summaryrefslogtreecommitdiff
path: root/arch/x86/include
AgeCommit message (Collapse)AuthorFilesLines
2023-03-11x86/resctl: fix scheduler confusion with 'current'Linus Torvalds1-6/+6
commit 7fef099702527c3b2c5234a2ea6a24411485a13a upstream. The implementation of 'current' on x86 is very intentionally special: it is a very common thing to look up, and it uses 'this_cpu_read_stable()' to get the current thread pointer efficiently from per-cpu storage. And the keyword in there is 'stable': the current thread pointer never changes as far as a single thread is concerned. Even if when a thread is preempted, or moved to another CPU, or even across an explicit call 'schedule()' that thread will still have the same value for 'current'. It is, after all, the kernel base pointer to thread-local storage. That's why it's stable to begin with, but it's also why it's important enough that we have that special 'this_cpu_read_stable()' access for it. So this is all done very intentionally to allow the compiler to treat 'current' as a value that never visibly changes, so that the compiler can do CSE and combine multiple different 'current' accesses into one. However, there is obviously one very special situation when the currently running thread does actually change: inside the scheduler itself. So the scheduler code paths are special, and do not have a 'current' thread at all. Instead there are _two_ threads: the previous and the next thread - typically called 'prev' and 'next' (or prev_p/next_p) internally. So this is all actually quite straightforward and simple, and not all that complicated. Except for when you then have special code that is run in scheduler context, that code then has to be aware that 'current' isn't really a valid thing. Did you mean 'prev'? Did you mean 'next'? In fact, even if then look at the code, and you use 'current' after the new value has been assigned to the percpu variable, we have explicitly told the compiler that 'current' is magical and always stable. So the compiler is quite free to use an older (or newer) value of 'current', and the actual assignment to the percpu storage is not relevant even if it might look that way. Which is exactly what happened in the resctl code, that blithely used 'current' in '__resctrl_sched_in()' when it really wanted the new process state (as implied by the name: we're scheduling 'into' that new resctl state). And clang would end up just using the old thread pointer value at least in some configurations. This could have happened with gcc too, and purely depends on random compiler details. Clang just seems to have been more aggressive about moving the read of the per-cpu current_task pointer around. The fix is trivial: just make the resctl code adhere to the scheduler rules of using the prev/next thread pointer explicitly, instead of using 'current' in a situation where it just wasn't valid. That same code is then also used outside of the scheduler context (when a thread resctl state is explicitly changed), and then we will just pass in 'current' as that pointer, of course. There is no ambiguity in that case. The fix may be trivial, but noticing and figuring out what went wrong was not. The credit for that goes to Stephane Eranian. Reported-by: Stephane Eranian <eranian@google.com> Link: https://lore.kernel.org/lkml/20230303231133.1486085-1-eranian@google.com/ Link: https://lore.kernel.org/lkml/alpine.LFD.2.01.0908011214330.3304@localhost.localdomain/ Reviewed-by: Nick Desaulniers <ndesaulniers@google.com> Tested-by: Tony Luck <tony.luck@intel.com> Tested-by: Stephane Eranian <eranian@google.com> Tested-by: Babu Moger <babu.moger@amd.com> Cc: stable@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-03-11x86/resctrl: Apply READ_ONCE/WRITE_ONCE to task_struct.{rmid,closid}Valentin Schneider1-4/+7
commit 6d3b47ddffed70006cf4ba360eef61e9ce097d8f upstream. A CPU's current task can have its {closid, rmid} fields read locally while they are being concurrently written to from another CPU. This can happen anytime __resctrl_sched_in() races with either __rdtgroup_move_task() or rdt_move_group_tasks(). Prevent load / store tearing for those accesses by giving them the READ_ONCE() / WRITE_ONCE() treatment. Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/9921fda88ad81afb9885b517fbe864a2bc7c35a9.1608243147.git.reinette.chatre@intel.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-03-11x86/microcode/AMD: Add a @cpu parameter to the reloading functionsBorislav Petkov (AMD)2-4/+4
commit a5ad92134bd153a9ccdcddf09a95b088f36c3cce upstream. Will be used in a subsequent change. Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20230130161709.11615-3-bp@alien8.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-03-11x86/crash: Disable virt in core NMI crash handler to avoid double shootdownSean Christopherson1-0/+2
commit 26044aff37a5455b19a91785086914fd33053ef4 upstream. Disable virtualization in crash_nmi_callback() and rework the emergency_vmx_disable_all() path to do an NMI shootdown if and only if a shootdown has not already occurred. NMI crash shootdown fundamentally can't support multiple invocations as responding CPUs are deliberately put into halt state without unblocking NMIs. But, the emergency reboot path doesn't have any work of its own, it simply cares about disabling virtualization, i.e. so long as a shootdown occurred, emergency reboot doesn't care who initiated the shootdown, or when. If "crash_kexec_post_notifiers" is specified on the kernel command line, panic() will invoke crash_smp_send_stop() and result in a second call to nmi_shootdown_cpus() during native_machine_emergency_restart(). Invoke the callback _before_ disabling virtualization, as the current VMCS needs to be cleared before doing VMXOFF. Note, this results in a subtle change in ordering between disabling virtualization and stopping Intel PT on the responding CPUs. While VMX and Intel PT do interact, VMXOFF and writes to MSR_IA32_RTIT_CTL do not induce faults between one another, which is all that matters when panicking. Harden nmi_shootdown_cpus() against multiple invocations to try and capture any such kernel bugs via a WARN instead of hanging the system during a crash/dump, e.g. prior to the recent hardening of register_nmi_handler(), re-registering the NMI handler would trigger a double list_add() and hang the system if CONFIG_BUG_ON_DATA_CORRUPTION=y. list_add double add: new=ffffffff82220800, prev=ffffffff8221cfe8, next=ffffffff82220800. WARNING: CPU: 2 PID: 1319 at lib/list_debug.c:29 __list_add_valid+0x67/0x70 Call Trace: __register_nmi_handler+0xcf/0x130 nmi_shootdown_cpus+0x39/0x90 native_machine_emergency_restart+0x1c9/0x1d0 panic+0x237/0x29b Extract the disabling logic to a common helper to deduplicate code, and to prepare for doing the shootdown in the emergency reboot path if SVM is supported. Note, prior to commit ed72736183c4 ("x86/reboot: Force all cpus to exit VMX root if VMX is supported"), nmi_shootdown_cpus() was subtly protected against a second invocation by a cpu_vmx_enabled() check as the kdump handler would disable VMX if it ran first. Fixes: ed72736183c4 ("x86/reboot: Force all cpus to exit VMX root if VMX is supported") Cc: stable@vger.kernel.org Reported-by: Guilherme G. Piccoli <gpiccoli@igalia.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Link: https://lore.kernel.org/all/20220427224924.592546-2-gpiccoli@igalia.com Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20221130233650.1404148-2-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-03-11x86/virt: Force GIF=1 prior to disabling SVM (for reboot flows)Sean Christopherson1-1/+15
commit 6a3236580b0b1accc3976345e723104f74f6f8e6 upstream. Set GIF=1 prior to disabling SVM to ensure that INIT is recognized if the kernel is disabling SVM in an emergency, e.g. if the kernel is about to jump into a crash kernel or may reboot without doing a full CPU RESET. If GIF is left cleared, the new kernel (or firmware) will be unabled to awaken APs. Eat faults on STGI (due to EFER.SVME=0) as it's possible that SVM could be disabled via NMI shootdown between reading EFER.SVME and executing STGI. Link: https://lore.kernel.org/all/cbcb6f35-e5d7-c1c9-4db9-fe5cc4de579a@amd.com Cc: stable@vger.kernel.org Cc: Andrew Cooper <Andrew.Cooper3@citrix.com> Cc: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20221130233650.1404148-3-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-03-11x86/bugs: Reset speculation control settings on initBreno Leitao1-0/+4
[ Upstream commit 0125acda7d76b943ca55811df40ed6ec0ecf670f ] Currently, x86_spec_ctrl_base is read at boot time and speculative bits are set if Kconfig items are enabled. For example, IBRS is enabled if CONFIG_CPU_IBRS_ENTRY is configured, etc. These MSR bits are not cleared if the mitigations are disabled. This is a problem when kexec-ing a kernel that has the mitigation disabled from a kernel that has the mitigation enabled. In this case, the MSR bits are not cleared during the new kernel boot. As a result, this might have some performance degradation that is hard to pinpoint. This problem does not happen if the machine is (hard) rebooted because the bit will be cleared by default. [ bp: Massage. ] Suggested-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Breno Leitao <leitao@debian.org> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20221128153148.1129350-1-leitao@debian.org Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18KVM: VMX: Fix the spelling of CPU_BASED_USE_TSC_OFFSETTINGXiaoyao Li1-1/+1
[ Upstream commit 5e3d394fdd9e6b49cd8b28d85adff100a5bddc66 ] The mis-spelling is found by checkpatch.pl, so fix them. Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Stable-dep-of: 31de69f4eea7 ("KVM: nVMX: Properly expose ENABLE_USR_WAIT_PAUSE control to L1") Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18KVM: VMX: Rename NMI_PENDING to NMI_WINDOWXiaoyao Li1-1/+1
[ Upstream commit 4e2a0bc56ad197e5ccfab8395649b681067fe8cb ] Rename the NMI-window exiting related definitions to match the latest Intel SDM. No functional changes. Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Stable-dep-of: 31de69f4eea7 ("KVM: nVMX: Properly expose ENABLE_USR_WAIT_PAUSE control to L1") Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18KVM: VMX: Rename INTERRUPT_PENDING to INTERRUPT_WINDOWXiaoyao Li2-3/+3
[ Upstream commit 9dadc2f918df26e64aa04794cdb4d8667c934f47 ] Rename interrupt-windown exiting related definitions to match the latest Intel SDM. No functional changes. Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Stable-dep-of: 31de69f4eea7 ("KVM: nVMX: Properly expose ENABLE_USR_WAIT_PAUSE control to L1") Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-12-08x86/tsx: Add a feature bit for TSX control MSR supportPawan Gupta1-0/+1
commit aaa65d17eec372c6a9756833f3964ba05b05ea14 upstream. Support for the TSX control MSR is enumerated in MSR_IA32_ARCH_CAPABILITIES. This is different from how other CPU features are enumerated i.e. via CPUID. Currently, a call to tsx_ctrl_is_supported() is required for enumerating the feature. In the absence of a feature bit for TSX control, any code that relies on checking feature bits directly will not work. In preparation for adding a feature bit check in MSR save/restore during suspend/resume, set a new feature bit X86_FEATURE_TSX_CTRL when MSR_IA32_TSX_CTRL is present. [ bp: Remove tsx_ctrl_is_supported()] [Pawan: Resolved conflicts in backport; Removed parts of commit message referring to removed function tsx_ctrl_is_supported()] Suggested-by: Andrew Cooper <andrew.cooper3@citrix.com> Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: <stable@kernel.org> Link: https://lore.kernel.org/r/de619764e1d98afbb7a5fa58424f1278ede37b45.1668539735.git.pawan.kumar.gupta@linux.intel.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-12-08x86/bugs: Make sure MSR_SPEC_CTRL is updated properly upon resume from S3Pawan Gupta1-1/+1
commit 66065157420c5b9b3f078f43d313c153e1ff7f83 upstream. The "force" argument to write_spec_ctrl_current() is currently ambiguous as it does not guarantee the MSR write. This is due to the optimization that writes to the MSR happen only when the new value differs from the cached value. This is fine in most cases, but breaks for S3 resume when the cached MSR value gets out of sync with the hardware MSR value due to S3 resetting it. When x86_spec_ctrl_current is same as x86_spec_ctrl_base, the MSR write is skipped. Which results in SPEC_CTRL mitigations not getting restored. Move the MSR write from write_spec_ctrl_current() to a new function that unconditionally writes to the MSR. Update the callers accordingly and rename functions. [ bp: Rework a bit. ] Fixes: caa0ff24d5d0 ("x86/bugs: Keep a per-CPU IA32_SPEC_CTRL value") Suggested-by: Borislav Petkov <bp@alien8.de> Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: <stable@kernel.org> Link: https://lore.kernel.org/r/806d39b0bfec2fe8f50dc5446dff20f5bb24a959.1669821572.git.pawan.kumar.gupta@linux.intel.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-25x86/cpu: Restore AMD's DE_CFG MSR after resumeBorislav Petkov1-3/+5
commit 2632daebafd04746b4b96c2f26a6021bc38f6209 upstream. DE_CFG contains the LFENCE serializing bit, restore it on resume too. This is relevant to older families due to the way how they do S3. Unify and correct naming while at it. Fixes: e4d0e84e4907 ("x86/cpu/AMD: Make LFENCE a serializing instruction") Reported-by: Andrew Cooper <Andrew.Cooper3@citrix.com> Reported-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: <stable@kernel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-26x86/hyperv: Fix 'struct hv_enlightened_vmcs' definitionVitaly Kuznetsov1-2/+2
[ Upstream commit ea9da788a61e47e7ab9cbad397453e51cd82ac0d ] Section 1.9 of TLFS v6.0b says: "All structures are padded in such a way that fields are aligned naturally (that is, an 8-byte field is aligned to an offset of 8 bytes and so on)". 'struct enlightened_vmcs' has a glitch: ... struct { u32 nested_flush_hypercall:1; /* 836: 0 4 */ u32 msr_bitmap:1; /* 836: 1 4 */ u32 reserved:30; /* 836: 2 4 */ } hv_enlightenments_control; /* 836 4 */ u32 hv_vp_id; /* 840 4 */ u64 hv_vm_id; /* 844 8 */ u64 partition_assist_page; /* 852 8 */ ... And the observed values in 'partition_assist_page' make no sense at all. Fix the layout by padding the structure properly. Fixes: 68d1eb72ee99 ("x86/hyper-v: define struct hv_enlightened_vmcs and clean field bits") Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Reviewed-by: Michael Kelley <mikelley@microsoft.com> Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Link: https://lore.kernel.org/r/20220830133737.1539624-2-vkuznets@redhat.com Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-10-26x86/microcode/AMD: Track patch allocation size explicitlyKees Cook1-0/+1
[ Upstream commit 712f210a457d9c32414df246a72781550bc23ef6 ] In preparation for reducing the use of ksize(), record the actual allocation size for later memcpy(). This avoids copying extra (uninitialized!) bytes into the patch buffer when the requested allocation size isn't exactly the size of a kmalloc bucket. Additionally, fix potential future issues where runtime bounds checking will notice that the buffer was allocated to a smaller value than returned by ksize(). Fixes: 757885e94a22 ("x86, microcode, amd: Early microcode patch loading support for AMD") Suggested-by: Daniel Micay <danielmicay@gmail.com> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lore.kernel.org/lkml/CA+DvKQ+bp7Y7gmaVhacjv9uF6Ar-o4tet872h4Q8RPYPJjcJQA@mail.gmail.com/ Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-10-07x86/speculation: Add RSB VM Exit protectionsDaniel Sneddon3-1/+21
commit 2b1299322016731d56807aa49254a5ea3080b6b3 upstream. tl;dr: The Enhanced IBRS mitigation for Spectre v2 does not work as documented for RET instructions after VM exits. Mitigate it with a new one-entry RSB stuffing mechanism and a new LFENCE. == Background == Indirect Branch Restricted Speculation (IBRS) was designed to help mitigate Branch Target Injection and Speculative Store Bypass, i.e. Spectre, attacks. IBRS prevents software run in less privileged modes from affecting branch prediction in more privileged modes. IBRS requires the MSR to be written on every privilege level change. To overcome some of the performance issues of IBRS, Enhanced IBRS was introduced. eIBRS is an "always on" IBRS, in other words, just turn it on once instead of writing the MSR on every privilege level change. When eIBRS is enabled, more privileged modes should be protected from less privileged modes, including protecting VMMs from guests. == Problem == Here's a simplification of how guests are run on Linux' KVM: void run_kvm_guest(void) { // Prepare to run guest VMRESUME(); // Clean up after guest runs } The execution flow for that would look something like this to the processor: 1. Host-side: call run_kvm_guest() 2. Host-side: VMRESUME 3. Guest runs, does "CALL guest_function" 4. VM exit, host runs again 5. Host might make some "cleanup" function calls 6. Host-side: RET from run_kvm_guest() Now, when back on the host, there are a couple of possible scenarios of post-guest activity the host needs to do before executing host code: * on pre-eIBRS hardware (legacy IBRS, or nothing at all), the RSB is not touched and Linux has to do a 32-entry stuffing. * on eIBRS hardware, VM exit with IBRS enabled, or restoring the host IBRS=1 shortly after VM exit, has a documented side effect of flushing the RSB except in this PBRSB situation where the software needs to stuff the last RSB entry "by hand". IOW, with eIBRS supported, host RET instructions should no longer be influenced by guest behavior after the host retires a single CALL instruction. However, if the RET instructions are "unbalanced" with CALLs after a VM exit as is the RET in #6, it might speculatively use the address for the instruction after the CALL in #3 as an RSB prediction. This is a problem since the (untrusted) guest controls this address. Balanced CALL/RET instruction pairs such as in step #5 are not affected. == Solution == The PBRSB issue affects a wide variety of Intel processors which support eIBRS. But not all of them need mitigation. Today, X86_FEATURE_RSB_VMEXIT triggers an RSB filling sequence that mitigates PBRSB. Systems setting RSB_VMEXIT need no further mitigation - i.e., eIBRS systems which enable legacy IBRS explicitly. However, such systems (X86_FEATURE_IBRS_ENHANCED) do not set RSB_VMEXIT and most of them need a new mitigation. Therefore, introduce a new feature flag X86_FEATURE_RSB_VMEXIT_LITE which triggers a lighter-weight PBRSB mitigation versus RSB_VMEXIT. The lighter-weight mitigation performs a CALL instruction which is immediately followed by a speculative execution barrier (INT3). This steers speculative execution to the barrier -- just like a retpoline -- which ensures that speculation can never reach an unbalanced RET. Then, ensure this CALL is retired before continuing execution with an LFENCE. In other words, the window of exposure is opened at VM exit where RET behavior is troublesome. While the window is open, force RSB predictions sampling for RET targets to a dead end at the INT3. Close the window with the LFENCE. There is a subset of eIBRS systems which are not vulnerable to PBRSB. Add these systems to the cpu_vuln_whitelist[] as NO_EIBRS_PBRSB. Future systems that aren't vulnerable will set ARCH_CAP_PBRSB_NO. [ bp: Massage, incorporate review comments from Andy Cooper. ] Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com> Co-developed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> [cascardo: no intra-function validation] Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-07x86/speculation: Use DECLARE_PER_CPU for x86_spec_ctrl_currentNathan Chancellor1-1/+2
commit db886979683a8360ced9b24ab1125ad0c4d2cf76 upstream. Clang warns: arch/x86/kernel/cpu/bugs.c:58:21: error: section attribute is specified on redeclared variable [-Werror,-Wsection] DEFINE_PER_CPU(u64, x86_spec_ctrl_current); ^ arch/x86/include/asm/nospec-branch.h:283:12: note: previous declaration is here extern u64 x86_spec_ctrl_current; ^ 1 error generated. The declaration should be using DECLARE_PER_CPU instead so all attributes stay in sync. Cc: stable@vger.kernel.org Fixes: fc02735b14ff ("KVM: VMX: Prevent guest RSB poisoning attacks with eIBRS") Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-07x86/speculation: Disable RRSBA behaviorPawan Gupta2-0/+10
commit 4ad3278df6fe2b0852b00d5757fc2ccd8e92c26e upstream. Some Intel processors may use alternate predictors for RETs on RSB-underflow. This condition may be vulnerable to Branch History Injection (BHI) and intramode-BTI. Kernel earlier added spectre_v2 mitigation modes (eIBRS+Retpolines, eIBRS+LFENCE, Retpolines) which protect indirect CALLs and JMPs against such attacks. However, on RSB-underflow, RET target prediction may fallback to alternate predictors. As a result, RET's predicted target may get influenced by branch history. A new MSR_IA32_SPEC_CTRL bit (RRSBA_DIS_S) controls this fallback behavior when in kernel mode. When set, RETs will not take predictions from alternate predictors, hence mitigating RETs as well. Support for this is enumerated by CPUID.7.2.EDX[RRSBA_CTRL] (bit2). For spectre v2 mitigation, when a user selects a mitigation that protects indirect CALLs and JMPs against BHI and intramode-BTI, set RRSBA_DIS_S also to protect RETs for RSB-underflow case. Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> [cascardo: no tools/arch/x86/include/asm/msr-index.h] Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-07x86/cpu/amd: Enumerate BTC_NOAndrew Cooper1-0/+1
commit 26aae8ccbc1972233afd08fb3f368947c0314265 upstream. BTC_NO indicates that hardware is not susceptible to Branch Type Confusion. Zen3 CPUs don't suffer BTC. Hypervisors are expected to synthesise BTC_NO when it is appropriate given the migration pool, to prevent kernels using heuristics. [ bp: Massage. ] Signed-off-by: Andrew Cooper <andrew.cooper3@citrix.com> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-07x86/speculation: Fill RSB on vmexit for IBRSJosh Poimboeuf1-1/+1
commit 9756bba28470722dacb79ffce554336dd1f6a6cd upstream. Prevent RSB underflow/poisoning attacks with RSB. While at it, add a bunch of comments to attempt to document the current state of tribal knowledge about RSB attacks and what exactly is being mitigated. Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-07KVM: VMX: Prevent guest RSB poisoning attacks with eIBRSJosh Poimboeuf1-0/+1
commit fc02735b14fff8c6678b521d324ade27b1a3d4cf upstream. On eIBRS systems, the returns in the vmexit return path from __vmx_vcpu_run() to vmx_vcpu_run() are exposed to RSB poisoning attacks. Fix that by moving the post-vmexit spec_ctrl handling to immediately after the vmexit. Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-07x86/speculation: Fix firmware entry SPEC_CTRL handlingJosh Poimboeuf1-6/+4
commit e6aa13622ea8283cc699cac5d018cc40a2ba2010 upstream. The firmware entry code may accidentally clear STIBP or SSBD. Fix that. Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-07x86/speculation: Fix RSB filling with CONFIG_RETPOLINE=nJosh Poimboeuf1-2/+0
commit b2620facef4889fefcbf2e87284f34dcd4189bce upstream. If a kernel is built with CONFIG_RETPOLINE=n, but the user still wants to mitigate Spectre v2 using IBRS or eIBRS, the RSB filling will be silently disabled. There's nothing retpoline-specific about RSB buffer filling. Remove the CONFIG_RETPOLINE guards around it. Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-07x86/speculation: Change FILL_RETURN_BUFFER to work with objtoolPeter Zijlstra1-5/+5
commit 089dd8e53126ebaf506e2dc0bf89d652c36bfc12 upstream. Change FILL_RETURN_BUFFER so that objtool groks it and can generate correct ORC unwind information. - Since ORC is alternative invariant; that is, all alternatives should have the same ORC entries, the __FILL_RETURN_BUFFER body can not be part of an alternative. Therefore, move it out of the alternative and keep the alternative as a sort of jump_label around it. - Use the ANNOTATE_INTRA_FUNCTION_CALL annotation to white-list these 'funny' call instructions to nowhere. - Use UNWIND_HINT_EMPTY to 'fill' the speculation traps, otherwise objtool will consider them unreachable. - Move the RSP adjustment into the loop, such that the loop has a deterministic stack layout. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lkml.kernel.org/r/20200428191700.032079304@infradead.org [cascardo: fixup because of backport of ba6e31af2be96c4d0536f2152ed6f7b6c11bca47 ("x86/speculation: Add LFENCE to RSB fill sequence")] [cascardo: no intra-function call validation support] [cascardo: avoid UNWIND_HINT_EMPTY because of svm] Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-07intel_idle: Disable IBRS during long idlePeter Zijlstra1-0/+1
commit bf5835bcdb9635c97f85120dba9bfa21e111130f upstream. Having IBRS enabled while the SMT sibling is idle unnecessarily slows down the running sibling. OTOH, disabling IBRS around idle takes two MSR writes, which will increase the idle latency. Therefore, only disable IBRS around deeper idle states. Shallow idle states are bounded by the tick in duration, since NOHZ is not allowed for them by virtue of their short target residency. Only do this for mwait-driven idle, since that keeps interrupts disabled across idle, which makes disabling IBRS vs IRQ-entry a non-issue. Note: C6 is a random threshold, most importantly C1 probably shouldn't disable IBRS, benchmarking needed. Suggested-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> [cascardo: no CPUIDLE_FLAG_IRQ_ENABLE] Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> [cascardo: context adjustments] Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-07x86/bugs: Report Intel retbleed vulnerabilityPeter Zijlstra1-0/+1
commit 6ad0ad2bf8a67e27d1f9d006a1dabb0e1c360cc3 upstream. Skylake suffers from RSB underflow speculation issues; report this vulnerability and it's mitigation (spectre_v2=ibrs). [jpoimboe: cleanups, eibrs] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-07x86/speculation: Add spectre_v2=ibrs option to support Kernel IBRSPawan Gupta1-0/+1
commit 7c693f54c873691a4b7da05c7e0f74e67745d144 upstream. Extend spectre_v2= boot option with Kernel IBRS. [jpoimboe: no STIBP with IBRS] Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-07x86/bugs: Optimize SPEC_CTRL MSR writesPeter Zijlstra1-1/+1
commit c779bc1a9002fa474175b80e72b85c9bf628abb0 upstream. When changing SPEC_CTRL for user control, the WRMSR can be delayed until return-to-user when KERNEL_IBRS has been enabled. This avoids an MSR write during context switch. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-07x86/entry: Add kernel IBRS implementationPeter Zijlstra1-1/+1
commit 2dbb887e875b1de3ca8f40ddf26bcfe55798c609 upstream. Implement Kernel IBRS - currently the only known option to mitigate RSB underflow speculation issues on Skylake hardware. Note: since IBRS_ENTER requires fuller context established than UNTRAIN_RET, it must be placed after it. However, since UNTRAIN_RET itself implies a RET, it must come after IBRS_ENTER. This means IBRS_ENTER needs to also move UNTRAIN_RET. Note 2: KERNEL_IBRS is sub-optimal for XenPV. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> [cascardo: conflict at arch/x86/entry/entry_64.S, skip_r11rcx] [cascardo: conflict at arch/x86/entry/entry_64_compat.S] [cascardo: conflict fixups, no ANNOTATE_NOENDBR] [cascardo: entry fixups because of missing UNTRAIN_RET] [cascardo: conflicts on fsgsbase] Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-07x86/bugs: Keep a per-CPU IA32_SPEC_CTRL valuePeter Zijlstra1-0/+1
commit caa0ff24d5d0e02abce5e65c3d2b7f20a6617be5 upstream. Due to TIF_SSBD and TIF_SPEC_IB the actual IA32_SPEC_CTRL value can differ from x86_spec_ctrl_base. As such, keep a per-CPU value reflecting the current task's MSR content. [jpoimboe: rename] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-07x86/bugs: Report AMD retbleed vulnerabilityAlexandre Chartre1-1/+2
commit 6b80b59b3555706508008f1f127b5412c89c7fd8 upstream. Report that AMD x86 CPUs are vulnerable to the RETBleed (Arbitrary Speculative Code Execution with Return Instructions) attack. [peterz: add hygon] [kim: invert parity; fam15h] Co-developed-by: Kim Phillips <kim.phillips@amd.com> Signed-off-by: Kim Phillips <kim.phillips@amd.com> Signed-off-by: Alexandre Chartre <alexandre.chartre@oracle.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> [cascardo: adjusted BUG numbers to match upstream] Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-07x86/cpufeatures: Move RETPOLINE flags to word 11Peter Zijlstra1-2/+4
commit a883d624aed463c84c22596006e5a96f5b44db31 upstream. In order to extend the RETPOLINE features to 4, move them to word 11 where there is still room. This mostly keeps DISABLE_RETPOLINE simple. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-07x86/cpu: Add a steppings field to struct x86_cpu_idMark Gross1-3/+24
commit e9d7144597b10ff13ff2264c059f7d4a7fbc89ac upstream. Intel uses the same family/model for several CPUs. Sometimes the stepping must be checked to tell them apart. On x86 there can be at most 16 steppings. Add a steppings bitmask to x86_cpu_id and a X86_MATCH_VENDOR_FAMILY_MODEL_STEPPING_FEATURE macro and support for matching against family/model/stepping. [ bp: Massage. ] Signed-off-by: Mark Gross <mgross@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Tony Luck <tony.luck@intel.com> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> [cascardo: have steppings be the last member as there are initializers that don't use named members] Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-07x86/cpu: Add consistent CPU match macrosThomas Gleixner2-9/+137
commit 20d437447c0089cda46c683db219d3b4e2cde40e upstream. Finding all places which build x86_cpu_id match tables is tedious and the logic is hidden in lots of differently named macro wrappers. Most of these initializer macros use plain C89 initializers which rely on the ordering of the struct members. So new members could only be added at the end of the struct, but that's ugly as hell and C99 initializers are really the right thing to use. Provide a set of macros which: - Have a proper naming scheme, starting with X86_MATCH_ - Use C99 initializers The set of provided macros are all subsets of the base macro X86_MATCH_VENDOR_FAM_MODEL_FEATURE() which allows to supply all possible selection criteria: vendor, family, model, feature The other macros shorten this to avoid typing all arguments when they are not needed and would require one of the _ANY constants. They have been created due to the requirements of the existing usage sites. Also add a few model constants for Centaur CPUs and QUARK. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Link: https://lkml.kernel.org/r/20200320131508.826011988@linutronix.de Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-07x86/devicetable: Move x86 specific macro out of generic codeThomas Gleixner1-1/+12
commit ba5bade4cc0d2013cdf5634dae554693c968a090 upstream. There is no reason that this gunk is in a generic header file. The wildcard defines need to stay as they are required by file2alias. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Link: https://lkml.kernel.org/r/20200320131508.736205164@linutronix.de Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-07Revert "x86/cpu: Add a steppings field to struct x86_cpu_id"Thadeu Lima de Souza Cascardo1-30/+0
This reverts commit 749ec6b48a9a41f95154cd5aa61053aaeb7c7aff. This is commit e9d7144597b10ff13ff2264c059f7d4a7fbc89ac upstream. A proper backport will be done. This will make it easier to check for parts affected by Retbleed, which require X86_MATCH_VENDOR_FAM_MODEL. Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-07Revert "x86/speculation: Add RSB VM Exit protections"Thadeu Lima de Souza Cascardo3-21/+0
This reverts commit f2f41ef0352db9679bfae250d7a44b3113f3a3cc. This is commit 2b1299322016731d56807aa49254a5ea3080b6b3 upstream. In order to apply IBRS mitigation for Retbleed, PBRSB mitigations must be reverted and the reapplied, so the backports can look sane. Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-09-28task_stack, x86/cea: Force-inline stack helpersBorislav Petkov1-1/+1
[ Upstream commit e87f4152e542610d0b4c6c8548964a68a59d2040 ] Force-inline two stack helpers to fix the following objtool warnings: vmlinux.o: warning: objtool: in_task_stack()+0xc: call to task_stack_page() leaves .noinstr.text section vmlinux.o: warning: objtool: in_entry_stack()+0x10: call to cpu_entry_stack() leaves .noinstr.text section Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20220324183607.31717-2-bp@alien8.de Stable-dep-of: 54c3931957f6 ("tracing: hold caller_addr to hardirq_{enable,disable}_ip") Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-09-15x86/nospec: Fix i386 RSB stuffingPeter Zijlstra1-0/+14
commit 332924973725e8cdcc783c175f68cf7e162cb9e5 upstream. Turns out that i386 doesn't unconditionally have LFENCE, as such the loop in __FILL_RETURN_BUFFER isn't actually speculation safe on such chips. Fixes: ba6e31af2be9 ("x86/speculation: Add LFENCE to RSB fill sequence") Reported-by: Ben Hutchings <ben@decadent.org.uk> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/Yv9tj9vbQ9nNlXoY@worktop.programming.kicks-ass.net [bwh: Backported to 4.19/5.4: - __FILL_RETURN_BUFFER takes an sp parameter - Open-code __FILL_RETURN_SLOT] Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-09-05x86/bugs: Add "unknown" reporting for MMIO Stale DataPawan Gupta1-1/+2
commit 7df548840c496b0141fb2404b889c346380c2b22 upstream. Older Intel CPUs that are not in the affected processor list for MMIO Stale Data vulnerabilities currently report "Not affected" in sysfs, which may not be correct. Vulnerability status for these older CPUs is unknown. Add known-not-affected CPUs to the whitelist. Report "unknown" mitigation status for CPUs that are not in blacklist, whitelist and also don't enumerate MSR ARCH_CAPABILITIES bits that reflect hardware immunity to MMIO Stale Data vulnerabilities. Mitigation is not deployed when the status is unknown. [ bp: Massage, fixup. ] Fixes: 8d50cdf8b834 ("x86/speculation/mmio: Add sysfs reporting for Processor MMIO Stale Data") Suggested-by: Andrew Cooper <andrew.cooper3@citrix.com> Suggested-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/a932c154772f2121794a5f2eded1a11013114711.1657846269.git.pawan.kumar.gupta@linux.intel.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-11x86/speculation: Add LFENCE to RSB fill sequencePawan Gupta1-1/+3
commit ba6e31af2be96c4d0536f2152ed6f7b6c11bca47 upstream. RSB fill sequence does not have any protection for miss-prediction of conditional branch at the end of the sequence. CPU can speculatively execute code immediately after the sequence, while RSB filling hasn't completed yet. #define __FILL_RETURN_BUFFER(reg, nr, sp) \ mov $(nr/2), reg; \ 771: \ call 772f; \ 773: /* speculation trap */ \ pause; \ lfence; \ jmp 773b; \ 772: \ call 774f; \ 775: /* speculation trap */ \ pause; \ lfence; \ jmp 775b; \ 774: \ dec reg; \ jnz 771b; <----- CPU can miss-predict here. \ add $(BITS_PER_LONG/8) * nr, sp; Before RSB is filled, RETs that come in program order after this macro can be executed speculatively, making them vulnerable to RSB-based attacks. Mitigate it by adding an LFENCE after the conditional branch to prevent speculation while RSB is being filled. Suggested-by: Andrew Cooper <andrew.cooper3@citrix.com> Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-11x86/speculation: Add RSB VM Exit protectionsDaniel Sneddon3-0/+21
commit 2b1299322016731d56807aa49254a5ea3080b6b3 upstream. tl;dr: The Enhanced IBRS mitigation for Spectre v2 does not work as documented for RET instructions after VM exits. Mitigate it with a new one-entry RSB stuffing mechanism and a new LFENCE. == Background == Indirect Branch Restricted Speculation (IBRS) was designed to help mitigate Branch Target Injection and Speculative Store Bypass, i.e. Spectre, attacks. IBRS prevents software run in less privileged modes from affecting branch prediction in more privileged modes. IBRS requires the MSR to be written on every privilege level change. To overcome some of the performance issues of IBRS, Enhanced IBRS was introduced. eIBRS is an "always on" IBRS, in other words, just turn it on once instead of writing the MSR on every privilege level change. When eIBRS is enabled, more privileged modes should be protected from less privileged modes, including protecting VMMs from guests. == Problem == Here's a simplification of how guests are run on Linux' KVM: void run_kvm_guest(void) { // Prepare to run guest VMRESUME(); // Clean up after guest runs } The execution flow for that would look something like this to the processor: 1. Host-side: call run_kvm_guest() 2. Host-side: VMRESUME 3. Guest runs, does "CALL guest_function" 4. VM exit, host runs again 5. Host might make some "cleanup" function calls 6. Host-side: RET from run_kvm_guest() Now, when back on the host, there are a couple of possible scenarios of post-guest activity the host needs to do before executing host code: * on pre-eIBRS hardware (legacy IBRS, or nothing at all), the RSB is not touched and Linux has to do a 32-entry stuffing. * on eIBRS hardware, VM exit with IBRS enabled, or restoring the host IBRS=1 shortly after VM exit, has a documented side effect of flushing the RSB except in this PBRSB situation where the software needs to stuff the last RSB entry "by hand". IOW, with eIBRS supported, host RET instructions should no longer be influenced by guest behavior after the host retires a single CALL instruction. However, if the RET instructions are "unbalanced" with CALLs after a VM exit as is the RET in #6, it might speculatively use the address for the instruction after the CALL in #3 as an RSB prediction. This is a problem since the (untrusted) guest controls this address. Balanced CALL/RET instruction pairs such as in step #5 are not affected. == Solution == The PBRSB issue affects a wide variety of Intel processors which support eIBRS. But not all of them need mitigation. Today, X86_FEATURE_RETPOLINE triggers an RSB filling sequence that mitigates PBRSB. Systems setting RETPOLINE need no further mitigation - i.e., eIBRS systems which enable retpoline explicitly. However, such systems (X86_FEATURE_IBRS_ENHANCED) do not set RETPOLINE and most of them need a new mitigation. Therefore, introduce a new feature flag X86_FEATURE_RSB_VMEXIT_LITE which triggers a lighter-weight PBRSB mitigation versus RSB Filling at vmexit. The lighter-weight mitigation performs a CALL instruction which is immediately followed by a speculative execution barrier (INT3). This steers speculative execution to the barrier -- just like a retpoline -- which ensures that speculation can never reach an unbalanced RET. Then, ensure this CALL is retired before continuing execution with an LFENCE. In other words, the window of exposure is opened at VM exit where RET behavior is troublesome. While the window is open, force RSB predictions sampling for RET targets to a dead end at the INT3. Close the window with the LFENCE. There is a subset of eIBRS systems which are not vulnerable to PBRSB. Add these systems to the cpu_vuln_whitelist[] as NO_EIBRS_PBRSB. Future systems that aren't vulnerable will set ARCH_CAP_PBRSB_NO. [ bp: Massage, incorporate review comments from Andy Cooper. ] [ Pawan: Update commit message to replace RSB_VMEXIT with RETPOLINE ] Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com> Co-developed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-07-29x86: drop bogus "cc" clobber from __try_cmpxchg_user_asm()Jan Beulich1-1/+1
commit 1df931d95f4dc1c11db1123e85d4e08156e46ef9 upstream. As noted (and fixed) a couple of times in the past, "=@cc<cond>" outputs and clobbering of "cc" don't work well together. The compiler appears to mean to reject such, but doesn't - in its upstream form - quite manage to yet for "cc". Furthermore two similar macros don't clobber "cc", and clobbering "cc" is pointless in asm()-s for x86 anyway - the compiler always assumes status flags to be clobbered there. Fixes: 989b5db215a2 ("x86/uaccess: Implement macros for CMPXCHG on user addresses") Signed-off-by: Jan Beulich <jbeulich@suse.com> Message-Id: <485c0c0b-a3a7-0b7c-5264-7d00c01de032@suse.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-07-29x86/uaccess: Implement macros for CMPXCHG on user addressesPeter Zijlstra1-0/+142
[ Upstream commit 989b5db215a2f22f89d730b607b071d964780f10 ] Add support for CMPXCHG loops on userspace addresses. Provide both an "unsafe" version for tight loops that do their own uaccess begin/end, as well as a "safe" version for use cases where the CMPXCHG is not buried in a loop, e.g. KVM will resume the guest instead of looping when emulation of a guest atomic accesses fails the CMPXCHG. Provide 8-byte versions for 32-bit kernels so that KVM can do CMPXCHG on guest PAE PTEs, which are accessed via userspace addresses. Guard the asm_volatile_goto() variation with CC_HAS_ASM_GOTO_TIED_OUTPUT, the "+m" constraint fails on some compilers that otherwise support CC_HAS_ASM_GOTO_OUTPUT. Cc: stable@vger.kernel.org Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Co-developed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20220202004945.2540433-3-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-07-29x86: get rid of small constant size cases in raw_copy_{to,from}_user()Al Viro3-145/+2
[ Upstream commit 4b842e4e25b12951fa10dedb4bc16bc47e3b850c ] Very few call sites where that would be triggered remain, and none of those is anywhere near hot enough to bother. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-07-29locking/refcount: Consolidate implementations of refcount_tWill Deacon2-132/+0
[ Upstream commit fb041bb7c0a918b95c6889fc965cdc4a75b4c0ca ] The generic implementation of refcount_t should be good enough for everybody, so remove ARCH_HAS_REFCOUNT and REFCOUNT_FULL entirely, leaving the generic implementation enabled unconditionally. Signed-off-by: Will Deacon <will@kernel.org> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Acked-by: Kees Cook <keescook@chromium.org> Tested-by: Hanjun Guo <guohanjun@huawei.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Elena Reshetova <elena.reshetova@intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20191121115902.2551-9-will@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-07-02kexec_file: drop weak attribute from arch_kexec_apply_relocations[_add]Naveen N. Rao1-0/+9
commit 3e35142ef99fe6b4fe5d834ad43ee13cca10a2dc upstream. Since commit d1bcae833b32f1 ("ELF: Don't generate unused section symbols") [1], binutils (v2.36+) started dropping section symbols that it thought were unused. This isn't an issue in general, but with kexec_file.c, gcc is placing kexec_arch_apply_relocations[_add] into a separate .text.unlikely section and the section symbol ".text.unlikely" is being dropped. Due to this, recordmcount is unable to find a non-weak symbol in .text.unlikely to generate a relocation record against. Address this by dropping the weak attribute from these functions. Instead, follow the existing pattern of having architectures #define the name of the function they want to override in their headers. [1] https://sourceware.org/git/?p=binutils-gdb.git;a=commit;h=d1bcae833b32f1 [akpm@linux-foundation.org: arch/s390/include/asm/kexec.h needs linux/module.h] Link: https://lkml.kernel.org/r/20220519091237.676736-1-naveen.n.rao@linux.vnet.ibm.com Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-22x86/tsc: Use fallback for random_get_entropy() instead of zeroJason A. Donenfeld2-4/+12
commit 3bd4abc07a267e6a8b33d7f8717136e18f921c53 upstream. In the event that random_get_entropy() can't access a cycle counter or similar, falling back to returning 0 is suboptimal. Instead, fallback to calling random_get_entropy_fallback(), which isn't extremely high precision or guaranteed to be entropic, but is certainly better than returning zero all the time. If CONFIG_X86_TSC=n, then it's possible for the kernel to run on systems without RDTSC, such as 486 and certain 586, so the fallback code is only required for that case. As well, fix up both the new function and the get_cycles() function from which it was derived to use cpu_feature_enabled() rather than boot_cpu_has(), and use !IS_ENABLED() instead of #ifndef. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: x86@kernel.org Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-22x86: Remove arch_has_random, arch_has_random_seedRichard Henderson1-8/+4
commit 5f2ed7f5b99b54389b74e53309677831ac9cb9d7 upstream. Use the expansion of these macros directly in arch_get_random_*. These symbols are currently part of the generic archrandom.h interface, but are currently unused and can be removed. Signed-off-by: Richard Henderson <rth@twiddle.net> Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20200110145422.49141-2-broonie@kernel.org Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-16KVM: x86/speculation: Disable Fill buffer clear within guestsPawan Gupta1-0/+6
commit 027bbb884be006b05d9c577d6401686053aa789e upstream The enumeration of MD_CLEAR in CPUID(EAX=7,ECX=0).EDX{bit 10} is not an accurate indicator on all CPUs of whether the VERW instruction will overwrite fill buffers. FB_CLEAR enumeration in IA32_ARCH_CAPABILITIES{bit 17} covers the case of CPUs that are not vulnerable to MDS/TAA, indicating that microcode does overwrite fill buffers. Guests running in VMM environments may not be aware of all the capabilities/vulnerabilities of the host CPU. Specifically, a guest may apply MDS/TAA mitigations when a virtual CPU is enumerated as vulnerable to MDS/TAA even when the physical CPU is not. On CPUs that enumerate FB_CLEAR_CTRL the VMM may set FB_CLEAR_DIS to skip overwriting of fill buffers by the VERW instruction. This is done by setting FB_CLEAR_DIS during VMENTER and resetting on VMEXIT. For guests that enumerate FB_CLEAR (explicitly asking for fill buffer clear capability) the VMM will not use FB_CLEAR_DIS. Irrespective of guest state, host overwrites CPU buffers before VMENTER to protect itself from an MMIO capable guest, as part of mitigation for MMIO Stale Data vulnerabilities. Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-16x86/speculation/mmio: Add mitigation for Processor MMIO Stale DataPawan Gupta1-0/+2
commit 8cb861e9e3c9a55099ad3d08e1a3b653d29c33ca upstream Processor MMIO Stale Data is a class of vulnerabilities that may expose data after an MMIO operation. For details please refer to Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst. These vulnerabilities are broadly categorized as: Device Register Partial Write (DRPW): Some endpoint MMIO registers incorrectly handle writes that are smaller than the register size. Instead of aborting the write or only copying the correct subset of bytes (for example, 2 bytes for a 2-byte write), more bytes than specified by the write transaction may be written to the register. On some processors, this may expose stale data from the fill buffers of the core that created the write transaction. Shared Buffers Data Sampling (SBDS): After propagators may have moved data around the uncore and copied stale data into client core fill buffers, processors affected by MFBDS can leak data from the fill buffer. Shared Buffers Data Read (SBDR): It is similar to Shared Buffer Data Sampling (SBDS) except that the data is directly read into the architectural software-visible state. An attacker can use these vulnerabilities to extract data from CPU fill buffers using MDS and TAA methods. Mitigate it by clearing the CPU fill buffers using the VERW instruction before returning to a user or a guest. On CPUs not affected by MDS and TAA, user application cannot sample data from CPU fill buffers using MDS or TAA. A guest with MMIO access can still use DRPW or SBDR to extract data architecturally. Mitigate it with VERW instruction to clear fill buffers before VMENTER for MMIO capable guests. Add a kernel parameter mmio_stale_data={off|full|full,nosmt} to control the mitigation. Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>