summaryrefslogtreecommitdiff
path: root/arch/x86/kvm/vmx/vmx.c
AgeCommit message (Collapse)AuthorFilesLines
2021-03-15KVM: x86: Get active PCID only when writing a CR3 valueSean Christopherson1-7/+6
Retrieve the active PCID only when writing a guest CR3 value, i.e. don't get the PCID when using EPT or NPT. The PCID is especially problematic for EPT as the bits have different meaning, and so the PCID and must be manually stripped, which is annoying and unnecessary. And on VMX, getting the active PCID also involves reading the guest's CR3 and CR4.PCIDE, i.e. may add pointless VMREADs. Opportunistically rename the pgd/pgd_level params to root_hpa and root_level to better reflect their new roles. Keep the function names, as "load the guest PGD" is still accurate/correct. Last, and probably least, pass root_hpa as a hpa_t/u64 instead of an unsigned long. The EPTP holds a 64-bit value, even in 32-bit mode, so in theory EPT could support HIGHMEM for 32-bit KVM. Never mind that doing so would require changing the MMU page allocators and reworking the MMU to use kmap(). Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20210305183123.3978098-2-seanjc@google.com> Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15KVM: x86/mmu: Move logic for setting SPTE masks for EPT into the MMU properSean Christopherson1-18/+2
Let the MMU deal with the SPTE masks to avoid splitting the logic and knowledge across the MMU and VMX. The SPTE masks that are used for EPT are very, very tightly coupled to the MMU implementation. The use of available bits, the existence of A/D types, the fact that shadow_x_mask even exists, and so on and so forth are all baked into the MMU implementation. Cross referencing the params to the masks is also a nightmare, as pretty much every param is a u64. A future patch will make the location of the MMU_WRITABLE and HOST_WRITABLE bits MMU specific, to free up bit 11 for a MMU_PRESENT bit. Doing that change with the current kvm_mmu_set_mask_ptes() would be an absolute mess. No functional change intended. Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20210225204749.1512652-18-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15KVM: x86/mmu: Co-locate code for setting various SPTE masksSean Christopherson1-11/+6
Squish all the code for (re)setting the various SPTE masks into one location. With the split code, it's not at all clear that the masks are set once during module initialization. This will allow a future patch to clean up initialization of the masks without shuffling code all over tarnation. No functional change intended. Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20210225204749.1512652-17-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15KVM: x86/mmu: Stop using software available bits to denote MMIO SPTEsSean Christopherson1-1/+2
Stop tagging MMIO SPTEs with specific available bits and instead detect MMIO SPTEs by checking for their unique SPTE value. The value is guaranteed to be unique on shadow paging and NPT as setting reserved physical address bits on any other type of SPTE would consistute a KVM bug. Ditto for EPT, as creating a WX non-MMIO would also be a bug. Note, this approach is also future-compatibile with TDX, which will need to reflect MMIO EPT violations as #VEs into the guest. To create an EPT violation instead of a misconfig, TDX EPTs will need to have RWX=0, But, MMIO SPTEs will also be the only case where KVM clears SUPPRESS_VE, so MMIO SPTEs will still be guaranteed to have a unique value within a given MMU context. The main motivation is to make it easier to reason about which types of SPTEs use which available bits. As a happy side effect, this frees up two more bits for storing the MMIO generation. Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20210225204749.1512652-11-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15KVM: x86: Move RDPMC emulation to common codeSean Christopherson1-9/+1
Move the entirety of the accelerated RDPMC emulation to x86.c, and assign the common handler directly to the exit handler array for VMX. SVM has bizarre nrips behavior that prevents it from directly invoking the common handler. The nrips goofiness will be addressed in a future patch. Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20210205005750.3841462-8-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15KVM: x86: Move trivial instruction-based exit handlers to common codeSean Christopherson1-46/+7
Move the trivial exit handlers, e.g. for instructions that KVM "emulates" as nops, to common x86 code. Assign the common handlers directly to the exit handler arrays and drop the vendor trampolines. Opportunistically use pr_warn_once() where appropriate. No functional change intended. Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20210205005750.3841462-7-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-15KVM: x86: Move XSETBV emulation to common codeSean Christopherson1-10/+1
Move the entirety of XSETBV emulation to x86.c, and assign the function directly to both VMX's and SVM's exit handlers, i.e. drop the unnecessary trampolines. No functional change intended. Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20210205005750.3841462-6-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-03-10x86/perf: Use RET0 as default for guest_get_msrs to handle "no PMU" caseSean Christopherson1-1/+1
Initialize x86_pmu.guest_get_msrs to return 0/NULL to handle the "nop" case. Patching in perf_guest_get_msrs_nop() during setup does not work if there is no PMU, as setup bails before updating the static calls, leaving x86_pmu.guest_get_msrs NULL and thus a complete nop. Ultimately, this causes VMX abort on VM-Exit due to KVM putting random garbage from the stack into the MSR load list. Add a comment in KVM to note that nr_msrs is valid if and only if the return value is non-NULL. Fixes: abd562df94d1 ("x86/perf: Use static_call for x86_pmu.guest_get_msrs") Reported-by: Dmitry Vyukov <dvyukov@google.com> Reported-by: syzbot+cce9ef2dd25246f815ee@syzkaller.appspotmail.com Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210309171019.1125243-1-seanjc@google.com
2021-02-19KVM: VMX: Dynamically enable/disable PML based on memslot dirty loggingMakarand Sonare1-1/+27
Currently, if enable_pml=1 PML remains enabled for the entire lifetime of the VM irrespective of whether dirty logging is enable or disabled. When dirty logging is disabled, all the pages of the VM are manually marked dirty, so that PML is effectively non-operational. Setting the dirty bits is an expensive operation which can cause severe MMU lock contention in a performance sensitive path when dirty logging is disabled after a failed or canceled live migration. Manually setting dirty bits also fails to prevent PML activity if some code path clears dirty bits, which can incur unnecessary VM-Exits. In order to avoid this extra overhead, dynamically enable/disable PML when dirty logging gets turned on/off for the first/last memslot. Signed-off-by: Makarand Sonare <makarandsonare@google.com> Co-developed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20210213005015.1651772-12-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-19KVM: x86: Move MMU's PML logic to common codeSean Christopherson1-54/+1
Drop the facade of KVM's PML logic being vendor specific and move the bits that aren't truly VMX specific into common x86 code. The MMU logic for dealing with PML is tightly coupled to the feature and to VMX's implementation, bouncing through kvm_x86_ops obfuscates the code without providing any meaningful separation of concerns or encapsulation. No functional change intended. Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20210213005015.1651772-10-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-19KVM: x86/mmu: Make dirty log size hook (PML) a value, not a functionSean Christopherson1-7/+2
Store the vendor-specific dirty log size in a variable, there's no need to wrap it in a function since the value is constant after hardware_setup() runs. Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20210213005015.1651772-9-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-19KVM: nVMX: Disable PML in hardware when running L2Sean Christopherson1-2/+10
Unconditionally disable PML in vmcs02, KVM emulates PML purely in the MMU, e.g. vmx_flush_pml_buffer() doesn't even try to copy the L2 GPAs from vmcs02's buffer to vmcs12. At best, enabling PML is a nop. At worst, it will cause vmx_flush_pml_buffer() to record bogus GFNs in the dirty logs. Initialize vmcs02.GUEST_PML_INDEX such that PML writes would trigger VM-Exit if PML was somehow enabled, skip flushing the buffer for guest mode since the index is bogus, and freak out if a PML full exit occurs when L2 is active. Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20210213005015.1651772-7-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-18KVM: VMX: read idt_vectoring_info a bit earlierMaxim Levitsky1-1/+3
trace_kvm_exit prints this value (using vmx_get_exit_info) so it makes sense to read it before the trace point. Fixes: dcf068da7eb2 ("KVM: VMX: Introduce generic fastpath handler") Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20210217145718.1217358-2-mlevitsk@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-18KVM: VMX: Allow INVPCID in guest without PCIDSean Christopherson1-10/+0
Remove the restriction that prevents VMX from exposing INVPCID to the guest without PCID also being exposed to the guest. The justification of the restriction is that INVPCID will #UD if it's disabled in the VMCS. While that is a true statement, it's also true that RDTSCP will #UD if it's disabled in the VMCS. Neither of those things has any dependency whatsoever on the guest being able to set CR4.PCIDE=1, which is what is effectively allowed by exposing PCID to the guest. Removing the bogus restriction aligns VMX with SVM, and also allows for an interesting configuration. INVPCID is that fastest way to do a global TLB flush, e.g. see native_flush_tlb_global(). Allowing INVPCID without PCID would let a guest use the expedited flush while also limiting the number of ASIDs consumed by the guest. Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20210212003411.1102677-4-seanjc@google.com> Reviewed-by: Jim Mattson <jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-18KVM: x86: Advertise INVPCID by defaultSean Christopherson1-2/+2
Advertise INVPCID by default (if supported by the host kernel) instead of having both SVM and VMX opt in. INVPCID was opt in when it was a VMX only feature so that KVM wouldn't prematurely advertise support if/when it showed up in the kernel on AMD hardware. Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20210212003411.1102677-3-seanjc@google.com> Reviewed-by: Jim Mattson <jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-09KVM: x86: hyper-v: Prepare to meet unallocated Hyper-V contextVitaly Kuznetsov1-3/+1
Currently, Hyper-V context is part of 'struct kvm_vcpu_arch' and is always available. As a preparation to allocating it dynamically, check that it is not NULL at call sites which can normally proceed without it i.e. the behavior is identical to the situation when Hyper-V emulation is not being used by the guest. When Hyper-V context for a particular vCPU is not allocated, we may still need to get 'vp_index' from there. E.g. in a hypothetical situation when Hyper-V emulation was enabled on one CPU and wasn't on another, Hyper-V style send-IPI hypercall may still be used. Luckily, vp_index is always initialized to kvm_vcpu_get_idx() and can only be changed when Hyper-V context is present. Introduce kvm_hv_get_vpindex() helper for simplification. No functional change intended. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Message-Id: <20210126134816.1880136-12-vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-09KVM: x86: hyper-v: Always use to_hv_vcpu() accessor to get to 'struct ↵Vitaly Kuznetsov1-3/+5
kvm_vcpu_hv' As a preparation to allocating Hyper-V context dynamically, make it clear who's the user of the said context. No functional change intended. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Message-Id: <20210126134816.1880136-11-vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-09KVM: x86: hyper-v: Introduce to_kvm_hv() helperVitaly Kuznetsov1-1/+2
Spelling '&kvm->arch.hyperv' correctly is hard. Also, this makes the code more consistent with vmx/svm where to_kvm_vmx()/to_kvm_svm() are already being used. Opportunistically change kvm_hv_msr_{get,set}_crash_{data,ctl}() and kvm_hv_msr_set_crash_data() to take 'kvm' instead of 'vcpu' as these MSRs are partition wide. No functional change intended. Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Message-Id: <20210126134816.1880136-9-vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-09KVM: x86: move kvm_inject_gp up from kvm_set_dr to callersPaolo Bonzini1-7/+10
Push the injection of #GP up to the callers, so that they can just use kvm_complete_insn_gp. __kvm_set_dr is pretty much what the callers can use together with kvm_complete_insn_gp, so rename it to kvm_set_dr and drop the old kvm_set_dr wrapper. This also allows nested VMX code, which really wanted to use __kvm_set_dr, to use the right function. While at it, remove the kvm_require_dr() check from the SVM interception. The APM states: All normal exception checks take precedence over the SVM intercepts. which includes the CR4.DE=1 #UD. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-09KVM: x86: reading DR cannot failPaolo Bonzini1-2/+1
kvm_get_dr and emulator_get_dr except an in-range value for the register number so they cannot fail. Change the return type to void. Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04KVM: VMX: Use GPA legality helpers to replace open coded equivalentsSean Christopherson1-1/+1
Replace a variety of open coded GPA checks with the recently introduced common helpers. No functional change intended. Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20210204000117.3303214-6-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04KVM: x86: move kvm_inject_gp up from kvm_set_xcr to callersPaolo Bonzini1-3/+2
Push the injection of #GP up to the callers, so that they can just use kvm_complete_insn_gp. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04KVM: move EXIT_FASTPATH_REENTER_GUEST to common codePaolo Bonzini1-18/+1
Now that KVM is using static calls, calling vmx_vcpu_run and vmx_sync_pir_to_irr does not incur anymore the cost of a retpoline. Therefore there is no need anymore to handle EXIT_FASTPATH_REENTER_GUEST in vendor code. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04KVM: VMX: Use the kernel's version of VMXOFFSean Christopherson1-12/+3
Drop kvm_cpu_vmxoff() in favor of the kernel's cpu_vmxoff(). Modify the latter to return -EIO on fault so that KVM can invoke kvm_spurious_fault() when appropriate. In addition to the obvious code reuse, dropping kvm_cpu_vmxoff() also eliminates VMX's last usage of the __ex()/__kvm_handle_fault_on_reboot() macros, thus helping pave the way toward dropping them entirely. Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20201231002702.2223707-7-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04KVM: VMX: Move Intel PT shenanigans out of VMXON/VMXOFF flowsSean Christopherson1-4/+7
Move the Intel PT tracking outside of the VMXON/VMXOFF helpers so that a future patch can drop KVM's kvm_cpu_vmxoff() in favor of the kernel's cpu_vmxoff() without an associated PT functional change, and without losing symmetry between the VMXON and VMXOFF flows. Barring undocumented behavior, this should have no meaningful effects as Intel PT behavior does not interact with CR4.VMXE. Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20201231002702.2223707-6-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04KVM/nVMX: Use __vmx_vcpu_run in nested_vmx_check_vmentry_hwUros Bizjak1-2/+0
Replace inline assembly in nested_vmx_check_vmentry_hw with a call to __vmx_vcpu_run. The function is not performance critical, so (double) GPR save/restore in __vmx_vcpu_run can be tolerated, as far as performance effects are concerned. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Sean Christopherson <seanjc@google.com> Reviewed-and-tested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Uros Bizjak <ubizjak@gmail.com> [sean: dropped versioning info from changelog] Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20201231002702.2223707-5-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04KVM: X86: prepend vmx/svm prefix to additional kvm_x86_ops functionsJason Baron1-15/+15
A subsequent patch introduces macros in preparation for simplifying the definition for vmx_x86_ops and svm_x86_ops. Making the naming more uniform expands the coverage of the macros. Add vmx/svm prefix to the following functions: update_exception_bitmap(), enable_nmi_window(), enable_irq_window(), update_cr8_intercept and enable_smi_window(). Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Sean Christopherson <seanjc@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Jason Baron <jbaron@akamai.com> Message-Id: <ed594696f8e2c2b2bfc747504cee9bbb2a269300.1610680941.git.jbaron@akamai.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04KVM: X86: Rename DR6_INIT to DR6_ACTIVE_LOWChenyi Qiang1-2/+2
DR6_INIT contains the 1-reserved bits as well as the bit that is cleared to 0 when the condition (e.g. RTM) happens. The value can be used to initialize dr6 and also be the XOR mask between the #DB exit qualification (or payload) and DR6. Concerning that DR6_INIT is used as initial value only once, rename it to DR6_ACTIVE_LOW and apply it in other places, which would make the incoming changes for bus lock debug exception more simple. Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com> Message-Id: <20210202090433.13441-2-chenyi.qiang@intel.com> [Define DR6_FIXED_1 from DR6_ACTIVE_LOW and DR6_VOLATILE. - Paolo] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04KVM: vmx/pmu: Emulate legacy freezing LBRs on virtual PMILike Xu1-1/+1
The current vPMU only supports Architecture Version 2. According to Intel SDM "17.4.7 Freezing LBR and Performance Counters on PMI", if IA32_DEBUGCTL.Freeze_LBR_On_PMI = 1, the LBR is frozen on the virtual PMI and the KVM would emulate to clear the LBR bit (bit 0) in IA32_DEBUGCTL. Also, guest needs to re-enable IA32_DEBUGCTL.LBR to resume recording branches. Signed-off-by: Like Xu <like.xu@linux.intel.com> Reviewed-by: Andi Kleen <ak@linux.intel.com> Message-Id: <20210201051039.255478-9-like.xu@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04KVM: vmx/pmu: Pass-through LBR msrs when the guest LBR event is ACTIVELike Xu1-0/+10
In addition to DEBUGCTLMSR_LBR, any KVM trap caused by LBR msrs access will result in a creation of guest LBR event per-vcpu. If the guest LBR event is scheduled on with the corresponding vcpu context, KVM will pass-through all LBR records msrs to the guest. The LBR callstack mechanism implemented in the host could help save/restore the guest LBR records during the event context switches, which reduces a lot of overhead if we save/restore tens of LBR msrs (e.g. 32 LBR records entries) in the much more frequent VMX transitions. To avoid reclaiming LBR resources from any higher priority event on host, KVM would always check the exist of guest LBR event and its state before vm-entry as late as possible. A negative result would cancel the pass-through state, and it also prevents real registers accesses and potential data leakage. If host reclaims the LBR between two checks, the interception state and LBR records can be safely preserved due to native save/restore support from guest LBR event. The KVM emits a pr_warn() when the LBR hardware is unavailable to the guest LBR event. The administer is supposed to reminder users that the guest result may be inaccurate if someone is using LBR to record hypervisor on the host side. Suggested-by: Andi Kleen <ak@linux.intel.com> Co-developed-by: Wei Wang <wei.w.wang@intel.com> Signed-off-by: Wei Wang <wei.w.wang@intel.com> Signed-off-by: Like Xu <like.xu@linux.intel.com> Reviewed-by: Andi Kleen <ak@linux.intel.com> Message-Id: <20210201051039.255478-7-like.xu@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04KVM: vmx/pmu: Create a guest LBR event when vcpu sets DEBUGCTLMSR_LBRLike Xu1-0/+3
When vcpu sets DEBUGCTLMSR_LBR in the MSR_IA32_DEBUGCTLMSR, the KVM handler would create a guest LBR event which enables the callstack mode and none of hardware counter is assigned. The host perf would schedule and enable this event as usual but in an exclusive way. The guest LBR event will be released when the vPMU is reset but soon, the lazy release mechanism would be applied to this event like a vPMC. Suggested-by: Andi Kleen <ak@linux.intel.com> Co-developed-by: Wei Wang <wei.w.wang@intel.com> Signed-off-by: Wei Wang <wei.w.wang@intel.com> Signed-off-by: Like Xu <like.xu@linux.intel.com> Reviewed-by: Andi Kleen <ak@linux.intel.com> Message-Id: <20210201051039.255478-6-like.xu@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04KVM: vmx/pmu: Add PMU_CAP_LBR_FMT check when guest LBR is enabledLike Xu1-1/+11
Usespace could set the bits [0, 5] of the IA32_PERF_CAPABILITIES MSR which tells about the record format stored in the LBR records. The LBR will be enabled on the guest if host perf supports LBR (checked via x86_perf_get_lbr()) and the vcpu model is compatible with the host one. Signed-off-by: Like Xu <like.xu@linux.intel.com> Message-Id: <20210201051039.255478-4-like.xu@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04KVM: vmx/pmu: Add PMU_CAP_LBR_FMT check when guest LBR is enabledPaolo Bonzini1-0/+12
Usespace could set the bits [0, 5] of the IA32_PERF_CAPABILITIES MSR which tells about the record format stored in the LBR records. The LBR will be enabled on the guest if host perf supports LBR (checked via x86_perf_get_lbr()) and the vcpu model is compatible with the host one. Signed-off-by: Like Xu <like.xu@linux.intel.com> Message-Id: <20210201051039.255478-4-like.xu@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04KVM: x86/vmx: Make vmx_set_intercept_for_msr() non-staticLike Xu1-1/+1
To make code responsibilities clear, we may resue and invoke the vmx_set_intercept_for_msr() in other vmx-specific files (e.g. pmu_intel.c), so expose it to passthrough LBR msrs later. Signed-off-by: Like Xu <like.xu@linux.intel.com> Reviewed-by: Andi Kleen <ak@linux.intel.com> Message-Id: <20210201051039.255478-2-like.xu@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04KVM: VMX: read/write MSR_IA32_DEBUGCTLMSR from GUEST_IA32_DEBUGCTLLike Xu1-4/+19
SVM already has specific handlers of MSR_IA32_DEBUGCTLMSR in the svm_get/set_msr, so the x86 common part can be safely moved to VMX. This allows KVM to store the bits it supports in GUEST_IA32_DEBUGCTL. Add vmx_supported_debugctl() to refactor the throwing logic of #GP. Signed-off-by: Like Xu <like.xu@linux.intel.com> Reviewed-by: Andi Kleen <ak@linux.intel.com> Message-Id: <20210108013704.134985-2-like.xu@linux.intel.com> [Merge parts of Chenyi Qiang's "KVM: X86: Expose bus lock debug exception to guest". - Paolo] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04KVM: VMX: Enable bus lock VM exitChenyi Qiang1-2/+35
Virtual Machine can exploit bus locks to degrade the performance of system. Bus lock can be caused by split locked access to writeback(WB) memory or by using locks on uncacheable(UC) memory. The bus lock is typically >1000 cycles slower than an atomic operation within a cache line. It also disrupts performance on other cores (which must wait for the bus lock to be released before their memory operations can complete). To address the threat, bus lock VM exit is introduced to notify the VMM when a bus lock was acquired, allowing it to enforce throttling or other policy based mitigations. A VMM can enable VM exit due to bus locks by setting a new "Bus Lock Detection" VM-execution control(bit 30 of Secondary Processor-based VM execution controls). If delivery of this VM exit was preempted by a higher priority VM exit (e.g. EPT misconfiguration, EPT violation, APIC access VM exit, APIC write VM exit, exception bitmap exiting), bit 26 of exit reason in vmcs field is set to 1. In current implementation, the KVM exposes this capability through KVM_CAP_X86_BUS_LOCK_EXIT. The user can get the supported mode bitmap (i.e. off and exit) and enable it explicitly (disabled by default). If bus locks in guest are detected by KVM, exit to user space even when current exit reason is handled by KVM internally. Set a new field KVM_RUN_BUS_LOCK in vcpu->run->flags to inform the user space that there is a bus lock detected in guest. Document for Bus Lock VM exit is now available at the latest "Intel Architecture Instruction Set Extensions Programming Reference". Document Link: https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html Co-developed-by: Xiaoyao Li <xiaoyao.li@intel.com> Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com> Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com> Message-Id: <20201106090315.18606-4-chenyi.qiang@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04KVM: VMX: Convert vcpu_vmx.exit_reason to a unionSean Christopherson1-33/+35
Convert vcpu_vmx.exit_reason from a u32 to a union (of size u32). The full VM_EXIT_REASON field is comprised of a 16-bit basic exit reason in bits 15:0, and single-bit modifiers in bits 31:16. Historically, KVM has only had to worry about handling the "failed VM-Entry" modifier, which could only be set in very specific flows and required dedicated handling. I.e. manually stripping the FAILED_VMENTRY bit was a somewhat viable approach. But even with only a single bit to worry about, KVM has had several bugs related to comparing a basic exit reason against the full exit reason store in vcpu_vmx. Upcoming Intel features, e.g. SGX, will add new modifier bits that can be set on more or less any VM-Exit, as opposed to the significantly more restricted FAILED_VMENTRY, i.e. correctly handling everything in one-off flows isn't scalable. Tracking exit reason in a union forces code to explicitly choose between consuming the full exit reason and the basic exit, and is a convenient way to document and access the modifiers. No functional change intended. Cc: Xiaoyao Li <xiaoyao.li@intel.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com> Message-Id: <20201106090315.18606-2-chenyi.qiang@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-01KVM: x86: Allow guests to see MSR_IA32_TSX_CTRL even if tsx=offPaolo Bonzini1-4/+13
Userspace that does not know about KVM_GET_MSR_FEATURE_INDEX_LIST will generally use the default value for MSR_IA32_ARCH_CAPABILITIES. When this happens and the host has tsx=on, it is possible to end up with virtual machines that have HLE and RTM disabled, but TSX_CTRL available. If the fleet is then switched to tsx=off, kvm_get_arch_capabilities() will clear the ARCH_CAP_TSX_CTRL_MSR bit and it will not be possible to use the tsx=off hosts as migration destinations, even though the guests do not have TSX enabled. To allow this migration, allow guests to write to their TSX_CTRL MSR, while keeping the host MSR unchanged for the entire life of the guests. This ensures that TSX remains disabled and also saves MSR reads and writes, and it's okay to do because with tsx=off we know that guests will not have the HLE and RTM features in their CPUID. (If userspace sets bogus CPUID data, we do not expect HLE and RTM to work in guests anyway). Cc: stable@vger.kernel.org Fixes: cbbaa2727aa3 ("KVM: x86: fix presentation of TSX feature in ARCH_CAPABILITIES") Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-01-26kvm: tracing: Fix unmatched kvm_entry and kvm_exit eventsLorenzo Brescia1-0/+2
On VMX, if we exit and then re-enter immediately without leaving the vmx_vcpu_run() function, the kvm_entry event is not logged. That means we will see one (or more) kvm_exit, without its (their) corresponding kvm_entry, as shown here: CPU-1979 [002] 89.871187: kvm_entry: vcpu 1 CPU-1979 [002] 89.871218: kvm_exit: reason MSR_WRITE CPU-1979 [002] 89.871259: kvm_exit: reason MSR_WRITE It also seems possible for a kvm_entry event to be logged, but then we leave vmx_vcpu_run() right away (if vmx->emulation_required is true). In this case, we will have a spurious kvm_entry event in the trace. Fix these situations by moving trace_kvm_entry() inside vmx_vcpu_run() (where trace_kvm_exit() already is). A trace obtained with this patch applied looks like this: CPU-14295 [000] 8388.395387: kvm_entry: vcpu 0 CPU-14295 [000] 8388.395392: kvm_exit: reason MSR_WRITE CPU-14295 [000] 8388.395393: kvm_entry: vcpu 0 CPU-14295 [000] 8388.395503: kvm_exit: reason EXTERNAL_INTERRUPT Of course, not calling trace_kvm_entry() in common x86 code any longer means that we need to adjust the SVM side of things too. Signed-off-by: Lorenzo Brescia <lorenzo.brescia@edu.unito.it> Signed-off-by: Dario Faggioli <dfaggioli@suse.com> Message-Id: <160873470698.11652.13483635328769030605.stgit@Wayrath> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-01-08KVM: SVM: Add support for booting APs in an SEV-ES guestTom Lendacky1-0/+2
Typically under KVM, an AP is booted using the INIT-SIPI-SIPI sequence, where the guest vCPU register state is updated and then the vCPU is VMRUN to begin execution of the AP. For an SEV-ES guest, this won't work because the guest register state is encrypted. Following the GHCB specification, the hypervisor must not alter the guest register state, so KVM must track an AP/vCPU boot. Should the guest want to park the AP, it must use the AP Reset Hold exit event in place of, for example, a HLT loop. First AP boot (first INIT-SIPI-SIPI sequence): Execute the AP (vCPU) as it was initialized and measured by the SEV-ES support. It is up to the guest to transfer control of the AP to the proper location. Subsequent AP boot: KVM will expect to receive an AP Reset Hold exit event indicating that the vCPU is being parked and will require an INIT-SIPI-SIPI sequence to awaken it. When the AP Reset Hold exit event is received, KVM will place the vCPU into a simulated HLT mode. Upon receiving the INIT-SIPI-SIPI sequence, KVM will make the vCPU runnable. It is again up to the guest to then transfer control of the AP to the proper location. To differentiate between an actual HLT and an AP Reset Hold, a new MP state is introduced, KVM_MP_STATE_AP_RESET_HOLD, which the vCPU is placed in upon receiving the AP Reset Hold exit event. Additionally, to communicate the AP Reset Hold exit event up to userspace (if needed), a new exit reason is introduced, KVM_EXIT_AP_RESET_HOLD. A new x86 ops function is introduced, vcpu_deliver_sipi_vector, in order to accomplish AP booting. For VMX, vcpu_deliver_sipi_vector is set to the original SIPI delivery function, kvm_vcpu_deliver_sipi_vector(). SVM adds a new function that, for non SEV-ES guests, invokes the original SIPI delivery function, kvm_vcpu_deliver_sipi_vector(), but for SEV-ES guests, implements the logic above. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Message-Id: <e8fbebe8eb161ceaabdad7c01a5859a78b424d5e.1609791600.git.thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-15KVM: SVM: Do not report support for SMM for an SEV-ES guestTom Lendacky1-1/+5
SEV-ES guests do not currently support SMM. Update the has_emulated_msr() kvm_x86_ops function to take a struct kvm parameter so that the capability can be reported at a VM level. Since this op is also called during KVM initialization and before a struct kvm instance is available, comments will be added to each implementation of has_emulated_msr() to indicate the kvm parameter can be null. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Message-Id: <75de5138e33b945d2fb17f81ae507bda381808e3.1607620209.git.thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-15KVM: x86: introduce complete_emulated_msr callbackPaolo Bonzini1-0/+1
This will be used by SEV-ES to inject MSR failure via the GHCB. Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-14KVM/VMX/SVM: Move kvm_machine_check function to x86.hUros Bizjak1-20/+0
Move kvm_machine_check to x86.h to avoid two exact copies of the same function in kvm.c and svm.c. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Uros Bizjak <ubizjak@gmail.com> Message-Id: <20201029135600.122392-1-ubizjak@gmail.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-12-12KVM: x86: reinstate vendor-agnostic check on SPEC_CTRL cpuid bitsPaolo Bonzini1-4/+4
Until commit e7c587da1252 ("x86/speculation: Use synthetic bits for IBRS/IBPB/STIBP"), KVM was testing both Intel and AMD CPUID bits before allowing the guest to write MSR_IA32_SPEC_CTRL and MSR_IA32_PRED_CMD. Testing only Intel bits on VMX processors, or only AMD bits on SVM processors, fails if the guests are created with the "opposite" vendor as the host. While at it, also tweak the host CPU check to use the vendor-agnostic feature bit X86_FEATURE_IBPB, since we only care about the availability of the MSR on the host here and not about specific CPUID bits. Fixes: e7c587da1252 ("x86/speculation: Use synthetic bits for IBRS/IBPB/STIBP") Cc: stable@vger.kernel.org Reported-by: Denis V. Lunev <den@openvz.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-11-15kvm: x86: Sink cpuid update into vendor-specific set_cr4 functionsJim Mattson1-0/+4
On emulated VM-entry and VM-exit, update the CPUID bits that reflect CR4.OSXSAVE and CR4.PKE. This fixes a bug where the CPUID bits could continue to reflect L2 CR4 values after emulated VM-exit to L1. It also fixes a related bug where the CPUID bits could continue to reflect L1 CR4 values after emulated VM-entry to L2. The latter bug is mainly relevant to SVM, wherein CPUID is not a required intercept. However, it could also be relevant to VMX, because the code to conditionally update these CPUID bits assumes that the guest CPUID and the guest CR4 are always in sync. Fixes: 8eb3f87d903168 ("KVM: nVMX: fix guest CR4 loading when emulating L2 to L1 exit") Fixes: 2acf923e38fb6a ("KVM: VMX: Enable XSAVE/XRSTOR for guest") Fixes: b9baba86148904 ("KVM, pkeys: expose CPUID/CR4 to guest") Reported-by: Abhiroop Dabral <adabral@paloaltonetworks.com> Signed-off-by: Jim Mattson <jmattson@google.com> Reviewed-by: Ricardo Koller <ricarkol@google.com> Reviewed-by: Peter Shier <pshier@google.com> Cc: Haozhong Zhang <haozhong.zhang@intel.com> Cc: Dexuan Cui <dexuan.cui@intel.com> Cc: Huaitong Han <huaitong.han@intel.com> Message-Id: <20201029170648.483210-1-jmattson@google.com>
2020-11-15KVM: X86: Implement ring-based dirty memory trackingPeter Xu1-0/+7
This patch is heavily based on previous work from Lei Cao <lei.cao@stratus.com> and Paolo Bonzini <pbonzini@redhat.com>. [1] KVM currently uses large bitmaps to track dirty memory. These bitmaps are copied to userspace when userspace queries KVM for its dirty page information. The use of bitmaps is mostly sufficient for live migration, as large parts of memory are be dirtied from one log-dirty pass to another. However, in a checkpointing system, the number of dirty pages is small and in fact it is often bounded---the VM is paused when it has dirtied a pre-defined number of pages. Traversing a large, sparsely populated bitmap to find set bits is time-consuming, as is copying the bitmap to user-space. A similar issue will be there for live migration when the guest memory is huge while the page dirty procedure is trivial. In that case for each dirty sync we need to pull the whole dirty bitmap to userspace and analyse every bit even if it's mostly zeros. The preferred data structure for above scenarios is a dense list of guest frame numbers (GFN). This patch series stores the dirty list in kernel memory that can be memory mapped into userspace to allow speedy harvesting. This patch enables dirty ring for X86 only. However it should be easily extended to other archs as well. [1] https://patchwork.kernel.org/patch/10471409/ Signed-off-by: Lei Cao <lei.cao@stratus.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Peter Xu <peterx@redhat.com> Message-Id: <20201001012222.5767-1-peterx@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-11-15KVM: X86: Don't track dirty for KVM_SET_[TSS_ADDR|IDENTITY_MAP_ADDR]Peter Xu1-46/+42
Originally, we have three code paths that can dirty a page without vcpu context for X86: - init_rmode_identity_map - init_rmode_tss - kvmgt_rw_gpa init_rmode_identity_map and init_rmode_tss will be setup on destination VM no matter what (and the guest cannot even see them), so it does not make sense to track them at all. To do this, allow __x86_set_memory_region() to return the userspace address that just allocated to the caller. Then in both of the functions we directly write to the userspace address instead of calling kvm_write_*() APIs. Another trivial change is that we don't need to explicitly clear the identity page table root in init_rmode_identity_map() because no matter what we'll write to the whole page with 4M huge page entries. Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Peter Xu <peterx@redhat.com> Message-Id: <20201001012044.5151-4-peterx@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-11-15KVM: x86: fix apic_accept_events vs check_nested_eventsPaolo Bonzini1-1/+1
vmx_apic_init_signal_blocked is buggy in that it returns true even in VMX non-root mode. In non-root mode, however, INITs are not latched, they just cause a vmexit. Previously, KVM was waiting for them to be processed when kvm_apic_accept_events and in the meanwhile it ate the SIPIs that the processor received. However, in order to implement the wait-for-SIPI activity state, KVM will have to process KVM_APIC_SIPI in vmx_check_nested_events, and it will not be possible anymore to disregard SIPIs in non-root mode as the code is currently doing. By calling kvm_x86_ops.nested_ops->check_events, we can force a vmexit (with the side-effect of latching INITs) before incorrectly injecting an INIT or SIPI in a guest, and therefore vmx_apic_init_signal_blocked can do the right thing. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-11-15KVM: x86: Return bool instead of int for CR4 and SREGS validity checksSean Christopherson1-1/+1
Rework the common CR4 and SREGS checks to return a bool instead of an int, i.e. true/false instead of 0/-EINVAL, and add "is" to the name to clarify the polarity of the return value (which is effectively inverted by this change). No functional changed intended. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Message-Id: <20201007014417.29276-6-sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-11-15KVM: x86: Move vendor CR4 validity check to dedicated kvm_x86_ops hookSean Christopherson1-13/+18
Split out VMX's checks on CR4.VMXE to a dedicated hook, .is_valid_cr4(), and invoke the new hook from kvm_valid_cr4(). This fixes an issue where KVM_SET_SREGS would return success while failing to actually set CR4. Fixing the issue by explicitly checking kvm_x86_ops.set_cr4()'s return in __set_sregs() is not a viable option as KVM has already stuffed a variety of vCPU state. Note, kvm_valid_cr4() and is_valid_cr4() have different return types and inverted semantics. This will be remedied in a future patch. Fixes: 5e1746d6205d ("KVM: nVMX: Allow setting the VMXE bit in CR4") Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Message-Id: <20201007014417.29276-5-sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>