summaryrefslogtreecommitdiff
path: root/arch/x86/kvm/x86.c
AgeCommit message (Collapse)AuthorFilesLines
2023-11-28KVM: x86: Ignore MSR_AMD64_TW_CFG accessMaciej S. Szmigiero1-0/+2
commit 2770d4722036d6bd24bcb78e9cd7f6e572077d03 upstream. Hyper-V enabled Windows Server 2022 KVM VM cannot be started on Zen1 Ryzen since it crashes at boot with SYSTEM_THREAD_EXCEPTION_NOT_HANDLED + STATUS_PRIVILEGED_INSTRUCTION (in other words, because of an unexpected #GP in the guest kernel). This is because Windows tries to set bit 8 in MSR_AMD64_TW_CFG and can't handle receiving a #GP when doing so. Give this MSR the same treatment that commit 2e32b7190641 ("x86, kvm: Add MSR_AMD64_BU_CFG2 to the list of ignored MSRs") gave MSR_AMD64_BU_CFG2 under justification that this MSR is baremetal-relevant only. Although apparently it was then needed for Linux guests, not Windows as in this case. With this change, the aforementioned guest setup is able to finish booting successfully. This issue can be reproduced either on a Summit Ridge Ryzen (with just "-cpu host") or on a Naples EPYC (with "-cpu host,stepping=1" since EPYC is ordinarily stepping 2). Alternatively, userspace could solve the problem by using MSR filters, but forcing every userspace to define a filter isn't very friendly and doesn't add much, if any, value. The only potential hiccup is if one of these "baremetal-only" MSRs ever requires actual emulation and/or has F/M/S specific behavior. But if that happens, then KVM can still punt *that* handling to userspace since userspace MSR filters "win" over KVM's default handling. Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/1ce85d9c7c9e9632393816cf19c902e0a3f411f1.1697731406.git.maciej.szmigiero@oracle.com [sean: call out MSR filtering alternative] Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-16x86: Move gds_ucode_mitigated() declaration to headerArnd Bergmann1-2/+0
commit eb3515dc99c7c85f4170b50838136b2a193f8012 upstream. The declaration got placed in the .c file of the caller, but that causes a warning for the definition: arch/x86/kernel/cpu/bugs.c:682:6: error: no previous prototype for 'gds_ucode_mitigated' [-Werror=missing-prototypes] Move it to a header where both sides can observe it instead. Fixes: 81ac7e5d74174 ("KVM: Add GDS_NO support to KVM") Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Tested-by: Daniel Sneddon <daniel.sneddon@linux.intel.com> Cc: stable@kernel.org Link: https://lore.kernel.org/all/20230809130530.1913368-2-arnd%40kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-08KVM: Add GDS_NO support to KVMDaniel Sneddon1-0/+5
commit 81ac7e5d741742d650b4ed6186c4826c1a0631a7 upstream Gather Data Sampling (GDS) is a transient execution attack using gather instructions from the AVX2 and AVX512 extensions. This attack allows malicious code to infer data that was previously stored in vector registers. Systems that are not vulnerable to GDS will set the GDS_NO bit of the IA32_ARCH_CAPABILITIES MSR. This is useful for VM guests that may think they are on vulnerable systems that are, in fact, not affected. Guests that are running on affected hosts where the mitigation is enabled are protected as if they were running on an unaffected system. On all hosts that are not affected or that are mitigated, set the GDS_NO bit. Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-02-22kvm: initialize all of the kvm_debugregs structure before sending it to ↵Greg Kroah-Hartman1-2/+1
userspace commit 2c10b61421a28e95a46ab489fd56c0f442ff6952 upstream. When calling the KVM_GET_DEBUGREGS ioctl, on some configurations, there might be some unitialized portions of the kvm_debugregs structure that could be copied to userspace. Prevent this as is done in the other kvm ioctls, by setting the whole structure to 0 before copying anything into it. Bonus is that this reduces the lines of code as the explicit flag setting and reserved space zeroing out can be removed. Cc: Sean Christopherson <seanjc@google.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: <x86@kernel.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: stable <stable@kernel.org> Reported-by: Xingyuan Mo <hdthky0@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Message-Id: <20230214103304.3689213-1-gregkh@linuxfoundation.org> Tested-by: Xingyuan Mo <hdthky0@gmail.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-25x86/cpu: Restore AMD's DE_CFG MSR after resumeBorislav Petkov1-1/+1
commit 2632daebafd04746b4b96c2f26a6021bc38f6209 upstream. DE_CFG contains the LFENCE serializing bit, restore it on resume too. This is relevant to older families due to the way how they do S3. Unify and correct naming while at it. Fixes: e4d0e84e4907 ("x86/cpu/AMD: Make LFENCE a serializing instruction") Reported-by: Andrew Cooper <Andrew.Cooper3@citrix.com> Reported-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: <stable@kernel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-16KVM: x86/speculation: Disable Fill buffer clear within guestsPawan Gupta1-0/+4
commit 027bbb884be006b05d9c577d6401686053aa789e upstream The enumeration of MD_CLEAR in CPUID(EAX=7,ECX=0).EDX{bit 10} is not an accurate indicator on all CPUs of whether the VERW instruction will overwrite fill buffers. FB_CLEAR enumeration in IA32_ARCH_CAPABILITIES{bit 17} covers the case of CPUs that are not vulnerable to MDS/TAA, indicating that microcode does overwrite fill buffers. Guests running in VMM environments may not be aware of all the capabilities/vulnerabilities of the host CPU. Specifically, a guest may apply MDS/TAA mitigations when a virtual CPU is enumerated as vulnerable to MDS/TAA even when the physical CPU is not. On CPUs that enumerate FB_CLEAR_CTRL the VMM may set FB_CLEAR_DIS to skip overwriting of fill buffers by the VERW instruction. This is done by setting FB_CLEAR_DIS during VMENTER and resetting on VMEXIT. For guests that enumerate FB_CLEAR (explicitly asking for fill buffer clear capability) the VMM will not use FB_CLEAR_DIS. Irrespective of guest state, host overwrites CPU buffers before VMENTER to protect itself from an MMIO capable guest, as part of mitigation for MMIO Stale Data vulnerabilities. Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> [cascardo: arch/x86/kvm/vmx.c has been split and context adjustment at vmx_vcpu_run] [cascardo: moved functions so they are after struct vcpu_vmx definition] [cascardo: fb_clear is disabled/enabled around __vmx_vcpu_run] [cascardo: conflict context fixups] Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-22KVM: x86: Update vCPU's hv_clock before back to guest when tsc_offset is ↵Zelin Deng1-0/+4
adjusted commit d9130a2dfdd4b21736c91b818f87dbc0ccd1e757 upstream. When MSR_IA32_TSC_ADJUST is written by guest due to TSC ADJUST feature especially there's a big tsc warp (like a new vCPU is hot-added into VM which has been up for a long time), tsc_offset is added by a large value then go back to guest. This causes system time jump as tsc_timestamp is not adjusted in the meantime and pvclock monotonic character. To fix this, just notify kvm to update vCPU's guest time before back to guest. Cc: stable@vger.kernel.org Signed-off-by: Zelin Deng <zelin.deng@linux.alibaba.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <1619576521-81399-2-git-send-email-zelin.deng@linux.alibaba.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-04KVM: x86: determine if an exception has an error code only when injecting it.Maxim Levitsky1-4/+9
commit b97f074583736c42fb36f2da1164e28c73758912 upstream. A page fault can be queued while vCPU is in real paged mode on AMD, and AMD manual asks the user to always intercept it (otherwise result is undefined). The resulting VM exit, does have an error code. Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20210225154135.405125-2-mlevitsk@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Zubin Mithra <zsm@chromium.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-07-20KVM: X86: Disable hardware breakpoints unconditionally before kvm_x86->run()Lai Jiangshan1-0/+2
commit f85d40160691881a17a397c448d799dfc90987ba upstream. When the host is using debug registers but the guest is not using them nor is the guest in guest-debug state, the kvm code does not reset the host debug registers before kvm_x86->run(). Rather, it relies on the hardware vmentry instruction to automatically reset the dr7 registers which ensures that the host breakpoints do not affect the guest. This however violates the non-instrumentable nature around VM entry and exit; for example, when a host breakpoint is set on vcpu->arch.cr2, Another issue is consistency. When the guest debug registers are active, the host breakpoints are reset before kvm_x86->run(). But when the guest debug registers are inactive, the host breakpoints are delayed to be disabled. The host tracing tools may see different results depending on what the guest is doing. To fix the problems, we clear %db7 unconditionally before kvm_x86->run() if the host has set any breakpoints, no matter if the guest is using them or not. Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com> Message-Id: <20210628172632.81029-1-jiangshanlai@gmail.com> Cc: stable@vger.kernel.org [Only clear %db7 instead of reloading all debug registers. - Paolo] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-22KVM: x86: Cancel pvclock_gtod_work on module removalThomas Gleixner1-0/+1
commit 594b27e677b35f9734b1969d175ebc6146741109 upstream. Nothing prevents the following: pvclock_gtod_notify() queue_work(system_long_wq, &pvclock_gtod_work); ... remove_module(kvm); ... work_queue_run() pvclock_gtod_work() <- UAF Ditto for any other operation on that workqueue list head which touches pvclock_gtod_work after module removal. Cancel the work in kvm_arch_exit() to prevent that. Fixes: 16e8d74d2da9 ("KVM: x86: notifier for clocksource changes") Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Message-Id: <87czu4onry.ffs@nanos.tec.linutronix.de> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-04KVM: x86: get smi pending status correctlyJay Zhou1-0/+5
commit 1f7becf1b7e21794fc9d460765fe09679bc9b9e0 upstream. The injection process of smi has two steps: Qemu KVM Step1: cpu->interrupt_request &= \ ~CPU_INTERRUPT_SMI; kvm_vcpu_ioctl(cpu, KVM_SMI) call kvm_vcpu_ioctl_smi() and kvm_make_request(KVM_REQ_SMI, vcpu); Step2: kvm_vcpu_ioctl(cpu, KVM_RUN, 0) call process_smi() if kvm_check_request(KVM_REQ_SMI, vcpu) is true, mark vcpu->arch.smi_pending = true; The vcpu->arch.smi_pending will be set true in step2, unfortunately if vcpu paused between step1 and step2, the kvm_run->immediate_exit will be set and vcpu has to exit to Qemu immediately during step2 before mark vcpu->arch.smi_pending true. During VM migration, Qemu will get the smi pending status from KVM using KVM_GET_VCPU_EVENTS ioctl at the downtime, then the smi pending status will be lost. Signed-off-by: Jay Zhou <jianjay.zhou@huawei.com> Signed-off-by: Shengen Zhuang <zhuangshengen@huawei.com> Message-Id: <20210118084720.1585-1-jianjay.zhou@huawei.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-10-01KVM: Remove CREATE_IRQCHIP/SET_PIT2 raceSteve Rutherford1-2/+8
[ Upstream commit 7289fdb5dcdbc5155b5531529c44105868a762f2 ] Fixes a NULL pointer dereference, caused by the PIT firing an interrupt before the interrupt table has been initialized. SET_PIT2 can race with the creation of the IRQchip. In particular, if SET_PIT2 is called with a low PIT timer period (after the creation of the IOAPIC, but before the instantiation of the irq routes), the PIT can fire an interrupt at an uninitialized table. Signed-off-by: Steve Rutherford <srutherford@google.com> Signed-off-by: Jon Cargille <jcargill@google.com> Reviewed-by: Jim Mattson <jmattson@google.com> Message-Id: <20200416191152.259434-1-jcargill@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-08-05x86/kvm: Be careful not to clear KVM_VCPU_FLUSH_TLB bitSasha Levin1-0/+3
[ Upstream commit 8c6de56a42e0c657955e12b882a81ef07d1d073e ] kvm_steal_time_set_preempted() may accidentally clear KVM_VCPU_FLUSH_TLB bit if it is called more than once while VCPU is preempted. This is part of CVE-2019-3016. (This bug was also independently discovered by Jim Mattson <jmattson@google.com>) Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Reviewed-by: Joao Martins <joao.m.martins@oracle.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-07-22KVM: x86: Inject #GP if guest attempts to toggle CR4.LA57 in 64-bit modeSean Christopherson1-0/+2
commit d74fcfc1f0ff4b6c26ecef1f9e48d8089ab4eaac upstream. Inject a #GP on MOV CR4 if CR4.LA57 is toggled in 64-bit mode, which is illegal per Intel's SDM: CR4.LA57 57-bit linear addresses (bit 12 of CR4) ... blah blah blah ... This bit cannot be modified in IA-32e mode. Note, the pseudocode for MOV CR doesn't call out the fault condition, which is likely why the check was missed during initial development. This is arguably an SDM bug and will hopefully be fixed in future release of the SDM. Fixes: fd8cb433734ee ("KVM: MMU: Expose the LA57 feature to VM.") Cc: stable@vger.kernel.org Reported-by: Sebastien Boeuf <sebastien.boeuf@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Message-Id: <20200703021714.5549-1-sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-06-30KVM: X86: Fix MSR range of APIC registers in X2APIC modeXiaoyao Li1-2/+2
commit bf10bd0be53282183f374af23577b18b5fbf7801 upstream. Only MSR address range 0x800 through 0x8ff is architecturally reserved and dedicated for accessing APIC registers in x2APIC mode. Fixes: 0105d1a52640 ("KVM: x2apic interface to lapic") Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com> Message-Id: <20200616073307.16440-1-xiaoyao.li@intel.com> Cc: stable@vger.kernel.org Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Reviewed-by: Jim Mattson <jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-06-25kvm: x86: Move kvm_set_mmio_spte_mask() from x86.c to mmu.cKai Huang1-31/+0
[ Upstream commit 7b6f8a06e482960ba6ab06faba51c8f3727a5c7b ] As a prerequisite to fix several SPTE reserved bits related calculation errors caused by MKTME, which requires kvm_set_mmio_spte_mask() to use local static variable defined in mmu.c. Also move call site of kvm_set_mmio_spte_mask() from kvm_arch_init() to kvm_mmu_module_init() so that kvm_set_mmio_spte_mask() can be static. Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Kai Huang <kai.huang@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-05-20KVM: x86: Fix off-by-one error in kvm_vcpu_ioctl_x86_setup_mceJim Mattson1-1/+1
commit c4e0e4ab4cf3ec2b3f0b628ead108d677644ebd9 upstream. Bank_num is a one-based count of banks, not a zero-based index. It overflows the allocated space only when strictly greater than KVM_MAX_MCE_BANKS. Fixes: a9e38c3e01ad ("KVM: x86: Catch potential overrun in MCE setup") Signed-off-by: Jue Wang <juew@google.com> Signed-off-by: Jim Mattson <jmattson@google.com> Reviewed-by: Peter Shier <pshier@google.com> Message-Id: <20200511225616.19557-1-jmattson@google.com> Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-04-24KVM: x86: Allocate new rmap and large page tracking when moving memslotSean Christopherson1-0/+11
commit edd4fa37baa6ee8e44dc65523b27bd6fe44c94de upstream. Reallocate a rmap array and recalcuate large page compatibility when moving an existing memslot to correctly handle the alignment properties of the new memslot. The number of rmap entries required at each level is dependent on the alignment of the memslot's base gfn with respect to that level, e.g. moving a large-page aligned memslot so that it becomes unaligned will increase the number of rmap entries needed at the now unaligned level. Not updating the rmap array is the most obvious bug, as KVM accesses garbage data beyond the end of the rmap. KVM interprets the bad data as pointers, leading to non-canonical #GPs, unexpected #PFs, etc... general protection fault: 0000 [#1] SMP CPU: 0 PID: 1909 Comm: move_memory_reg Not tainted 5.4.0-rc7+ #139 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 RIP: 0010:rmap_get_first+0x37/0x50 [kvm] Code: <48> 8b 3b 48 85 ff 74 ec e8 6c f4 ff ff 85 c0 74 e3 48 89 d8 5b c3 RSP: 0018:ffffc9000021bbc8 EFLAGS: 00010246 RAX: ffff00617461642e RBX: ffff00617461642e RCX: 0000000000000012 RDX: ffff88827400f568 RSI: ffffc9000021bbe0 RDI: ffff88827400f570 RBP: 0010000000000000 R08: ffffc9000021bd00 R09: ffffc9000021bda8 R10: ffffc9000021bc48 R11: 0000000000000000 R12: 0030000000000000 R13: 0000000000000000 R14: ffff88827427d700 R15: ffffc9000021bce8 FS: 00007f7eda014700(0000) GS:ffff888277a00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f7ed9216ff8 CR3: 0000000274391003 CR4: 0000000000162eb0 Call Trace: kvm_mmu_slot_set_dirty+0xa1/0x150 [kvm] __kvm_set_memory_region.part.64+0x559/0x960 [kvm] kvm_set_memory_region+0x45/0x60 [kvm] kvm_vm_ioctl+0x30f/0x920 [kvm] do_vfs_ioctl+0xa1/0x620 ksys_ioctl+0x66/0x70 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x4c/0x170 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f7ed9911f47 Code: <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 21 6f 2c 00 f7 d8 64 89 01 48 RSP: 002b:00007ffc00937498 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 0000000001ab0010 RCX: 00007f7ed9911f47 RDX: 0000000001ab1350 RSI: 000000004020ae46 RDI: 0000000000000004 RBP: 000000000000000a R08: 0000000000000000 R09: 00007f7ed9214700 R10: 00007f7ed92149d0 R11: 0000000000000246 R12: 00000000bffff000 R13: 0000000000000003 R14: 00007f7ed9215000 R15: 0000000000000000 Modules linked in: kvm_intel kvm irqbypass ---[ end trace 0c5f570b3358ca89 ]--- The disallow_lpage tracking is more subtle. Failure to update results in KVM creating large pages when it shouldn't, either due to stale data or again due to indexing beyond the end of the metadata arrays, which can lead to memory corruption and/or leaking data to guest/userspace. Note, the arrays for the old memslot are freed by the unconditional call to kvm_free_memslot() in __kvm_set_memory_region(). Fixes: 05da45583de9b ("KVM: MMU: large page support") Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Reviewed-by: Peter Xu <peterx@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-04-24KVM: nVMX: Properly handle userspace interrupt window requestSean Christopherson1-5/+5
commit a1c77abb8d93381e25a8d2df3a917388244ba776 upstream. Return true for vmx_interrupt_allowed() if the vCPU is in L2 and L1 has external interrupt exiting enabled. IRQs are never blocked in hardware if the CPU is in the guest (L2 from L1's perspective) when IRQs trigger VM-Exit. The new check percolates up to kvm_vcpu_ready_for_interrupt_injection() and thus vcpu_run(), and so KVM will exit to userspace if userspace has requested an interrupt window (to inject an IRQ into L1). Remove the @external_intr param from vmx_check_nested_events(), which is actually an indicator that userspace wants an interrupt window, e.g. it's named @req_int_win further up the stack. Injecting a VM-Exit into L1 to try and bounce out to L0 userspace is all kinds of broken and is no longer necessary. Remove the hack in nested_vmx_vmexit() that attempted to workaround the breakage in vmx_check_nested_events() by only filling interrupt info if there's an actual interrupt pending. The hack actually made things worse because it caused KVM to _never_ fill interrupt info when the LAPIC resides in userspace (kvm_cpu_has_interrupt() queries interrupt.injected, which is always cleared by prepare_vmcs12() before reaching the hack in nested_vmx_vmexit()). Fixes: 6550c4df7e50 ("KVM: nVMX: Fix interrupt window request with "Acknowledge interrupt on exit"") Cc: stable@vger.kernel.org Cc: Liran Alon <liran.alon@oracle.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-15KVM: x86/mmu: Apply max PA check for MMIO sptes to 32-bit KVMSean Christopherson1-1/+1
[ Upstream commit e30a7d623dccdb3f880fbcad980b0cb589a1da45 ] Remove the bogus 64-bit only condition from the check that disables MMIO spte optimization when the system supports the max PA, i.e. doesn't have any reserved PA bits. 32-bit KVM always uses PAE paging for the shadow MMU, and per Intel's SDM: PAE paging translates 32-bit linear addresses to 52-bit physical addresses. The kernel's restrictions on max physical addresses are limits on how much memory the kernel can reasonably use, not what physical addresses are supported by hardware. Fixes: ce88decffd17 ("KVM: MMU: mmio page fault support") Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-02-15KVM: x86: Fix potential put_fpu() w/o load_fpu() on MPX platformSean Christopherson1-0/+5
[ Upstream commit f958bd2314d117f8c29f4821401bc1925bc2e5ef ] Unlike most state managed by XSAVE, MPX is initialized to zero on INIT. Because INITs are usually recognized in the context of a VCPU_RUN call, kvm_vcpu_reset() puts the guest's FPU so that the FPU state is resident in memory, zeros the MPX state, and reloads FPU state to hardware. But, in the unlikely event that an INIT is recognized during kvm_arch_vcpu_ioctl_get_mpstate() via kvm_apic_accept_events(), kvm_vcpu_reset() will call kvm_put_guest_fpu() without a preceding kvm_load_guest_fpu() and corrupt the guest's FPU state (and possibly userspace's FPU state as well). Given that MPX is being removed from the kernel[*], fix the bug with the simple-but-ugly approach of loading the guest's FPU during KVM_GET_MP_STATE. [*] See commit f240652b6032b ("x86/mpx: Remove MPX APIs"). Fixes: f775b13eedee2 ("x86,kvm: move qemu/guest FPU switching out to vcpu_run") Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-02-15KVM: x86: Free wbinvd_dirty_mask if vCPU creation failsSean Christopherson1-1/+1
commit 16be9ddea268ad841457a59109963fff8c9de38d upstream. Free the vCPU's wbinvd_dirty_mask if vCPU creation fails after kvm_arch_vcpu_init(), e.g. when installing the vCPU's file descriptor. Do the freeing by calling kvm_arch_vcpu_free() instead of open coding the freeing. This adds a likely superfluous, but ultimately harmless, call to kvmclock_reset(), which only clears vcpu->arch.pv_time_enabled. Using kvm_arch_vcpu_free() allows for additional cleanup in the future. Fixes: f5f48ee15c2ee ("KVM: VMX: Execute WBINVD to keep data consistency with assigned devices") Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-15KVM: x86: Protect MSR-based index computations from Spectre-v1/L1TF attacks ↵Marios Pomonis1-2/+8
in x86.c commit 6ec4c5eee1750d5d17951c4e1960d953376a0dda upstream. This fixes a Spectre-v1/L1TF vulnerability in set_msr_mce() and get_msr_mce(). Both functions contain index computations based on the (attacker-controlled) MSR number. Fixes: 890ca9aefa78 ("KVM: Add MCE support") Signed-off-by: Nick Finco <nifi@google.com> Signed-off-by: Marios Pomonis <pomonis@google.com> Reviewed-by: Andrew Honig <ahonig@google.com> Cc: stable@vger.kernel.org Reviewed-by: Jim Mattson <jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-15KVM: x86: Protect DR-based index computations from Spectre-v1/L1TF attacksMarios Pomonis1-2/+6
commit ea740059ecb37807ba47b84b33d1447435a8d868 upstream. This fixes a Spectre-v1/L1TF vulnerability in __kvm_set_dr() and kvm_get_dr(). Both kvm_get_dr() and kvm_set_dr() (a wrapper of __kvm_set_dr()) are exported symbols so KVM should tream them conservatively from a security perspective. Fixes: 020df0794f57 ("KVM: move DR register access handling into generic code") Signed-off-by: Nick Finco <nifi@google.com> Signed-off-by: Marios Pomonis <pomonis@google.com> Reviewed-by: Andrew Honig <ahonig@google.com> Cc: stable@vger.kernel.org Reviewed-by: Jim Mattson <jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-12-17KVM: x86: fix presentation of TSX feature in ARCH_CAPABILITIESPaolo Bonzini1-2/+7
commit cbbaa2727aa3ae9e0a844803da7cef7fd3b94f2b upstream. KVM does not implement MSR_IA32_TSX_CTRL, so it must not be presented to the guests. It is also confusing to have !ARCH_CAP_TSX_CTRL_MSR && !RTM && ARCH_CAP_TAA_NO: lack of MSR_IA32_TSX_CTRL suggests TSX was not hidden (it actually was), yet the value says that TSX is not vulnerable to microarchitectural data sampling. Fix both. Cc: stable@vger.kernel.org Tested-by: Jim Mattson <jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-12-17KVM: x86: do not modify masked bits of shared MSRsPaolo Bonzini1-2/+3
commit de1fca5d6e0105c9d33924e1247e2f386efc3ece upstream. "Shared MSRs" are guest MSRs that are written to the host MSRs but keep their value until the next return to userspace. They support a mask, so that some bits keep the host value, but this mask is only used to skip an unnecessary MSR write and the value written to the MSR is always the guest MSR. Fix this and, while at it, do not update smsr->values[slot].curr if for whatever reason the wrmsr fails. This should only happen due to reserved bits, so the value written to smsr->values[slot].curr will not match when the user-return notifier and the host value will always be restored. However, it is untidy and in rare cases this can actually avoid spurious WRMSRs on return to userspace. Cc: stable@vger.kernel.org Reviewed-by: Jim Mattson <jmattson@google.com> Tested-by: Jim Mattson <jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-11-20KVM: x86: introduce is_pae_pagingPaolo Bonzini1-4/+4
[ Upstream commit bf03d4f9334728bf7c8ffc7de787df48abd6340e ] Checking for 32-bit PAE is quite common around code that fiddles with the PDPTRs. Add a function to compress all checks into a single invocation. Moving to the common helper also fixes a subtle bug in kvm_set_cr3() where it fails to check is_long_mode() and results in KVM incorrectly attempting to load PDPTRs for a 64-bit guest. Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> [sean: backport to 4.x; handle vmx.c split in 5.x, call out the bugfix] Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-11-20kvm: mmu: Don't read PDPTEs when paging is not enabledJunaid Shahid1-2/+2
[ Upstream commit d35b34a9a70edae7ef923f100e51b8b5ae9fe899 ] kvm should not attempt to read guest PDPTEs when CR0.PG = 0 and CR4.PAE = 1. Signed-off-by: Junaid Shahid <junaids@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-11-12kvm: x86: mmu: Recovery of shattered NX large pagesJunaid Shahid1-0/+11
commit 1aa9b9572b10529c2e64e2b8f44025d86e124308 upstream. The page table pages corresponding to broken down large pages are zapped in FIFO order, so that the large page can potentially be recovered, if it is not longer being used for execution. This removes the performance penalty for walking deeper EPT page tables. By default, one large page will last about one hour once the guest reaches a steady state. Signed-off-by: Junaid Shahid <junaids@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-11-12kvm: mmu: ITLB_MULTIHIT mitigationPaolo Bonzini1-0/+9
commit b8e8c8303ff28c61046a4d0f6ea99aea609a7dc0 upstream. With some Intel processors, putting the same virtual address in the TLB as both a 4 KiB and 2 MiB page can confuse the instruction fetch unit and cause the processor to issue a machine check resulting in a CPU lockup. Unfortunately when EPT page tables use huge pages, it is possible for a malicious guest to cause this situation. Add a knob to mark huge pages as non-executable. When the nx_huge_pages parameter is enabled (and we are using EPT), all huge pages are marked as NX. If the guest attempts to execute in one of those pages, the page is broken down into 4K pages, which are then marked executable. This is not an issue for shadow paging (except nested EPT), because then the host is in control of TLB flushes and the problematic situation cannot happen. With nested EPT, again the nested guest can cause problems shadow and direct EPT is treated in the same way. [ tglx: Fixup default to auto and massage wording a bit ] Originally-by: Junaid Shahid <junaids@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-11-12kvm: Convert kvm_lock to a mutexJunaid Shahid1-5/+5
commit 0d9ce162cf46c99628cc5da9510b959c7976735b upstream. It doesn't seem as if there is any particular need for kvm_lock to be a spinlock, so convert the lock to a mutex so that sleepable functions (in particular cond_resched()) can be called while holding it. Signed-off-by: Junaid Shahid <junaids@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-11-12kvm: x86, powerpc: do not allow clearing largepages debugfs entryPaolo Bonzini1-3/+3
commit 833b45de69a6016c4b0cebe6765d526a31a81580 upstream. The largepages debugfs entry is incremented/decremented as shadow pages are created or destroyed. Clearing it will result in an underflow, which is harmless to KVM but ugly (and could be misinterpreted by tools that use debugfs information), so make this particular statistic read-only. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: kvm-ppc@vger.kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-11-12kvm/x86: Export MDS_NO=0 to guests when TSX is enabledPawan Gupta1-0/+19
commit e1d38b63acd843cfdd4222bf19a26700fd5c699e upstream. Export the IA32_ARCH_CAPABILITIES MSR bit MDS_NO=0 to guests on TSX Async Abort(TAA) affected hosts that have TSX enabled and updated microcode. This is required so that the guests don't complain, "Vulnerable: Clear CPU buffers attempted, no microcode" when the host has the updated microcode to clear CPU buffers. Microcode update also adds support for MSR_IA32_TSX_CTRL which is enumerated by the ARCH_CAP_TSX_CTRL bit in IA32_ARCH_CAPABILITIES MSR. Guests can't do this check themselves when the ARCH_CAP_TSX_CTRL bit is not exported to the guests. In this case export MDS_NO=0 to the guests. When guests have CPUID.MD_CLEAR=1, they deploy MDS mitigation which also mitigates TAA. Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Neelima Krishnan <neelima.krishnan@intel.com> Reviewed-by: Tony Luck <tony.luck@intel.com> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-11-12KVM: x86: use Intel speculation bugs and features as derived in generic x86 codePaolo Bonzini1-0/+8
commit 0c54914d0c52a15db9954a76ce80fee32cf318f4 upstream. Similar to AMD bits, set the Intel bits from the vendor-independent feature and bug flags, because KVM_GET_SUPPORTED_CPUID does not care about the vendor and they should be set on AMD processors as well. Suggested-by: Jim Mattson <jmattson@google.com> Reviewed-by: Jim Mattson <jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-10-29kvm: vmx: Introduce lapic_mode enumerationJim Mattson1-11/+15
commit 588716494258899389206fa50426e78cc9df89b9 upstream. The local APIC can be in one of three modes: disabled, xAPIC or x2APIC. (A fourth mode, "invalid," is included for completeness.) Using the new enumeration can make some of the APIC mode logic easier to read. In kvm_set_apic_base, for instance, it is clear that one cannot transition directly from x2APIC mode to xAPIC mode or directly from APIC disabled to x2APIC mode. Signed-off-by: Jim Mattson <jmattson@google.com> Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com> [Check invalid bits even if msr_info->host_initiated. Reported by Wanpeng Li. - Paolo] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Cc: "Jitindar SIngh, Suraj" <surajjs@amazon.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-10-29KVM: X86: introduce invalidate_gpa argument to tlb flushWanpeng Li1-3/+3
commit c2ba05ccfde2f069a66c0462e5b5ef8a517dcc9c upstream. Introduce a new bool invalidate_gpa argument to kvm_x86_ops->tlb_flush, it will be used by later patches to just flush guest tlb. For VMX, this will use INVVPID instead of INVEPT, which will invalidate combined mappings while keeping guest-physical mappings. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: "Jitindar SIngh, Suraj" <surajjs@amazon.com> Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-10-05KVM: x86: Manually calculate reserved bits when loading PDPTRSSean Christopherson1-3/+8
commit 16cfacc8085782dab8e365979356ce1ca87fd6cc upstream. Manually generate the PDPTR reserved bit mask when explicitly loading PDPTRs. The reserved bits that are being tracked by the MMU reflect the current paging mode, which is unlikely to be PAE paging in the vast majority of flows that use load_pdptrs(), e.g. CR0 and CR4 emulation, __set_sregs(), etc... This can cause KVM to incorrectly signal a bad PDPTR, or more likely, miss a reserved bit check and subsequently fail a VM-Enter due to a bad VMCS.GUEST_PDPTR. Add a one off helper to generate the reserved bits instead of sharing code across the MMU's calculations and the PDPTR emulation. The PDPTR reserved bits are basically set in stone, and pushing a helper into the MMU's calculation adds unnecessary complexity without improving readability. Oppurtunistically fix/update the comment for load_pdptrs(). Note, the buggy commit also introduced a deliberate functional change, "Also remove bit 5-6 from rsvd_bits_mask per latest SDM.", which was effectively (and correctly) reverted by commit cd9ae5fe47df ("KVM: x86: Fix page-tables reserved bits"). A bit of SDM archaeology shows that the SDM from late 2008 had a bug (likely a copy+paste error) where it listed bits 6:5 as AVL and A for PDPTEs used for 4k entries but reserved for 2mb entries. I.e. the SDM contradicted itself, and bits 6:5 are and always have been reserved. Fixes: 20c466b56168d ("KVM: Use rsvd_bits_mask in load_pdptrs()") Cc: stable@vger.kernel.org Cc: Nadav Amit <nadav.amit@gmail.com> Reported-by: Doug Reiland <doug.reiland@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Reviewed-by: Peter Xu <peterx@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-10-05KVM: x86: set ctxt->have_exception in x86_decode_insn()Jan Dakinevich1-0/+6
commit c8848cee74ff05638e913582a476bde879c968ad upstream. x86_emulate_instruction() takes into account ctxt->have_exception flag during instruction decoding, but in practice this flag is never set in x86_decode_insn(). Fixes: 6ea6e84309ca ("KVM: x86: inject exceptions produced by x86_decode_insn") Cc: stable@vger.kernel.org Cc: Denis Lunev <den@virtuozzo.com> Cc: Roman Kagan <rkagan@virtuozzo.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Signed-off-by: Jan Dakinevich <jan.dakinevich@virtuozzo.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-10-05KVM: x86: always stop emulation on page faultJan Dakinevich1-1/+3
commit 8530a79c5a9f4e29e6ffb35ec1a79d81f4968ec8 upstream. inject_emulated_exception() returns true if and only if nested page fault happens. However, page fault can come from guest page tables walk, either nested or not nested. In both cases we should stop an attempt to read under RIP and give guest to step over its own page fault handler. This is also visible when an emulated instruction causes a #GP fault and the VMware backdoor is enabled. To handle the VMware backdoor, KVM intercepts #GP faults; with only the next patch applied, x86_emulate_instruction() injects a #GP but returns EMULATE_FAIL instead of EMULATE_DONE. EMULATE_FAIL causes handle_exception_nmi() (or gp_interception() for SVM) to re-inject the original #GP because it thinks emulation failed due to a non-VMware opcode. This patch prevents the issue as x86_emulate_instruction() will return EMULATE_DONE after injecting the #GP. Fixes: 6ea6e84309ca ("KVM: x86: inject exceptions produced by x86_decode_insn") Cc: stable@vger.kernel.org Cc: Denis Lunev <den@virtuozzo.com> Cc: Roman Kagan <rkagan@virtuozzo.com> Cc: Denis Plotnikov <dplotnikov@virtuozzo.com> Signed-off-by: Jan Dakinevich <jan.dakinevich@virtuozzo.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-09-19KVM: x86: work around leak of uninitialized stack contentsFuqian Huang1-0/+7
commit 541ab2aeb28251bf7135c7961f3a6080eebcc705 upstream. Emulation of VMPTRST can incorrectly inject a page fault when passed an operand that points to an MMIO address. The page fault will use uninitialized kernel stack memory as the CR2 and error code. The right behavior would be to abort the VM with a KVM_EXIT_INTERNAL_ERROR exit to userspace; however, it is not an easy fix, so for now just ensure that the error code and CR2 are zero. Signed-off-by: Fuqian Huang <huangfq.daxian@gmail.com> Cc: stable@vger.kernel.org [add comment] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-09-06KVM: x86: Don't update RIP or do single-step on faulting emulationSean Christopherson1-4/+5
commit 75ee23b30dc712d80d2421a9a547e7ab6e379b44 upstream. Don't advance RIP or inject a single-step #DB if emulation signals a fault. This logic applies to all state updates that are conditional on clean retirement of the emulation instruction, e.g. updating RFLAGS was previously handled by commit 38827dbd3fb85 ("KVM: x86: Do not update EFLAGS on faulting emulation"). Not advancing RIP is likely a nop, i.e. ctxt->eip isn't updated with ctxt->_eip until emulation "retires" anyways. Skipping #DB injection fixes a bug reported by Andy Lutomirski where a #UD on SYSCALL due to invalid state with EFLAGS.TF=1 would loop indefinitely due to emulation overwriting the #UD with #DB and thus restarting the bad SYSCALL over and over. Cc: Nadav Amit <nadav.amit@gmail.com> Cc: stable@vger.kernel.org Reported-by: Andy Lutomirski <luto@kernel.org> Fixes: 663f4c61b803 ("KVM: x86: handle singlestep during emulation") Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-08-16KVM: Fix leak vCPU's VMCS value into other pCPUWanpeng Li1-0/+16
commit 17e433b54393a6269acbcb792da97791fe1592d8 upstream. After commit d73eb57b80b (KVM: Boost vCPUs that are delivering interrupts), a five years old bug is exposed. Running ebizzy benchmark in three 80 vCPUs VMs on one 80 pCPUs Skylake server, a lot of rcu_sched stall warning splatting in the VMs after stress testing: INFO: rcu_sched detected stalls on CPUs/tasks: { 4 41 57 62 77} (detected by 15, t=60004 jiffies, g=899, c=898, q=15073) Call Trace: flush_tlb_mm_range+0x68/0x140 tlb_flush_mmu.part.75+0x37/0xe0 tlb_finish_mmu+0x55/0x60 zap_page_range+0x142/0x190 SyS_madvise+0x3cd/0x9c0 system_call_fastpath+0x1c/0x21 swait_active() sustains to be true before finish_swait() is called in kvm_vcpu_block(), voluntarily preempted vCPUs are taken into account by kvm_vcpu_on_spin() loop greatly increases the probability condition kvm_arch_vcpu_runnable(vcpu) is checked and can be true, when APICv is enabled the yield-candidate vCPU's VMCS RVI field leaks(by vmx_sync_pir_to_irr()) into spinning-on-a-taken-lock vCPU's current VMCS. This patch fixes it by checking conservatively a subset of events. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Marc Zyngier <Marc.Zyngier@arm.com> Cc: stable@vger.kernel.org Fixes: 98f4a1467 (KVM: add kvm_arch_vcpu_runnable() test to kvm_vcpu_on_spin() loop) Signed-off-by: Wanpeng Li <wanpengli@tencent.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-07-10KVM: x86: degrade WARN to pr_warn_ratelimitedPaolo Bonzini1-3/+3
commit 3f16a5c318392cbb5a0c7a3d19dff8c8ef3c38ee upstream. This warning can be triggered easily by userspace, so it should certainly not cause a panic if panic_on_warn is set. Reported-by: syzbot+c03f30b4f4c46bdf8575@syzkaller.appspotmail.com Suggested-by: Alexander Potapenko <glider@google.com> Acked-by: Alexander Potapenko <glider@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-09KVM: s390: Do not report unusabled IDs via KVM_CAP_MAX_VCPU_IDThomas Huth1-0/+3
commit a86cb413f4bf273a9d341a3ab2c2ca44e12eb317 upstream. KVM_CAP_MAX_VCPU_ID is currently always reporting KVM_MAX_VCPU_ID on all architectures. However, on s390x, the amount of usable CPUs is determined during runtime - it is depending on the features of the machine the code is running on. Since we are using the vcpu_id as an index into the SCA structures that are defined by the hardware (see e.g. the sca_add_vcpu() function), it is not only the amount of CPUs that is limited by the hard- ware, but also the range of IDs that we can use. Thus KVM_CAP_MAX_VCPU_ID must be determined during runtime on s390x, too. So the handling of KVM_CAP_MAX_VCPU_ID has to be moved from the common code into the architecture specific code, and on s390x we have to return the same value here as for KVM_CAP_MAX_VCPUS. This problem has been discovered with the kvm_create_max_vcpus selftest. With this change applied, the selftest now passes on s390x, too. Reviewed-by: Andrew Jones <drjones@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Thomas Huth <thuth@redhat.com> Message-Id: <20190523164309.13345-9-thuth@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-31KVM: x86: fix return value for reserved EFERPaolo Bonzini1-1/+1
commit 66f61c92889ff3ca365161fb29dd36d6354682ba upstream. Commit 11988499e62b ("KVM: x86: Skip EFER vs. guest CPUID checks for host-initiated writes", 2019-04-02) introduced a "return false" in a function returning int, and anyway set_efer has a "nonzero on error" conventon so it should be returning 1. Reported-by: Pavel Machek <pavel@denx.de> Fixes: 11988499e62b ("KVM: x86: Skip EFER vs. guest CPUID checks for host-initiated writes") Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-21KVM: x86: Skip EFER vs. guest CPUID checks for host-initiated writesSean Christopherson1-13/+24
commit 11988499e62b310f3bf6f6d0a807a06d3f9ccc96 upstream. KVM allows userspace to violate consistency checks related to the guest's CPUID model to some degree. Generally speaking, userspace has carte blanche when it comes to guest state so long as jamming invalid state won't negatively affect the host. Currently this is seems to be a non-issue as most of the interesting EFER checks are missing, e.g. NX and LME, but those will be added shortly. Proactively exempt userspace from the CPUID checks so as not to break userspace. Note, the efer_reserved_bits check still applies to userspace writes as that mask reflects the host's capabilities, e.g. KVM shouldn't allow a guest to run with NX=1 if it has been disabled in the host. Fixes: d80174745ba39 ("KVM: SVM: Only allow setting of EFER_SVME when CPUID SVM is set") Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-03KVM: x86: Emulate MSR_IA32_ARCH_CAPABILITIES on AMD hostsSean Christopherson1-0/+12
commit 0cf9135b773bf32fba9dd8e6699c1b331ee4b749 upstream. The CPUID flag ARCH_CAPABILITIES is unconditioinally exposed to host userspace for all x86 hosts, i.e. KVM advertises ARCH_CAPABILITIES regardless of hardware support under the pretense that KVM fully emulates MSR_IA32_ARCH_CAPABILITIES. Unfortunately, only VMX hosts handle accesses to MSR_IA32_ARCH_CAPABILITIES (despite KVM_GET_MSRS also reporting MSR_IA32_ARCH_CAPABILITIES for all hosts). Move the MSR_IA32_ARCH_CAPABILITIES handling to common x86 code so that it's emulated on AMD hosts. Fixes: 1eaafe91a0df4 ("kvm: x86: IA32_ARCH_CAPABILITIES is always supported") Cc: stable@vger.kernel.org Reported-by: Xiaoyao Li <xiaoyao.li@linux.intel.com> Cc: Jim Mattson <jmattson@google.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-03-23KVM: Call kvm_arch_memslots_updated() before updating memslotsSean Christopherson1-2/+2
commit 152482580a1b0accb60676063a1ac57b2d12daf6 upstream. kvm_arch_memslots_updated() is at this point in time an x86-specific hook for handling MMIO generation wraparound. x86 stashes 19 bits of the memslots generation number in its MMIO sptes in order to avoid full page fault walks for repeat faults on emulated MMIO addresses. Because only 19 bits are used, wrapping the MMIO generation number is possible, if unlikely. kvm_arch_memslots_updated() alerts x86 that the generation has changed so that it can invalidate all MMIO sptes in case the effective MMIO generation has wrapped so as to avoid using a stale spte, e.g. a (very) old spte that was created with generation==0. Given that the purpose of kvm_arch_memslots_updated() is to prevent consuming stale entries, it needs to be called before the new generation is propagated to memslots. Invalidating the MMIO sptes after updating memslots means that there is a window where a vCPU could dereference the new memslots generation, e.g. 0, and incorrectly reuse an old MMIO spte that was created with (pre-wrap) generation==0. Fixes: e59dbe09f8e6 ("KVM: Introduce kvm_arch_memslots_updated()") Cc: <stable@vger.kernel.org> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-02-12KVM: x86: work around leak of uninitialized stack contents (CVE-2019-7222)Paolo Bonzini1-0/+7
commit 353c0956a618a07ba4bbe7ad00ff29fe70e8412a upstream. Bugzilla: 1671930 Emulation of certain instructions (VMXON, VMCLEAR, VMPTRLD, VMWRITE with memory operand, INVEPT, INVVPID) can incorrectly inject a page fault when passed an operand that points to an MMIO address. The page fault will use uninitialized kernel stack memory as the CR2 and error code. The right behavior would be to abort the VM with a KVM_EXIT_INTERNAL_ERROR exit to userspace; however, it is not an easy fix, so for now just ensure that the error code and CR2 are zero. Embargoed until Feb 7th 2019. Reported-by: Felix Wilhelm <fwilhelm@google.com> Cc: stable@kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-01-31KVM: x86: Fix a 4.14 backport regression related to userspace/guest FPUSean Christopherson1-5/+1
Upstream commit: f775b13eedee ("x86,kvm: move qemu/guest FPU switching out to vcpu_run") introduced a bug, which was later fixed by upstream commit: 5663d8f9bbe4 ("kvm: x86: fix WARN due to uninitialized guest FPU state") For reasons unknown, both commits were initially passed-over for inclusion in the 4.14 stable branch despite being tagged for stable. Eventually, someone noticed that the fixup, commit 5663d8f9bbe4, was missing from stable[1], and so it was queued up for 4.14 and included in release v4.14.79. Even later, the original buggy patch, commit f775b13eedee, was also applied to the 4.14 stable branch. Through an unlucky coincidence, the incorrect ordering did not generate a conflict between the two patches, and led to v4.14.94 and later releases containing a spurious call to kvm_load_guest_fpu() in kvm_arch_vcpu_ioctl_run(). As a result, KVM may reload stale guest FPU state, e.g. after accepting in INIT event. This can manifest as crashes during boot, segfaults, failed checksums and so on and so forth. Remove the unwanted kvm_{load,put}_guest_fpu() calls, i.e. make kvm_arch_vcpu_ioctl_run() look like commit 5663d8f9bbe4 was backported after commit f775b13eedee. [1] https://www.spinics.net/lists/stable/msg263931.html Fixes: 4124a4cff344 ("x86,kvm: move qemu/guest FPU switching out to vcpu_run") Cc: stable@vger.kernel.org Cc: Sasha Levin <sashal@kernel.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Peter Xu <peterx@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Reported-by: Roman Mamedov Reported-by: Thomas Lindroth <thomas.lindroth@gmail.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>