destroy_vcpus+0xd1/0x300 virt/kvm/kvm_main.c:490 kvm_arch_destroy_vm+0x636/0x820 arch/x86/kvm/x86.c:12895 kvm_put_kvm+0xb8e/0xfb0 virt/kvm/kvm_main.c:1310 kvm_vm_release+0x48/0x60 virt/kvm/kvm_main.c:1369 __fput+0x3e4/0x9e0 fs/file_table.c:465 task_work_run+0x1a9/0x220 kernel/task_work.c:227 exit_task_work include/linux/task_work.h:40 [inline] do_exit+0x7f0/0x25b0 kernel/exit.c:953 do_group_exit+0x203/0x2d0 kernel/exit.c:1102 get_signal+0x1357/0x1480 kernel/signal.c:3034 arch_do_signal_or_restart+0x40/0x690 arch/x86/kernel/signal.c:337 exit_to_user_mode_loop kernel/entry/common.c:111 [inline] exit_to_user_mode_prepare include/linux/entry-common.h:329 [inline] __syscall_exit_to_user_mode_work kernel/entry/common.c:207 [inline] syscall_exit_to_user_mode+0x67/0xb0 kernel/entry/common.c:218 do_syscall_64+0x7c/0x150 arch/x86/entry/syscall_64.c:100 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7f87a898e969 </TASK> Modules linked in: gq(O) gsmi: Log Shutdown Reason 0x03 CR2: ffffebde00000000 ---[ end trace 0000000000000000 ]--- Deliberately don't check for a NULL VMSA when freeing the vCPU, as crashing the host is likely desirable due to the VMSA being consumed by hardware. E.g. if KVM manages to allow VMRUN on the vCPU, hardware may read/write a bogus VMSA page. Accessing PFN 0 is "fine"-ish now that it's sequestered away thanks to L1TF, but panicking in this scenario is preferable to potentially running with corrupted state. Reported-by: Alexander Potapenko <glider@google.com> Tested-by: Alexander Potapenko <glider@google.com> Fixes: 0b020f5af092 ("KVM: SEV: Add support for SEV-ES intra host migration") Fixes: b56639318bb2 ("KVM: SEV: Add support for SEV intra host migration") Cc: stable@vger.kernel.org Cc: James Houghton <jthoughton@google.com> Cc: Peter Gonda <pgonda@google.com> Reviewed-by: Liam Merwick <liam.merwick@oracle.com> Tested-by: Liam Merwick <liam.merwick@oracle.com> Reviewed-by: James Houghton <jthoughton@google.com> Link: https://lore.kernel.org/r/20250602224459.41505-2-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-07-17KVM: x86/xen: Allow 'out of range' event channel ports in IRQ routing table.David Woodhouse1-2/+13
commit a7f4dff21fd744d08fa956c243d2b1795f23cbf7 upstream. To avoid imposing an ordering constraint on userspace, allow 'invalid' event channel targets to be configured in the IRQ routing table. This is the same as accepting interrupts targeted at vCPUs which don't exist yet, which is already the case for both Xen event channels *and* for MSIs (which don't do any filtering of permitted APIC ID targets at all). If userspace actually *triggers* an IRQ with an invalid target, that will fail cleanly, as kvm_xen_set_evtchn_fast() also does the same range check. If KVM enforced that the IRQ target must be valid at the time it is *configured*, that would force userspace to create all vCPUs and do various other parts of setup (in this case, setting the Xen long_mode) before restoring the IRQ table. Cc: stable@vger.kernel.org Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Reviewed-by: Paul Durrant <paul@xen.org> Link: https://lore.kernel.org/r/e489252745ac4b53f1f7f50570b03fb416aa2065.camel@infradead.org [sean: massage comment] Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-07-10KVM: SVM: Advertise TSA CPUID bits to guestsBorislav Petkov (AMD)2-1/+15
Commit 31272abd5974b38ba312e9cf2ec2f09f9dd7dcba upstream. Synthesize the TSA CPUID feature bits for guests. Set TSA_{SQ,L1}_NO on unaffected machines. Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-07-10x86/bugs: Add a Transient Scheduler Attacks mitigationBorislav Petkov (AMD)1-0/+6
Commit d8010d4ba43e9f790925375a7de100604a5e2dba upstream. Add the required features detection glue to bugs.c et all in order to support the TSA mitigation. Co-developed-by: Kim Phillips <kim.phillips@amd.com> Signed-off-by: Kim Phillips <kim.phillips@amd.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-07-10x86/bugs: Rename MDS machinery to something more genericBorislav Petkov (AMD)1-1/+1
Commit f9af88a3d384c8b55beb5dc5483e5da0135fadbd upstream. It will be used by other x86 mitigations. No functional changes. Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-06-27KVM: VMX: Flush shadow VMCS on emergency rebootChao Gao1-1/+4
commit a0ee1d5faff135e28810f29e0f06328c66f89852 upstream. Ensure the shadow VMCS cache is evicted during an emergency reboot to prevent potential memory corruption if the cache is evicted after reboot. This issue was identified through code inspection, as __loaded_vmcs_clear() flushes both the normal VMCS and the shadow VMCS. Avoid checking the "launched" state during an emergency reboot, unlike the behavior in __loaded_vmcs_clear(). This is important because reboot NMIs can interfere with operations like copy_shadow_to_vmcs12(), where shadow VMCSes are loaded directly using VMPTRLD. In such cases, if NMIs occur right after the VMCS load, the shadow VMCSes will be active but the "launched" state may not be set. Fixes: 16f5b9034b69 ("KVM: nVMX: Copy processor-specific shadow-vmcs to VMCS12") Cc: stable@vger.kernel.org Signed-off-by: Chao Gao <chao.gao@intel.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Link: https://lore.kernel.org/r/20250324140849.2099723-1-chao.gao@intel.com Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-06-27KVM: SVM: Clear current_vmcb during vCPU free for all *possible* CPUsYosry Ahmed1-1/+1
commit 1bee4838eb3a2c689f23c7170ea66ae87ea7d93a upstream. When freeing a vCPU and thus its VMCB, clear current_vmcb for all possible CPUs, not just online CPUs, as it's theoretically possible a CPU could go offline and come back online in conjunction with KVM reusing the page for a new VMCB. Link: https://lore.kernel.org/all/20250320013759.3965869-1-yosry.ahmed@linux.dev Fixes: fd65d3142f73 ("kvm: svm: Ensure an IBPB on all affected CPUs when freeing a vmcb") Cc: stable@vger.kernel.org Cc: Jim Mattson <jmattson@google.com> Signed-off-by: Yosry Ahmed <yosry.ahmed@linux.dev> [sean: split to separate patch, write changelog] Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-05-22KVM: x86/mmu: Prevent installing hugepages when mem attributes are changingSean Christopherson1-16/+53
[ Upstream commit 9129633d568edd36aa22bf703b12835153cec985 ] When changing memory attributes on a subset of a potential hugepage, add the hugepage to the invalidation range tracking to prevent installing a hugepage until the attributes are fully updated. Like the actual hugepage tracking updates in kvm_arch_post_set_memory_attributes(), process only the head and tail pages, as any potential hugepages that are entirely covered by the range will already be tracked. Note, only hugepage chunks whose current attributes are NOT mixed need to be added to the invalidation set, as mixed attributes already prevent installing a hugepage, and it's perfectly safe to install a smaller mapping for a gfn whose attributes aren't changing. Fixes: 8dd2eee9d526 ("KVM: x86/mmu: Handle page fault for private memory") Cc: stable@vger.kernel.org Reported-by: Michael Roth <michael.roth@amd.com> Tested-by: Michael Roth <michael.roth@amd.com> Link: https://lore.kernel.org/r/20250430220954.522672-1-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2025-05-22KVM: Add member to struct kvm_gfn_range to indicate private/sharedIsaku Yamahata1-0/+6
[ Upstream commit dca6c88532322830d5d92486467fcc91b67a9ad8 ] Add new members to strut kvm_gfn_range to indicate which mapping (private-vs-shared) to operate on: enum kvm_gfn_range_filter attr_filter. Update the core zapping operations to set them appropriately. TDX utilizes two GPA aliases for the same memslots, one for memory that is for private memory and one that is for shared. For private memory, KVM cannot always perform the same operations it does on memory for default VMs, such as zapping pages and having them be faulted back in, as this requires guest coordination. However, some operations such as guest driven conversion of memory between private and shared should zap private memory. Internally to the MMU, private and shared mappings are tracked on separate roots. Mapping and zapping operations will operate on the respective GFN alias for each root (private or shared). So zapping operations will by default zap both aliases. Add fields in struct kvm_gfn_range to allow callers to specify which aliases so they can only target the aliases appropriate for their specific operation. There was feedback that target aliases should be specified such that the default value (0) is to operate on both aliases. Several options were considered. Several variations of having separate bools defined such that the default behavior was to process both aliases. They either allowed nonsensical configurations, or were confusing for the caller. A simple enum was also explored and was close, but was hard to process in the caller. Instead, use an enum with the default value (0) reserved as a disallowed value. Catch ranges that didn't have the target aliases specified by looking for that specific value. Set target alias with enum appropriately for these MMU operations: - For KVM's mmu notifier callbacks, zap shared pages only because private pages won't have a userspace mapping - For setting memory attributes, kvm_arch_pre_set_memory_attributes() chooses the aliases based on the attribute. - For guest_memfd invalidations, zap private only. Link: https://lore.kernel.org/kvm/ZivIF9vjKcuGie3s@google.com/ Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com> Co-developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Message-ID: <20240718211230.1492011-3-rick.p.edgecombe@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Stable-dep-of: 9129633d568e ("KVM: x86/mmu: Prevent installing hugepages when mem attributes are changing") Signed-off-by: Sasha Levin <sashal@kernel.org>
2025-05-18x86/its: Enumerate Indirect Target Selection (ITS) bugPawan Gupta1-1/+3
commit 159013a7ca18c271ff64192deb62a689b622d860 upstream. ITS bug in some pre-Alderlake Intel CPUs may allow indirect branches in the first half of a cache line get predicted to a target of a branch located in the second half of the cache line. Set X86_BUG_ITS on affected CPUs. Mitigation to follow in later commits. Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org> Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-05-18KVM: SVM: Forcibly leave SMM mode on SHUTDOWN interceptionMikhail Lobanov2-0/+5
commit a2620f8932fa9fdabc3d78ed6efb004ca409019f upstream. Previously, commit ed129ec9057f ("KVM: x86: forcibly leave nested mode on vCPU reset") addressed an issue where a triple fault occurring in nested mode could lead to use-after-free scenarios. However, the commit did not handle the analogous situation for System Management Mode (SMM). This omission results in triggering a WARN when KVM forces a vCPU INIT after SHUTDOWN interception while the vCPU is in SMM. This situation was reprodused using Syzkaller by: 1) Creating a KVM VM and vCPU 2) Sending a KVM_SMI ioctl to explicitly enter SMM 3) Executing invalid instructions causing consecutive exceptions and eventually a triple fault The issue manifests as follows: WARNING: CPU: 0 PID: 25506 at arch/x86/kvm/x86.c:12112 kvm_vcpu_reset+0x1d2/0x1530 arch/x86/kvm/x86.c:12112 Modules linked in: CPU: 0 PID: 25506 Comm: syz-executor.0 Not tainted 6.1.130-syzkaller-00157-g164fe5dde9b6 #0 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014 RIP: 0010:kvm_vcpu_reset+0x1d2/0x1530 arch/x86/kvm/x86.c:12112 Call Trace: <TASK> shutdown_interception+0x66/0xb0 arch/x86/kvm/svm/svm.c:2136 svm_invoke_exit_handler+0x110/0x530 arch/x86/kvm/svm/svm.c:3395 svm_handle_exit+0x424/0x920 arch/x86/kvm/svm/svm.c:3457 vcpu_enter_guest arch/x86/kvm/x86.c:10959 [inline] vcpu_run+0x2c43/0x5a90 arch/x86/kvm/x86.c:11062 kvm_arch_vcpu_ioctl_run+0x50f/0x1cf0 arch/x86/kvm/x86.c:11283 kvm_vcpu_ioctl+0x570/0xf00 arch/x86/kvm/../../../virt/kvm/kvm_main.c:4122 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:870 [inline] __se_sys_ioctl fs/ioctl.c:856 [inline] __x64_sys_ioctl+0x19a/0x210 fs/ioctl.c:856 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x35/0x80 arch/x86/entry/common.c:81 entry_SYSCALL_64_after_hwframe+0x6e/0xd8 Architecturally, INIT is blocked when the CPU is in SMM, hence KVM's WARN() in kvm_vcpu_reset() to guard against KVM bugs, e.g. to detect improper emulation of INIT. SHUTDOWN on SVM is a weird edge case where KVM needs to do _something_ sane with the VMCB, since it's technically undefined, and INIT is the least awful choice given KVM's ABI. So, double down on stuffing INIT on SHUTDOWN, and force the vCPU out of SMM to avoid any weirdness (and the WARN). Found by Linux Verification Center (linuxtesting.org) with Syzkaller. Fixes: ed129ec9057f ("KVM: x86: forcibly leave nested mode on vCPU reset") Cc: stable@vger.kernel.org Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Mikhail Lobanov <m.lobanov@rosa.ru> Link: https://lore.kernel.org/r/20250414171207.155121-1-m.lobanov@rosa.ru [sean: massage changelog, make it clear this isn't architectural behavior] Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-05-02KVM: x86: Take irqfds.lock when adding/deleting IRQ bypass producerSean Christopherson1-2/+15
commit f1fb088d9cecde5c3066d8ff8846789667519b7d upstream. Take irqfds.lock when adding/deleting an IRQ bypass producer to ensure irqfd->producer isn't modified while kvm_irq_routing_update() is running. The only lock held when a producer is added/removed is irqbypass's mutex. Fixes: 872768800652 ("KVM: x86: select IRQ_BYPASS_MANAGER") Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <seanjc@google.com> Message-ID: <20250404193923.1413163-5-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-05-02KVM: x86: Reset IRTE to host control if *new* route isn't postableSean Christopherson2-45/+41
commit 9bcac97dc42d2f4da8229d18feb0fe2b1ce523a2 upstream. Restore an IRTE back to host control (remapped or posted MSI mode) if the *new* GSI route prevents posting the IRQ directly to a vCPU, regardless of the GSI routing type. Updating the IRTE if and only if the new GSI is an MSI results in KVM leaving an IRTE posting to a vCPU. The dangling IRTE can result in interrupts being incorrectly delivered to the guest, and in the worst case scenario can result in use-after-free, e.g. if the VM is torn down, but the underlying host IRQ isn't freed. Fixes: efc644048ecd ("KVM: x86: Update IRTE for posted-interrupts") Fixes: 411b44ba80ab ("svm: Implements update_pi_irte hook to setup posted interrupt") Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <seanjc@google.com> Message-ID: <20250404193923.1413163-3-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-05-02KVM: x86: Explicitly treat routing entry type changes as changesSean Christopherson1-1/+2
commit bcda70c56f3e718465cab2aad260cf34183ce1ce upstream. Explicitly treat type differences as GSI routing changes, as comparing MSI data between two entries could get a false negative, e.g. if userspace changed the type but left the type-specific data as-is. Fixes: 515a0c79e796 ("kvm: irqfd: avoid update unmodified entries of the routing") Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <seanjc@google.com> Message-ID: <20250404193923.1413163-4-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-05-02KVM: SVM: Allocate IR data using atomic allocationSean Christopherson1-1/+1
commit 7537deda36521fa8fff9133b39c46e31893606f2 upstream. Allocate SVM's interrupt remapping metadata using GFP_ATOMIC as svm_ir_list_add() is called with IRQs are disabled and irqfs.lock held when kvm_irq_routing_update() reacts to GSI routing changes. Fixes: 411b44ba80ab ("svm: Implements update_pi_irte hook to setup posted interrupt") Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <seanjc@google.com> Message-ID: <20250404193923.1413163-2-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-05-02KVM: SVM: Disable AVIC on SNP-enabled system without HvInUseWrAllowed featureSuravee Suthikulpanit1-0/+6
commit d81cadbe164265337f149cf31c9462d7217c1eed upstream. On SNP-enabled system, VMRUN marks AVIC Backing Page as in-use while the guest is running for both secure and non-secure guest. Any hypervisor write to the in-use vCPU's AVIC backing page (e.g. to inject an interrupt) will generate unexpected #PF in the host. Currently, attempt to run AVIC guest would result in the following error: BUG: unable to handle page fault for address: ff3a442e549cc270 #PF: supervisor write access in kernel mode #PF: error_code(0x80000003) - RMP violation PGD b6ee01067 P4D b6ee02067 PUD 10096d063 PMD 11c540063 PTE 80000001149cc163 SEV-SNP: PFN 0x1149cc unassigned, dumping non-zero entries in 2M PFN region: [0x114800 - 0x114a00] ... Newer AMD system is enhanced to allow hypervisor to modify the backing page for non-secure guest on SNP-enabled system. This enhancement is available when the CPUID Fn8000_001F_EAX bit 30 is set (HvInUseWrAllowed). This table describes AVIC support matrix w.r.t. SNP enablement: | Non-SNP system | SNP system ----------------------------------------------------- Non-SNP guest | AVIC Activate | AVIC Activate iff | | HvInuseWrAllowed=1 ----------------------------------------------------- SNP guest | N/A | Secure AVIC Therefore, check and disable AVIC in kvm_amd driver when the feature is not available on SNP-enabled system. See the AMD64 Architecture Programmer’s Manual (APM) Volume 2 for detail. (https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/ programmer-references/40332.pdf) Fixes: 216d106c7ff7 ("x86/sev: Add SEV-SNP host initialization support") Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Link: https://lore.kernel.org/r/20241104075845.7583-1-suravee.suthikulpanit@amd.com Signed-off-by: Sean Christopherson <seanjc@google.com> Cc: Naveen N Rao <naveen@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-04-20KVM: x86: Acquire SRCU in KVM_GET_MP_STATE to protect guest memory accessesSean Christopherson1-0/+4
commit ef01cac401f18647d62720cf773d7bb0541827da upstream. Acquire a lock on kvm->srcu when userspace is getting MP state to handle a rather extreme edge case where "accepting" APIC events, i.e. processing pending INIT or SIPI, can trigger accesses to guest memory. If the vCPU is in L2 with INIT *and* a TRIPLE_FAULT request pending, then getting MP state will trigger a nested VM-Exit by way of ->check_nested_events(), and emuating the nested VM-Exit can access guest memory. The splat was originally hit by syzkaller on a Google-internal kernel, and reproduced on an upstream kernel by hacking the triple_fault_event_test selftest to stuff a pending INIT, store an MSR on VM-Exit (to generate a memory access on VMX), and do vcpu_mp_state_get() to trigger the scenario. ============================= WARNING: suspicious RCU usage 6.14.0-rc3-b112d356288b-vmx/pi_lockdep_false_pos-lock #3 Not tainted ----------------------------- include/linux/kvm_host.h:1058 suspicious rcu_dereference_check() usage! other info that might help us debug this: rcu_scheduler_active = 2, debug_locks = 1 1 lock held by triple_fault_ev/1256: #0: ffff88810df5a330 (&vcpu->mutex){+.+.}-{4:4}, at: kvm_vcpu_ioctl+0x8b/0x9a0 [kvm] stack backtrace: CPU: 11 UID: 1000 PID: 1256 Comm: triple_fault_ev Not tainted 6.14.0-rc3-b112d356288b-vmx #3 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 Call Trace: <TASK> dump_stack_lvl+0x7f/0x90 lockdep_rcu_suspicious+0x144/0x190 kvm_vcpu_gfn_to_memslot+0x156/0x180 [kvm] kvm_vcpu_read_guest+0x3e/0x90 [kvm] read_and_check_msr_entry+0x2e/0x180 [kvm_intel] __nested_vmx_vmexit+0x550/0xde0 [kvm_intel] kvm_check_nested_events+0x1b/0x30 [kvm] kvm_apic_accept_events+0x33/0x100 [kvm] kvm_arch_vcpu_ioctl_get_mpstate+0x30/0x1d0 [kvm] kvm_vcpu_ioctl+0x33e/0x9a0 [kvm] __x64_sys_ioctl+0x8b/0xb0 do_syscall_64+0x6c/0x170 entry_SYSCALL_64_after_hwframe+0x4b/0x53 </TASK> Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <seanjc@google.com> Message-ID: <20250401150504.829812-1-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-04-20KVM: x86: Explicitly zero-initialize on-stack CPUID unionsSean Christopherson1-5/+3
commit bc52ae0a708cb6fa3926d11c88e3c55e1171b4a1 upstream. Explicitly zero/empty-initialize the unions used for PMU related CPUID entries, instead of manually zeroing all fields (hopefully), or in the case of 0x80000022, relying on the compiler to clobber the uninitialized bitfields. Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Jim Mattson <jmattson@google.com> Message-ID: <20250315024102.2361628-1-seanjc@google.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-04-10KVM: SVM: Don't change target vCPU state on AP Creation VMGEXIT errorSean Christopherson1-7/+6
commit d26638bfcdfc5c8c4e085dc3f5976a0443abab3c upstream. If KVM rejects an AP Creation event, leave the target vCPU state as-is. Nothing in the GHCB suggests the hypervisor is *allowed* to muck with vCPU state on failure, let alone required to do so. Furthermore, kicking only in the !ON_INIT case leads to divergent behavior, and even the "kick" case is non-deterministic. E.g. if an ON_INIT request fails, the guest can successfully retry if the fixed AP Creation request is made prior to sending INIT. And if a !ON_INIT fails, the guest can successfully retry if the fixed AP Creation request is handled before the target vCPU processes KVM's KVM_REQ_UPDATE_PROTECTED_GUEST_STATE. Fixes: e366f92ea99e ("KVM: SEV: Support SEV-SNP AP Creation NAE event") Cc: stable@vger.kernel.org Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Pankaj Gupta <pankaj.gupta@amd.com> Link: https://lore.kernel.org/r/20250227012541.3234589-5-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-04-10KVM: x86: block KVM_CAP_SYNC_REGS if guest state is protectedPaolo Bonzini1-4/+11
commit 74c1807f6c4feddb3c3cb1056c54531d4adbaea6 upstream. KVM_CAP_SYNC_REGS does not make sense for VMs with protected guest state, since the register values cannot actually be written. Return 0 when using the VM-level KVM_CHECK_EXTENSION ioctl, and accordingly return -EINVAL from KVM_RUN if the valid/dirty fields are nonzero. However, on exit from KVM_RUN userspace could have placed a nonzero value into kvm_run->kvm_valid_regs, so check guest_state_protected again and skip store_regs() in that case. Cc: stable@vger.kernel.org Fixes: 517987e3fb19 ("KVM: x86: add fields to struct kvm_arch for CoCo features") Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Message-ID: <20250306202923.646075-1-pbonzini@redhat.com> Reviewed-by: Pankaj Gupta <pankaj.gupta@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-03-22vhost: return task creation error instead of NULLKeith Busch1-1/+1
[ Upstream commit cb380909ae3b1ebf14d6a455a4f92d7916d790cb ] Lets callers distinguish why the vhost task creation failed. No one currently cares why it failed, so no real runtime change from this patch, but that will not be the case for long. Signed-off-by: Keith Busch <kbusch@kernel.org> Message-ID: <20250227230631.303431-2-kbusch@meta.com> Reviewed-by: Mike Christie <michael.christie@oracle.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2025-03-13KVM: x86: Explicitly zero EAX and EBX when PERFMON_V2 isn't supported by KVMXiaoyao Li1-1/+1
commit f9dc8fb3afc968042bdaf4b6e445a9272071c9f3 upstream. Fix a goof where KVM sets CPUID.0x80000022.EAX to CPUID.0x80000022.EBX instead of zeroing both when PERFMON_V2 isn't supported by KVM. In practice, barring a buggy CPU (or vCPU model when running nested) only the !enable_pmu case is affected, as KVM always supports PERFMON_V2 if it's available in hardware, i.e. CPUID.0x80000022.EBX will be '0' if PERFMON_V2 is unsupported. For the !enable_pmu case, the bug is relatively benign as KVM will refuse to enable PMU capabilities, but a VMM that reflects KVM's supported CPUID into the guest could inadvertently induce #GPs in the guest due to advertising support for MSRs that KVM refuses to emulate. Fixes: 94cdeebd8211 ("KVM: x86/cpuid: Add AMD CPUID ExtPerfMonAndDbg leaf 0x80000022") Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com> Link: https://lore.kernel.org/r/20250304082314.472202-3-xiaoyao.li@intel.com [sean: massage shortlog and changelog, tag for stable] Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-03-13KVM: x86: Snapshot the host's DEBUGCTL after disabling IRQsSean Christopherson1-1/+2
commit 189ecdb3e112da703ac0699f4ec76aa78122f911 upstream. Snapshot the host's DEBUGCTL after disabling IRQs, as perf can toggle debugctl bits from IRQ context, e.g. when enabling/disabling events via smp_call_function_single(). Taking the snapshot (long) before IRQs are disabled could result in KVM effectively clobbering DEBUGCTL due to using a stale snapshot. Cc: stable@vger.kernel.org Reviewed-and-tested-by: Ravi Bangoria <ravi.bangoria@amd.com> Link: https://lore.kernel.org/r/20250227222411.3490595-6-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-03-13KVM: SVM: Manually context switch DEBUGCTL if LBR virtualization is disabledSean Christopherson1-0/+14
commit 433265870ab3455b418885bff48fa5fd02f7e448 upstream. Manually load the guest's DEBUGCTL prior to VMRUN (and restore the host's value on #VMEXIT) if it diverges from the host's value and LBR virtualization is disabled, as hardware only context switches DEBUGCTL if LBR virtualization is fully enabled. Running the guest with the host's value has likely been mildly problematic for quite some time, e.g. it will result in undesirable behavior if BTF diverges (with the caveat that KVM now suppresses guest BTF due to lack of support). But the bug became fatal with the introduction of Bus Lock Trap ("Detect" in kernel paralance) support for AMD (commit 408eb7417a92 ("x86/bus_lock: Add support for AMD")), as a bus lock in the guest will trigger an unexpected #DB. Note, suppressing the bus lock #DB, i.e. simply resuming the guest without injecting a #DB, is not an option. It wouldn't address the general issue with DEBUGCTL, e.g. for things like BTF, and there are other guest-visible side effects if BusLockTrap is left enabled. If BusLockTrap is disabled, then DR6.BLD is reserved-to-1; any attempts to clear it by software are ignored. But if BusLockTrap is enabled, software can clear DR6.BLD: Software enables bus lock trap by setting DebugCtl MSR[BLCKDB] (bit 2) to 1. When bus lock trap is enabled, ... The processor indicates that this #DB was caused by a bus lock by clearing DR6[BLD] (bit 11). DR6[11] previously had been defined to be always 1. and clearing DR6.BLD is "sticky" in that it's not set (i.e. lowered) by other #DBs: All other #DB exceptions leave DR6[BLD] unmodified E.g. leaving BusLockTrap enable can confuse a legacy guest that writes '0' to reset DR6. Reported-by: rangemachine@gmail.com Reported-by: whanos@sergal.fun Closes: https://bugzilla.kernel.org/show_bug.cgi?id=219787 Closes: https://lore.kernel.org/all/bug-219787-28872@https.bugzilla.kernel.org%2F Cc: Ravi Bangoria <ravi.bangoria@amd.com> Cc: stable@vger.kernel.org Reviewed-and-tested-by: Ravi Bangoria <ravi.bangoria@amd.com> Link: https://lore.kernel.org/r/20250227222411.3490595-5-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-03-13KVM: x86: Snapshot the host's DEBUGCTL in common x86Sean Christopherson3-8/+3
commit fb71c795935652fa20eaf9517ca9547f5af99a76 upstream. Move KVM's snapshot of DEBUGCTL to kvm_vcpu_arch and take the snapshot in common x86, so that SVM can also use the snapshot. Opportunistically change the field to a u64. While bits 63:32 are reserved on AMD, not mentioned at all in Intel's SDM, and managed as an "unsigned long" by the kernel, DEBUGCTL is an MSR and therefore a 64-bit value. Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com> Cc: stable@vger.kernel.org Reviewed-and-tested-by: Ravi Bangoria <ravi.bangoria@amd.com> Link: https://lore.kernel.org/r/20250227222411.3490595-4-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-03-13KVM: SVM: Suppress DEBUGCTL.BTF on AMDSean Christopherson2-1/+10
commit d0eac42f5cecce009d315655bee341304fbe075e upstream. Mark BTF as reserved in DEBUGCTL on AMD, as KVM doesn't actually support BTF, and fully enabling BTF virtualization is non-trivial due to interactions with the emulator, guest_debug, #DB interception, nested SVM, etc. Don't inject #GP if the guest attempts to set BTF, as there's no way to communicate lack of support to the guest, and instead suppress the flag and treat the WRMSR as (partially) unsupported. In short, make KVM behave the same on AMD and Intel (VMX already squashes BTF). Note, due to other bugs in KVM's handling of DEBUGCTL, the only way BTF has "worked" in any capacity is if the guest simultaneously enables LBRs. Reported-by: Ravi Bangoria <ravi.bangoria@amd.com> Cc: stable@vger.kernel.org Reviewed-and-tested-by: Ravi Bangoria <ravi.bangoria@amd.com> Link: https://lore.kernel.org/r/20250227222411.3490595-3-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-03-13KVM: SVM: Drop DEBUGCTL[5:2] from guest's effective valueSean Christopherson2-1/+13
commit ee89e8013383d50a27ea9bf3c8a69eed6799856f upstream. Drop bits 5:2 from the guest's effective DEBUGCTL value, as AMD changed the architectural behavior of the bits and broke backwards compatibility. On CPUs without BusLockTrap (or at least, in APMs from before ~2023), bits 5:2 controlled the behavior of external pins: Performance-Monitoring/Breakpoint Pin-Control (PBi)—Bits 5:2, read/write. Software uses thesebits to control the type of information reported by the four external performance-monitoring/breakpoint pins on the processor. When a PBi bit is cleared to 0, the corresponding external pin (BPi) reports performance-monitor information. When a PBi bit is set to 1, the corresponding external pin (BPi) reports breakpoint information. With the introduction of BusLockTrap, presumably to be compatible with Intel CPUs, AMD redefined bit 2 to be BLCKDB: Bus Lock #DB Trap (BLCKDB)—Bit 2, read/write. Software sets this bit to enable generation of a #DB trap following successful execution of a bus lock when CPL is > 0. and redefined bits 5:3 (and bit 6) as "6:3 Reserved MBZ". Ideally, KVM would treat bits 5:2 as reserved. Defer that change to a feature cleanup to avoid breaking existing guest in LTS kernels. For now, drop the bits to retain backwards compatibility (of a sort). Note, dropping bits 5:2 is still a guest-visible change, e.g. if the guest is enabling LBRs *and* the legacy PBi bits, then the state of the PBi bits is visible to the guest, whereas now the guest will always see '0'. Reported-by: Ravi Bangoria <ravi.bangoria@amd.com> Cc: stable@vger.kernel.org Reviewed-and-tested-by: Ravi Bangoria <ravi.bangoria@amd.com> Link: https://lore.kernel.org/r/20250227222411.3490595-2-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-03-13KVM: SVM: Save host DR masks on CPUs with DebugSwapSean Christopherson1-3/+10
commit b2653cd3b75f62f29b72df4070e20357acb52bc4 upstream. When running SEV-SNP guests on a CPU that supports DebugSwap, always save the host's DR0..DR3 mask MSR values irrespective of whether or not DebugSwap is enabled, to ensure the host values aren't clobbered by the CPU. And for now, also save DR0..DR3, even though doing so isn't necessary (see below). SVM_VMGEXIT_AP_CREATE is deeply flawed in that it allows the *guest* to create a VMSA with guest-controlled SEV_FEATURES. A well behaved guest can inform the hypervisor, i.e. KVM, of its "requested" features, but on CPUs without ALLOWED_SEV_FEATURES support, nothing prevents the guest from lying about which SEV features are being enabled (or not!). If a misbehaving guest enables DebugSwap in a secondary vCPU's VMSA, the CPU will load the DR0..DR3 mask MSRs on #VMEXIT, i.e. will clobber the MSRs with '0' if KVM doesn't save its desired value. Note, DR0..DR3 themselves are "ok", as DR7 is reset on #VMEXIT, and KVM restores all DRs in common x86 code as needed via hw_breakpoint_restore(). I.e. there is no risk of host DR0..DR3 being clobbered (when it matters). However, there is a flaw in the opposite direction; because the guest can lie about enabling DebugSwap, i.e. can *disable* DebugSwap without KVM's knowledge, KVM must not rely on the CPU to restore DRs. Defer fixing that wart, as it's more of a documentation issue than a bug in the code. Note, KVM added support for DebugSwap on commit d1f85fbe836e ("KVM: SEV: Enable data breakpoints in SEV-ES"), but that is not an appropriate Fixes, as the underlying flaw exists in hardware, not in KVM. I.e. all kernels that support SEV-SNP need to be patched, not just kernels with KVM's full support for DebugSwap (ignoring that DebugSwap support landed first). Opportunistically fix an incorrect statement in the comment; on CPUs without DebugSwap, the CPU does NOT save or load debug registers, i.e. Fixes: e366f92ea99e ("KVM: SEV: Support SEV-SNP AP Creation NAE event") Cc: stable@vger.kernel.org Cc: Naveen N Rao <naveen@kernel.org> Cc: Kim Phillips <kim.phillips@amd.com> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Alexey Kardashevskiy <aik@amd.com> Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Link: https://lore.kernel.org/r/20250227012541.3234589-2-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-03-13KVM: SVM: Set RFLAGS.IF=1 in C code, to get VMRUN out of the STI shadowSean Christopherson2-9/+15
commit be45bc4eff33d9a7dae84a2150f242a91a617402 upstream. Enable/disable local IRQs, i.e. set/clear RFLAGS.IF, in the common svm_vcpu_enter_exit() just after/before guest_state_{enter,exit}_irqoff() so that VMRUN is not executed in an STI shadow. AMD CPUs have a quirk (some would say "bug"), where the STI shadow bleeds into the guest's intr_state field if a #VMEXIT occurs during injection of an event, i.e. if the VMRUN doesn't complete before the subsequent #VMEXIT. The spurious "interrupts masked" state is relatively benign, as it only occurs during event injection and is transient. Because KVM is already injecting an event, the guest can't be in HLT, and if KVM is querying IRQ blocking for injection, then KVM would need to force an immediate exit anyways since injecting multiple events is impossible. However, because KVM copies int_state verbatim from vmcb02 to vmcb12, the spurious STI shadow is visible to L1 when running a nested VM, which can trip sanity checks, e.g. in VMware's VMM. Hoist the STI+CLI all the way to C code, as the aforementioned calls to guest_state_{enter,exit}_irqoff() already inform lockdep that IRQs are enabled/disabled, and taking a fault on VMRUN with RFLAGS.IF=1 is already possible. I.e. if there's kernel code that is confused by running with RFLAGS.IF=1, then it's already a problem. In practice, since GIF=0 also blocks NMIs, the only change in exposure to non-KVM code (relative to surrounding VMRUN with STI+CLI) is exception handling code, and except for the kvm_rebooting=1 case, all exception in the core VM-Enter/VM-Exit path are fatal. Use the "raw" variants to enable/disable IRQs to avoid tracing in the "no instrumentation" code; the guest state helpers also take care of tracing IRQ state. Oppurtunstically document why KVM needs to do STI in the first place. Reported-by: Doug Covelli <doug.covelli@broadcom.com> Closes: https://lore.kernel.org/all/CADH9ctBs1YPmE4aCfGPNBwA10cA8RuAk2gO7542DjMZgs4uzJQ@mail.gmail.com Fixes: f14eec0a3203 ("KVM: SVM: move more vmentry code to assembly") Cc: stable@vger.kernel.org Reviewed-by: Jim Mattson <jmattson@google.com> Link: https://lore.kernel.org/r/20250224165442.2338294-2-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-02-27KVM: nVMX: Defer SVI update to vmcs01 on EOI when L2 is active w/o VIDChao Gao5-0/+39
[ Upstream commit 04bc93cf49d16d01753b95ddb5d4f230b809a991 ] If KVM emulates an EOI for L1's virtual APIC while L2 is active, defer updating GUEST_INTERUPT_STATUS.SVI, i.e. the VMCS's cache of the highest in-service IRQ, until L1 is active, as vmcs01, not vmcs02, needs to track vISR. The missed SVI update for vmcs01 can result in L1 interrupts being incorrectly blocked, e.g. if there is a pending interrupt with lower priority than the interrupt that was EOI'd. This bug only affects use cases where L1's vAPIC is effectively passed through to L2, e.g. in a pKVM scenario where L2 is L1's depriveleged host, as KVM will only emulate an EOI for L1's vAPIC if Virtual Interrupt Delivery (VID) is disabled in vmc12, and L1 isn't intercepting L2 accesses to its (virtual) APIC page (or if x2APIC is enabled, the EOI MSR). WARN() if KVM updates L1's ISR while L2 is active with VID enabled, as an EOI from L2 is supposed to affect L2's vAPIC, but still defer the update, to try to keep L1 alive. Specifically, KVM forwards all APICv-related VM-Exits to L1 via nested_vmx_l1_wants_exit(): case EXIT_REASON_APIC_ACCESS: case EXIT_REASON_APIC_WRITE: case EXIT_REASON_EOI_INDUCED: /* * The controls for "virtualize APIC accesses," "APIC- * register virtualization," and "virtual-interrupt * delivery" only come from vmcs12. */ return true; Fixes: c7c9c56ca26f ("x86, apicv: add virtual interrupt delivery support") Cc: stable@vger.kernel.org Link: https://lore.kernel.org/kvm/20230312180048.1778187-1-jason.cj.chen@intel.com Reported-by: Markku Ahvenjärvi <mankku@gmail.com> Closes: https://lore.kernel.org/all/20240920080012.74405-1-mankku@gmail.com Cc: Janne Karhunen <janne.karhunen@gmail.com> Signed-off-by: Chao Gao <chao.gao@intel.com> [sean: drop request, handle in VMX, write changelog] Tested-by: Chao Gao <chao.gao@intel.com> Link: https://lore.kernel.org/r/20241128000010.4051275-3-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2025-02-27KVM: x86: Inline kvm_get_apic_mode() in lapic.hSean Christopherson2-7/+5
[ Upstream commit adfec1f4591cf8c69664104eaf41e06b2e7b767e ] Inline kvm_get_apic_mode() in lapic.h to avoid a CALL+RET as well as an export. The underlying kvm_apic_mode() helper is public information, i.e. there is no state/information that needs to be hidden from vendor modules. No functional change intended. Reviewed-by: Kai Huang <kai.huang@intel.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Link: https://lore.kernel.org/r/20241009181742.1128779-5-seanjc@google.com Link: https://lore.kernel.org/r/20241101183555.1794700-5-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> Stable-dep-of: 04bc93cf49d1 ("KVM: nVMX: Defer SVI update to vmcs01 on EOI when L2 is active w/o VID") Signed-off-by: Sasha Levin <sashal@kernel.org>
2025-02-27KVM: x86: Get vcpu->arch.apic_base directly and drop kvm_get_apic_base()Sean Christopherson2-10/+4
[ Upstream commit d91060e342a66b52d9bd64f0b123b9c306293b76 ] Access KVM's emulated APIC base MSR value directly instead of bouncing through a helper, as there is no reason to add a layer of indirection, and there are other MSRs with a "set" but no "get", e.g. EFER. No functional change intended. Reviewed-by: Kai Huang <kai.huang@intel.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Link: https://lore.kernel.org/r/20241009181742.1128779-4-seanjc@google.com Link: https://lore.kernel.org/r/20241101183555.1794700-4-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> Stable-dep-of: 04bc93cf49d1 ("KVM: nVMX: Defer SVI update to vmcs01 on EOI when L2 is active w/o VID") Signed-off-by: Sasha Levin <sashal@kernel.org>