summaryrefslogtreecommitdiff
path: root/arch/x86/kvm/svm
AgeCommit message (Collapse)AuthorFilesLines
2021-11-02KVM: SEV-ES: fix another issue with string I/O VMGEXITsPaolo Bonzini1-3/+12
commit 9b0971ca7fc75daca80c0bb6c02e96059daea90a upstream. If the guest requests string I/O from the hypervisor via VMGEXIT, SW_EXITINFO2 will contain the REP count. However, sev_es_string_io was incorrectly treating it as the size of the GHCB buffer in bytes. This fixes the "outsw" test in the experimental SEV tests of kvm-unit-tests. Cc: stable@vger.kernel.org Fixes: 7ed9abfe8e9f ("KVM: SVM: Support string IO operations for an SEV-ES guest") Reported-by: Marc Orr <marcorr@google.com> Tested-by: Marc Orr <marcorr@google.com> Reviewed-by: Marc Orr <marcorr@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-10-27KVM: SEV-ES: Set guest_state_protected after VMSA updatePeter Gonda1-1/+6
commit baa1e5ca172ce7bf9554070139482dd7ea919528 upstream. The refactoring in commit bb18a6777465 ("KVM: SEV: Acquire vcpu mutex when updating VMSA") left behind the assignment to svm->vcpu.arch.guest_state_protected; add it back. Signed-off-by: Peter Gonda <pgonda@google.com> [Delta between v2 and v3 of Peter's patch, which had already been committed; the commit message is my own. - Paolo] Fixes: bb18a6777465 ("KVM: SEV: Acquire vcpu mutex when updating VMSA") Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-10-27KVM: SEV-ES: reduce ghcb_sa_len to 32 bitsPaolo Bonzini1-1/+1
commit 9f1ee7b169afbd10c3ad254220d1b37beb5798aa upstream. The size of the GHCB scratch area is limited to 16 KiB (GHCB_SCRATCH_AREA_LIMIT), so there is no need for it to be a u64. This fixes a build error on 32-bit systems: i686-linux-gnu-ld: arch/x86/kvm/svm/sev.o: in function `sev_es_string_io: sev.c:(.text+0x110f): undefined reference to `__udivdi3' Cc: stable@vger.kernel.org Fixes: 019057bd73d1 ("KVM: SEV-ES: fix length of string I/O") Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-10-27KVM: SEV-ES: fix length of string I/OPaolo Bonzini1-1/+1
commit 019057bd73d1751fdfec41e43148baf3303d98f9 upstream. The size of the data in the scratch buffer is not divided by the size of each port I/O operation, so vcpu->arch.pio.count ends up being larger than it should be by a factor of size. Cc: stable@vger.kernel.org Fixes: 7ed9abfe8e9f ("KVM: SVM: Support string IO operations for an SEV-ES guest") Acked-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-10-27KVM: SEV: Flush cache on non-coherent systems before RECEIVE_UPDATE_DATAMasahiro Kozuka1-0/+7
commit c8c340a9b4149fe5caa433f3b62463a1c8e07a46 upstream. Flush the destination page before invoking RECEIVE_UPDATE_DATA, as the PSP encrypts the data with the guest's key when writing to guest memory. If the target memory was not previously encrypted, the cache may contain dirty, unecrypted data that will persist on non-coherent systems. Fixes: 15fb7de1a7f5 ("KVM: SVM: Add KVM_SEV_RECEIVE_UPDATE_DATA command") Cc: stable@vger.kernel.org Cc: Peter Gonda <pgonda@google.com> Cc: Marc Orr <marcorr@google.com> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Brijesh Singh <brijesh.singh@amd.com> Signed-off-by: Masahiro Kozuka <masa.koz@kozuka.jp> [sean: converted bug report to changelog] Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20210914210951.2994260-3-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-10-09KVM: x86: nSVM: restore int_vector in svm_clear_vintrMaxim Levitsky1-0/+2
[ Upstream commit aee77e1169c1900fe4248dc186962e745b479d9e ] In svm_clear_vintr we try to restore the virtual interrupt injection that might be pending, but we fail to restore the interrupt vector. Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20210914154825.104886-2-mlevitsk@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-10-07KVM: SVM: fix missing sev_decommission in sev_receive_startMingwei Zhang1-1/+3
commit f1815e0aa770f2127c5df31eb5c2f0e37b60fa77 upstream. DECOMMISSION the current SEV context if binding an ASID fails after RECEIVE_START. Per AMD's SEV API, RECEIVE_START generates a new guest context and thus needs to be paired with DECOMMISSION: The RECEIVE_START command is the only command other than the LAUNCH_START command that generates a new guest context and guest handle. The missing DECOMMISSION can result in subsequent SEV launch failures, as the firmware leaks memory and might not able to allocate more SEV guest contexts in the future. Note, LAUNCH_START suffered the same bug, but was previously fixed by commit 934002cd660b ("KVM: SVM: Call SEV Guest Decommission if ASID binding fails"). Cc: Alper Gun <alpergun@google.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: David Rienjes <rientjes@google.com> Cc: Marc Orr <marcorr@google.com> Cc: John Allen <john.allen@amd.com> Cc: Peter Gonda <pgonda@google.com> Cc: Sean Christopherson <seanjc@google.com> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Vipin Sharma <vipinsh@google.com> Cc: stable@vger.kernel.org Reviewed-by: Marc Orr <marcorr@google.com> Acked-by: Brijesh Singh <brijesh.singh@amd.com> Fixes: af43cbbf954b ("KVM: SVM: Add support for KVM_SEV_RECEIVE_START command") Signed-off-by: Mingwei Zhang <mizhang@google.com> Reviewed-by: Sean Christopherson <seanjc@google.com> Message-Id: <20210912181815.3899316-1-mizhang@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-10-07KVM: SEV: Allow some commands for mirror VMPeter Gonda1-2/+17
commit 5b92b6ca92b65bef811048c481e4446f4828500a upstream. A mirrored SEV-ES VM will need to call KVM_SEV_LAUNCH_UPDATE_VMSA to setup its vCPUs and have them measured, and their VMSAs encrypted. Without this change, it is impossible to have mirror VMs as part of SEV-ES VMs. Also allow the guest status check and debugging commands since they do not change any guest state. Signed-off-by: Peter Gonda <pgonda@google.com> Cc: Marc Orr <marcorr@google.com> Cc: Nathan Tempelman <natet@google.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Sean Christopherson <seanjc@google.com> Cc: Steve Rutherford <srutherford@google.com> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: kvm@vger.kernel.org Cc: linux-kernel@vger.kernel.org Cc: stable@vger.kernel.org Fixes: 54526d1fd593 ("KVM: x86: Support KVM VMs sharing SEV context", 2021-04-21) Message-Id: <20210921150345.2221634-3-pgonda@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-10-07KVM: SEV: Acquire vcpu mutex when updating VMSAPeter Gonda1-22/+29
commit bb18a677746543e7f5eeb478129c92cedb0f9658 upstream. The update-VMSA ioctl touches data stored in struct kvm_vcpu, and therefore should not be performed concurrently with any VCPU ioctl that might cause KVM or the processor to use the same data. Adds vcpu mutex guard to the VMSA updating code. Refactors out __sev_launch_update_vmsa() function to deal with per vCPU parts of sev_launch_update_vmsa(). Fixes: ad73109ae7ec ("KVM: SVM: Provide support to launch and run an SEV-ES guest") Signed-off-by: Peter Gonda <pgonda@google.com> Cc: Marc Orr <marcorr@google.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Sean Christopherson <seanjc@google.com> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: kvm@vger.kernel.org Cc: stable@vger.kernel.org Cc: linux-kernel@vger.kernel.org Message-Id: <20210915171755.3773766-1-pgonda@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-10-07KVM: SEV: Pin guest memory for write for RECEIVE_UPDATE_DATASean Christopherson1-1/+1
commit 50c038018d6be20361e8a2890262746a4ac5b11f upstream. Require the target guest page to be writable when pinning memory for RECEIVE_UPDATE_DATA. Per the SEV API, the PSP writes to guest memory: The result is then encrypted with GCTX.VEK and written to the memory pointed to by GUEST_PADDR field. Fixes: 15fb7de1a7f5 ("KVM: SVM: Add KVM_SEV_RECEIVE_UPDATE_DATA command") Cc: stable@vger.kernel.org Cc: Peter Gonda <pgonda@google.com> Cc: Marc Orr <marcorr@google.com> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Brijesh Singh <brijesh.singh@amd.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20210914210951.2994260-2-seanjc@google.com> Reviewed-by: Brijesh Singh <brijesh.singh@amd.com> Reviewed-by: Peter Gonda <pgonda@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-10-07KVM: SEV: Update svm_vm_copy_asid_from for SEV-ESPeter Gonda1-4/+12
commit f43c887cb7cb5b66c4167d40a4209027f5fdb5ce upstream. For mirroring SEV-ES the mirror VM will need more then just the ASID. The FD and the handle are required to all the mirror to call psp commands. The mirror VM will need to call KVM_SEV_LAUNCH_UPDATE_VMSA to setup its vCPUs' VMSAs for SEV-ES. Signed-off-by: Peter Gonda <pgonda@google.com> Cc: Marc Orr <marcorr@google.com> Cc: Nathan Tempelman <natet@google.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Sean Christopherson <seanjc@google.com> Cc: Steve Rutherford <srutherford@google.com> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: kvm@vger.kernel.org Cc: linux-kernel@vger.kernel.org Cc: stable@vger.kernel.org Fixes: 54526d1fd593 ("KVM: x86: Support KVM VMs sharing SEV context", 2021-04-21) Message-Id: <20210921150345.2221634-2-pgonda@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-10-07KVM: x86: nSVM: don't copy virt_ext from vmcb12Maxim Levitsky1-1/+0
commit faf6b755629627f19feafa75b32e81cd7738f12d upstream. These field correspond to features that we don't expose yet to L2 While currently there are no CVE worthy features in this field, if AMD adds more features to this field, that could allow guest escapes similar to CVE-2021-3653 and CVE-2021-3656. Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20210914154825.104886-6-mlevitsk@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-16KVM: nSVM: always intercept VMLOAD/VMSAVE when nested (CVE-2021-3656)Maxim Levitsky1-0/+3
If L1 disables VMLOAD/VMSAVE intercepts, and doesn't enable Virtual VMLOAD/VMSAVE (currently not supported for the nested hypervisor), then VMLOAD/VMSAVE must operate on the L1 physical memory, which is only possible by making L0 intercept these instructions. Failure to do so allowed the nested guest to run VMLOAD/VMSAVE unintercepted, and thus read/write portions of the host physical memory. Fixes: 89c8a4984fc9 ("KVM: SVM: Enable Virtual VMLOAD VMSAVE feature") Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-16KVM: nSVM: avoid picking up unsupported bits from L2 in int_ctl (CVE-2021-3653)Maxim Levitsky2-7/+12
* Invert the mask of bits that we pick from L2 in nested_vmcb02_prepare_control * Invert and explicitly use VIRQ related bits bitmask in svm_clear_vintr This fixes a security issue that allowed a malicious L1 to run L2 with AVIC enabled, which allowed the L2 to exploit the uninitialized and enabled AVIC to read/write the host physical memory at some offsets. Fixes: 3d6368ef580a ("KVM: SVM: Add VMRUN handler") Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-04KVM: SVM: improve the code readability for ASID managementMingwei Zhang1-19/+24
KVM SEV code uses bitmaps to manage ASID states. ASID 0 was always skipped because it is never used by VM. Thus, in existing code, ASID value and its bitmap postion always has an 'offset-by-1' relationship. Both SEV and SEV-ES shares the ASID space, thus KVM uses a dynamic range [min_asid, max_asid] to handle SEV and SEV-ES ASIDs separately. Existing code mixes the usage of ASID value and its bitmap position by using the same variable called 'min_asid'. Fix the min_asid usage: ensure that its usage is consistent with its name; allocate extra size for ASID 0 to ensure that each ASID has the same value with its bitmap position. Add comments on ASID bitmap allocation to clarify the size change. Signed-off-by: Mingwei Zhang <mizhang@google.com> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Marc Orr <marcorr@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Alper Gun <alpergun@google.com> Cc: Dionna Glaze <dionnaglaze@google.com> Cc: Sean Christopherson <seanjc@google.com> Cc: Vipin Sharma <vipinsh@google.com> Cc: Peter Gonda <pgonda@google.com> Cc: Joerg Roedel <joro@8bytes.org> Message-Id: <20210802180903.159381-1-mizhang@google.com> [Fix up sev_asid_free to also index by ASID, as suggested by Sean Christopherson, and use nr_asids in sev_cpu_init. - Paolo] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-08-04KVM: SVM: Fix off-by-one indexing when nullifying last used SEV VMCBSean Christopherson1-1/+1
Use the raw ASID, not ASID-1, when nullifying the last used VMCB when freeing an SEV ASID. The consumer, pre_sev_run(), indexes the array by the raw ASID, thus KVM could get a false negative when checking for a different VMCB if KVM manages to reallocate the same ASID+VMCB combo for a new VM. Note, this cannot cause a functional issue _in the current code_, as pre_sev_run() also checks which pCPU last did VMRUN for the vCPU, and last_vmentry_cpu is initialized to -1 during vCPU creation, i.e. is guaranteed to mismatch on the first VMRUN. However, prior to commit 8a14fe4f0c54 ("kvm: x86: Move last_cpu into kvm_vcpu_arch as last_vmentry_cpu"), SVM tracked pCPU on its own and zero-initialized the last_cpu variable. Thus it's theoretically possible that older versions of KVM could miss a TLB flush if the first VMRUN is on pCPU0 and the ASID and VMCB exactly match those of a prior VM. Fixes: 70cd94e60c73 ("KVM: SVM: VMRUN should use associated ASID when SEV is enabled") Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-07-27KVM: SVM: use vmcb01 in svm_refresh_apicv_exec_ctrlMaxim Levitsky1-1/+1
Currently when SVM is enabled in guest CPUID, AVIC is inhibited as soon as the guest CPUID is set. AVIC happens to be fully disabled on all vCPUs by the time any guest entry starts (if after migration the entry can be nested). The reason is that currently we disable avic right away on vCPU from which the kvm_request_apicv_update was called and for this case, it happens to be called on all vCPUs (by svm_vcpu_after_set_cpuid). After we stop doing this, AVIC will end up being disabled only when KVM_REQ_APICV_UPDATE is processed which is after we done switching to the nested guest. Fix this by just using vmcb01 in svm_refresh_apicv_exec_ctrl for avic (which is a right thing to do anyway). Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20210713142023.106183-4-mlevitsk@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-07-27KVM: SVM: tweak warning about enabled AVIC on nested entryMaxim Levitsky1-1/+1
It is possible that AVIC was requested to be disabled but not yet disabled, e.g if the nested entry is done right after svm_vcpu_after_set_cpuid. Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20210713142023.106183-3-mlevitsk@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-07-27KVM: SVM: svm_set_vintr don't warn if AVIC is active but is about to be ↵Maxim Levitsky1-2/+5
deactivated It is possible for AVIC inhibit and AVIC active state to be mismatched. Currently we disable AVIC right away on vCPU which started the AVIC inhibit request thus this warning doesn't trigger but at least in theory, if svm_set_vintr is called at the same time on multiple vCPUs, the warning can happen. Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20210713142023.106183-2-mlevitsk@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-07-27KVM: SVM: delay svm_vcpu_init_msrpm after svm->vmcb is initializedPaolo Bonzini2-3/+3
Right now, svm_hv_vmcb_dirty_nested_enlightenments has an incorrect dereference of vmcb->control.reserved_sw before the vmcb is checked for being non-NULL. The compiler is usually sinking the dereference after the check; instead of doing this ourselves in the source, ensure that svm_hv_vmcb_dirty_nested_enlightenments is only called with a non-NULL VMCB. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Cc: Vineeth Pillai <viremana@linux.microsoft.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> [Untested for now due to issues with my AMD machine. - Paolo]
2021-07-26KVM: nSVM: Swap the parameter order for ↵Vitaly Kuznetsov3-13/+13
svm_copy_vmrun_state()/svm_copy_vmloadsave_state() Make svm_copy_vmrun_state()/svm_copy_vmloadsave_state() interface match 'memcpy(dest, src)' to avoid any confusion. No functional change intended. Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Message-Id: <20210719090322.625277-1-vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-07-26KVM: nSVM: Rename nested_svm_vmloadsave() to svm_copy_vmloadsave_state()Vitaly Kuznetsov3-5/+6
To match svm_copy_vmrun_state(), rename nested_svm_vmloadsave() to svm_copy_vmloadsave_state(). Opportunistically add missing braces to 'else' branch in vmload_vmsave_interception(). No functional change intended. Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Message-Id: <20210716144104.465269-1-vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-07-15Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds4-33/+116
Pull kvm fixes from Paolo Bonzini: - Allow again loading KVM on 32-bit non-PAE builds - Fixes for host SMIs on AMD - Fixes for guest SMIs on AMD - Fixes for selftests on s390 and ARM - Fix memory leak - Enforce no-instrumentation area on vmentry when hardware breakpoints are in use. * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (25 commits) KVM: selftests: smm_test: Test SMM enter from L2 KVM: nSVM: Restore nested control upon leaving SMM KVM: nSVM: Fix L1 state corruption upon return from SMM KVM: nSVM: Introduce svm_copy_vmrun_state() KVM: nSVM: Check that VM_HSAVE_PA MSR was set before VMRUN KVM: nSVM: Check the value written to MSR_VM_HSAVE_PA KVM: SVM: Fix sev_pin_memory() error checks in SEV migration utilities KVM: SVM: Return -EFAULT if copy_to_user() for SEV mig packet header fails KVM: SVM: add module param to control the #SMI interception KVM: SVM: remove INIT intercept handler KVM: SVM: #SMI interception must not skip the instruction KVM: VMX: Remove vmx_msr_index from vmx.h KVM: X86: Disable hardware breakpoints unconditionally before kvm_x86->run() KVM: selftests: Address extra memslot parameters in vm_vaddr_alloc kvm: debugfs: fix memory leak in kvm_create_vm_debugfs KVM: x86/pmu: Clear anythread deprecated bit when 0xa leaf is unsupported on the SVM KVM: mmio: Fix use-after-free Read in kvm_vm_ioctl_unregister_coalesced_mmio KVM: SVM: Revert clearing of C-bit on GPA in #NPF handler KVM: x86/mmu: Do not apply HPA (memory encryption) mask to GPAs KVM: x86: Use kernel's x86_phys_bits to handle reduced MAXPHYADDR ...
2021-07-15KVM: nSVM: Restore nested control upon leaving SMMVitaly Kuznetsov3-3/+10
If the VM was migrated while in SMM, no nested state was saved/restored, and therefore svm_leave_smm has to load both save and control area of the vmcb12. Save area is already loaded from HSAVE area, so now load the control area as well from the vmcb12. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Message-Id: <20210628104425.391276-6-vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-07-15KVM: nSVM: Fix L1 state corruption upon return from SMMVitaly Kuznetsov1-1/+38
VMCB split commit 4995a3685f1b ("KVM: SVM: Use a separate vmcb for the nested L2 guest") broke return from SMM when we entered there from guest (L2) mode. Gen2 WS2016/Hyper-V is known to do this on boot. The problem manifests itself like this: kvm_exit: reason EXIT_RSM rip 0x7ffbb280 info 0 0 kvm_emulate_insn: 0:7ffbb280: 0f aa kvm_smm_transition: vcpu 0: leaving SMM, smbase 0x7ffb3000 kvm_nested_vmrun: rip: 0x000000007ffbb280 vmcb: 0x0000000008224000 nrip: 0xffffffffffbbe119 int_ctl: 0x01020000 event_inj: 0x00000000 npt: on kvm_nested_intercepts: cr_read: 0000 cr_write: 0010 excp: 40060002 intercepts: fd44bfeb 0000217f 00000000 kvm_entry: vcpu 0, rip 0xffffffffffbbe119 kvm_exit: reason EXIT_NPF rip 0xffffffffffbbe119 info 200000006 1ab000 kvm_nested_vmexit: vcpu 0 reason npf rip 0xffffffffffbbe119 info1 0x0000000200000006 info2 0x00000000001ab000 intr_info 0x00000000 error_code 0x00000000 kvm_page_fault: address 1ab000 error_code 6 kvm_nested_vmexit_inject: reason EXIT_NPF info1 200000006 info2 1ab000 int_info 0 int_info_err 0 kvm_entry: vcpu 0, rip 0x7ffbb280 kvm_exit: reason EXIT_EXCP_GP rip 0x7ffbb280 info 0 0 kvm_emulate_insn: 0:7ffbb280: 0f aa kvm_inj_exception: #GP (0x0) Note: return to L2 succeeded but upon first exit to L1 its RIP points to 'RSM' instruction but we're not in SMM. The problem appears to be that VMCB01 gets irreversibly destroyed during SMM execution. Previously, we used to have 'hsave' VMCB where regular (pre-SMM) L1's state was saved upon nested_svm_vmexit() but now we just switch to VMCB01 from VMCB02. Pre-split (working) flow looked like: - SMM is triggered during L2's execution - L2's state is pushed to SMRAM - nested_svm_vmexit() restores L1's state from 'hsave' - SMM -> RSM - enter_svm_guest_mode() switches to L2 but keeps 'hsave' intact so we have pre-SMM (and pre L2 VMRUN) L1's state there - L2's state is restored from SMRAM - upon first exit L1's state is restored from L1. This was always broken with regards to svm_get_nested_state()/ svm_set_nested_state(): 'hsave' was never a part of what's being save and restored so migration happening during SMM triggered from L2 would never restore L1's state correctly. Post-split flow (broken) looks like: - SMM is triggered during L2's execution - L2's state is pushed to SMRAM - nested_svm_vmexit() switches to VMCB01 from VMCB02 - SMM -> RSM - enter_svm_guest_mode() switches from VMCB01 to VMCB02 but pre-SMM VMCB01 is already lost. - L2's state is restored from SMRAM - upon first exit L1's state is restored from VMCB01 but it is corrupted (reflects the state during 'RSM' execution). VMX doesn't have this problem because unlike VMCB, VMCS keeps both guest and host state so when we switch back to VMCS02 L1's state is intact there. To resolve the issue we need to save L1's state somewhere. We could've created a third VMCB for SMM but that would require us to modify saved state format. L1's architectural HSAVE area (pointed by MSR_VM_HSAVE_PA) seems appropriate: L0 is free to save any (or none) of L1's state there. Currently, KVM does 'none'. Note, for nested state migration to succeed, both source and destination hypervisors must have the fix. We, however, don't need to create a new flag indicating the fact that HSAVE area is now populated as migration during SMM triggered from L2 was always broken. Fixes: 4995a3685f1b ("KVM: SVM: Use a separate vmcb for the nested L2 guest") Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-07-15KVM: nSVM: Introduce svm_copy_vmrun_state()Vitaly Kuznetsov2-18/+24
Separate the code setting non-VMLOAD-VMSAVE state from svm_set_nested_state() into its own function. This is going to be re-used from svm_enter_smm()/svm_leave_smm(). Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Message-Id: <20210628104425.391276-4-vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-07-15KVM: nSVM: Check that VM_HSAVE_PA MSR was set before VMRUNVitaly Kuznetsov1-0/+5
APM states that "The address written to the VM_HSAVE_PA MSR, which holds the address of the page used to save the host state on a VMRUN, must point to a hypervisor-owned page. If this check fails, the WRMSR will fail with a #GP(0) exception. Note that a value of 0 is not considered valid for the VM_HSAVE_PA MSR and a VMRUN that is attempted while the HSAVE_PA is 0 will fail with a #GP(0) exception." svm_set_msr() already checks that the supplied address is valid, so only check for '0' is missing. Add it to nested_svm_vmrun(). Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Message-Id: <20210628104425.391276-3-vkuznets@redhat.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-07-15KVM: nSVM: Check the value written to MSR_VM_HSAVE_PAVitaly Kuznetsov1-1/+10
APM states that #GP is raised upon write to MSR_VM_HSAVE_PA when the supplied address is not page-aligned or is outside of "maximum supported physical address for this implementation". page_address_valid() check seems suitable. Also, forcefully page-align the address when it's written from VMM. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Message-Id: <20210628104425.391276-2-vkuznets@redhat.com> Cc: stable@vger.kernel.org Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> [Add comment about behavior for host-provided values. - Paolo] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-07-15KVM: SVM: Fix sev_pin_memory() error checks in SEV migration utilitiesSean Christopherson1-4/+5
Use IS_ERR() instead of checking for a NULL pointer when querying for sev_pin_memory() failures. sev_pin_memory() always returns an error code cast to a pointer, or a valid pointer; it never returns NULL. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Cc: Steve Rutherford <srutherford@google.com> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: Ashish Kalra <ashish.kalra@amd.com> Fixes: d3d1af85e2c7 ("KVM: SVM: Add KVM_SEND_UPDATE_DATA command") Fixes: 15fb7de1a7f5 ("KVM: SVM: Add KVM_SEV_RECEIVE_UPDATE_DATA command") Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20210506175826.2166383-3-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-07-15KVM: SVM: Return -EFAULT if copy_to_user() for SEV mig packet header failsSean Christopherson1-2/+3
Return -EFAULT if copy_to_user() fails; if accessing user memory faults, copy_to_user() returns the number of bytes remaining, not an error code. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Cc: Steve Rutherford <srutherford@google.com> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: Ashish Kalra <ashish.kalra@amd.com> Fixes: d3d1af85e2c7 ("KVM: SVM: Add KVM_SEND_UPDATE_DATA command") Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20210506175826.2166383-2-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-07-15KVM: SVM: add module param to control the #SMI interceptionMaxim Levitsky3-1/+14
In theory there are no side effects of not intercepting #SMI, because then #SMI becomes transparent to the OS and the KVM. Plus an observation on recent Zen2 CPUs reveals that these CPUs ignore #SMI interception and never deliver #SMI VMexits. This is also useful to test nested KVM to see that L1 handles #SMIs correctly in case when L1 doesn't intercept #SMI. Finally the default remains the same, the SMI are intercepted by default thus this patch doesn't have any effect unless non default module param value is used. Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20210707125100.677203-4-mlevitsk@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-07-15KVM: SVM: remove INIT intercept handlerMaxim Levitsky1-1/+0
Kernel never sends real INIT even to CPUs, other than on boot. Thus INIT interception is an error which should be caught by a check for an unknown VMexit reason. On top of that, the current INIT VM exit handler skips the current instruction which is wrong. That was added in commit 5ff3a351f687 ("KVM: x86: Move trivial instruction-based exit handlers to common code"). Fixes: 5ff3a351f687 ("KVM: x86: Move trivial instruction-based exit handlers to common code") Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20210707125100.677203-3-mlevitsk@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-07-15KVM: SVM: #SMI interception must not skip the instructionMaxim Levitsky1-1/+6
Commit 5ff3a351f687 ("KVM: x86: Move trivial instruction-based exit handlers to common code"), unfortunately made a mistake of treating nop_on_interception and nop_interception in the same way. Former does truly nothing while the latter skips the instruction. SMI VM exit handler should do nothing. (SMI itself is handled by the host when we do STGI) Fixes: 5ff3a351f687 ("KVM: x86: Move trivial instruction-based exit handlers to common code") Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20210707125100.677203-2-mlevitsk@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-07-14KVM: SVM: Revert clearing of C-bit on GPA in #NPF handlerSean Christopherson1-1/+1
Don't clear the C-bit in the #NPF handler, as it is a legal GPA bit for non-SEV guests, and for SEV guests the C-bit is dropped before the GPA hits the NPT in hardware. Clearing the bit for non-SEV guests causes KVM to mishandle #NPFs with that collide with the host's C-bit. Although the APM doesn't explicitly state that the C-bit is not reserved for non-SEV, Tom Lendacky confirmed that the following snippet about the effective reduction due to the C-bit does indeed apply only to SEV guests. Note that because guest physical addresses are always translated through the nested page tables, the size of the guest physical address space is not impacted by any physical address space reduction indicated in CPUID 8000_001F[EBX]. If the C-bit is a physical address bit however, the guest physical address space is effectively reduced by 1 bit. And for SEV guests, the APM clearly states that the bit is dropped before walking the nested page tables. If the C-bit is an address bit, this bit is masked from the guest physical address when it is translated through the nested page tables. Consequently, the hypervisor does not need to be aware of which pages the guest has chosen to mark private. Note, the bogus C-bit clearing was removed from legacy #PF handler in commit 6d1b867d0456 ("KVM: SVM: Don't strip the C-bit from CR2 on #PF interception"). Fixes: 0ede79e13224 ("KVM: SVM: Clear C-bit from the page fault address") Cc: Peter Gonda <pgonda@google.com> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20210625020354.431829-3-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-07-07Merge tag 'x86-fpu-2021-07-07' of ↵Linus Torvalds1-0/+1
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 fpu updates from Thomas Gleixner: "Fixes and improvements for FPU handling on x86: - Prevent sigaltstack out of bounds writes. The kernel unconditionally writes the FPU state to the alternate stack without checking whether the stack is large enough to accomodate it. Check the alternate stack size before doing so and in case it's too small force a SIGSEGV instead of silently corrupting user space data. - MINSIGSTKZ and SIGSTKSZ are constants in signal.h and have never been updated despite the fact that the FPU state which is stored on the signal stack has grown over time which causes trouble in the field when AVX512 is available on a CPU. The kernel does not expose the minimum requirements for the alternate stack size depending on the available and enabled CPU features. ARM already added an aux vector AT_MINSIGSTKSZ for the same reason. Add it to x86 as well. - A major cleanup of the x86 FPU code. The recent discoveries of XSTATE related issues unearthed quite some inconsistencies, duplicated code and other issues. The fine granular overhaul addresses this, makes the code more robust and maintainable, which allows to integrate upcoming XSTATE related features in sane ways" * tag 'x86-fpu-2021-07-07' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (74 commits) x86/fpu/xstate: Clear xstate header in copy_xstate_to_uabi_buf() again x86/fpu/signal: Let xrstor handle the features to init x86/fpu/signal: Handle #PF in the direct restore path x86/fpu: Return proper error codes from user access functions x86/fpu/signal: Split out the direct restore code x86/fpu/signal: Sanitize copy_user_to_fpregs_zeroing() x86/fpu/signal: Sanitize the xstate check on sigframe x86/fpu/signal: Remove the legacy alignment check x86/fpu/signal: Move initial checks into fpu__restore_sig() x86/fpu: Mark init_fpstate __ro_after_init x86/pkru: Remove xstate fiddling from write_pkru() x86/fpu: Don't store PKRU in xstate in fpu_reset_fpstate() x86/fpu: Remove PKRU handling from switch_fpu_finish() x86/fpu: Mask PKRU from kernel XRSTOR[S] operations x86/fpu: Hook up PKRU into ptrace() x86/fpu: Add PKRU storage outside of task XSAVE buffer x86/fpu: Dont restore PKRU in fpregs_restore_userspace() x86/fpu: Rename xfeatures_mask_user() to xfeatures_mask_uabi() x86/fpu: Move FXSAVE_LEAK quirk info __copy_kernel_to_fpregs() x86/fpu: Rename __fpregs_load_activate() to fpregs_restore_userregs() ...
2021-06-25KVM: x86: rename apic_access_page_done to apic_access_memslot_enabledMaxim Levitsky1-2/+2
This better reflects the purpose of this variable on AMD, since on AMD the AVIC's memory slot can be enabled and disabled dynamically. Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20210623113002.111448-4-mlevitsk@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-25KVM: x86: Enhance comments for MMU roles and nested transition trickinessSean Christopherson1-0/+1
Expand the comments for the MMU roles. The interactions with gfn_track PGD reuse in particular are hairy. Regarding PGD reuse, add comments in the nested virtualization flows to call out why kvm_init_mmu() is unconditionally called even when nested TDP is used. Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20210622175739.3610207-50-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-25KVM: x86/mmu: Move nested NPT reserved bit calculation into MMU properSean Christopherson1-1/+0
Move nested NPT's invocation of reset_shadow_zero_bits_mask() into the MMU proper and unexport said function. Aside from dropping an export, this is a baby step toward eliminating the call entirely by fixing the shadow_root_level confusion. No functional change intended. Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20210622175739.3610207-19-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-25KVM: nSVM: Add a comment to document why nNPT uses vmcb01, not vCPU stateSean Christopherson1-0/+6
Add a comment in the nested NPT initialization flow to call out that it intentionally uses vmcb01 instead current vCPU state to get the effective hCR4 and hEFER for L1's NPT context. Note, despite nSVM's efforts to handle the case where vCPU state doesn't reflect L1 state, the MMU may still do the wrong thing due to pulling state from the vCPU instead of the passed in CR0/CR4/EFER values. This will be addressed in future commits. Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20210622175739.3610207-16-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-25KVM: x86: Fix sizes used to pass around CR0, CR4, and EFERSean Christopherson1-1/+1
When configuring KVM's MMU, pass CR0 and CR4 as unsigned longs, and EFER as a u64 in various flows (mostly MMU). Passing the params as u32s is functionally ok since all of the affected registers reserve bits 63:32 to zero (enforced by KVM), but it's technically wrong. No functional change intended. Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20210622175739.3610207-15-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-24KVM: x86: Print CPU of last attempted VM-entry when dumping VMCS/VMCBJim Mattson1-0/+2
Failed VM-entry is often due to a faulty core. To help identify bad cores, print the id of the last logical processor that attempted VM-entry whenever dumping a VMCS or VMCB. Signed-off-by: Jim Mattson <jmattson@google.com> Message-Id: <20210621221648.1833148-1-jmattson@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-23x86/pkeys: Move read_pkru() and write_pkru()Dave Hansen1-0/+1
write_pkru() was originally used just to write to the PKRU register. It was mercifully short and sweet and was not out of place in pgtable.h with some other pkey-related code. But, later work included a requirement to also modify the task XSAVE buffer when updating the register. This really is more related to the XSAVE architecture than to paging. Move the read/write_pkru() to asm/pkru.h. pgtable.h won't miss them. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20210623121455.102647114@linutronix.de
2021-06-23Merge branch 'topic/ppc-kvm' of ↵Paolo Bonzini2-36/+6
https://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux into HEAD - Support for the H_RPT_INVALIDATE hypercall - Conversion of Book3S entry/exit to C - Bug fixes
2021-06-18KVM: SVM: Refuse to load kvm_amd if NX support is not availableSean Christopherson1-3/+10
Refuse to load KVM if NX support is not available. Shadow paging has assumed NX support since commit 9167ab799362 ("KVM: vmx, svm: always run with EFER.NXE=1 when shadow paging is active"), and NPT has assumed NX support since commit b8e8c8303ff2 ("kvm: mmu: ITLB_MULTIHIT mitigation"). While the NX huge pages mitigation should not be enabled by default for AMD CPUs, it can be turned on by userspace at will. Unlike Intel CPUs, AMD does not provide a way for firmware to disable NX support, and Linux always sets EFER.NX=1 if it is supported. Given that it's extremely unlikely that a CPU supports NPT but not NX, making NX a formal requirement is far simpler than adding requirements to the mitigation flow. Fixes: 9167ab799362 ("KVM: vmx, svm: always run with EFER.NXE=1 when shadow paging is active") Fixes: b8e8c8303ff2 ("kvm: mmu: ITLB_MULTIHIT mitigation") Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Jim Mattson <jmattson@google.com> Message-Id: <20210615164535.2146172-3-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-17Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds2-8/+18
Pull kvm fixes from Paolo Bonzini: "Miscellaneous bugfixes. The main interesting one is a NULL pointer dereference reported by syzkaller ("KVM: x86: Immediately reset the MMU context when the SMM flag is cleared")" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: KVM: selftests: Fix kvm_check_cap() assertion KVM: x86/mmu: Calculate and check "full" mmu_role for nested MMU KVM: X86: Fix x86_emulator slab cache leak KVM: SVM: Call SEV Guest Decommission if ASID binding fails KVM: x86: Immediately reset the MMU context when the SMM flag is cleared KVM: x86: Fix fall-through warnings for Clang KVM: SVM: fix doc warnings KVM: selftests: Fix compiling errors when initializing the static structure kvm: LAPIC: Restore guard to prevent illegal APIC register access
2021-06-17KVM: x86: Drop pointless @reset_roots from kvm_init_mmu()Sean Christopherson1-1/+1
Remove the @reset_roots param from kvm_init_mmu(), the one user, kvm_mmu_reset_context() has already unloaded the MMU and thus freed and invalidated all roots. This also happens to be why the reset_roots=true paths doesn't leak roots; they're already invalid. No functional change intended. Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20210609234235.1244004-14-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-17KVM: x86: Drop skip MMU sync and TLB flush params from "new PGD" helpersSean Christopherson1-1/+1
Drop skip_mmu_sync and skip_tlb_flush from __kvm_mmu_new_pgd() now that all call sites unconditionally skip both the sync and flush. No functional change intended. Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20210609234235.1244004-8-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-17KVM: nSVM: Move TLB flushing logic (or lack thereof) to dedicated helperSean Christopherson1-9/+29
Introduce nested_svm_transition_tlb_flush() and use it force an MMU sync and TLB flush on nSVM VM-Enter and VM-Exit instead of sneaking the logic into the __kvm_mmu_new_pgd() call sites. Add a partial todo list to document issues that need to be addressed before the unconditional sync and flush can be modified to look more like nVMX's logic. In addition to making nSVM's forced flushing more overt (guess who keeps losing track of it), the new helper brings further convergence between nSVM and nVMX, and also sets the stage for dropping the "skip" params from __kvm_mmu_new_pgd(). Cc: Maxim Levitsky <mlevitsk@redhat.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20210609234235.1244004-7-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-17KVM: x86: avoid loading PDPTRs after migration when possibleMaxim Levitsky1-1/+2
if new KVM_*_SREGS2 ioctls are used, the PDPTRs are a part of the migration state and are correctly restored by those ioctls. Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20210607090203.133058-9-mlevitsk@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-06-17KVM: x86: introduce kvm_register_clear_availableMaxim Levitsky1-4/+2
Small refactoring that will be used in the next patch. Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20210607090203.133058-7-mlevitsk@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>