summaryrefslogtreecommitdiff
path: root/arch/x86/include
AgeCommit message (Collapse)AuthorFilesLines
2019-05-16KVM: nVMX: always use early vmcs check when EPT is disabledPaolo Bonzini1-0/+1
[ Upstream commit 2b27924bb1d48e3775f432b70bdad5e6dd4e7798 ] The remaining failures of vmx.flat when EPT is disabled are caused by incorrectly reflecting VMfails to the L1 hypervisor. What happens is that nested_vmx_restore_host_state corrupts the guest CR3, reloading it with the host's shadow CR3 instead, because it blindly loads GUEST_CR3 from the vmcs01. For simplicity let's just always use hardware VMCS checks when EPT is disabled. This way, nested_vmx_restore_host_state is not reached at all (or at least shouldn't be reached). Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-05-14x86/speculation/mds: Add mitigation mode VMWERVThomas Gleixner1-0/+1
commit 22dd8365088b6403630b82423cf906491859b65e upstream In virtualized environments it can happen that the host has the microcode update which utilizes the VERW instruction to clear CPU buffers, but the hypervisor is not yet updated to expose the X86_FEATURE_MD_CLEAR CPUID bit to guests. Introduce an internal mitigation mode VMWERV which enables the invocation of the CPU buffer clearing even if X86_FEATURE_MD_CLEAR is not set. If the system has no updated microcode this results in a pointless execution of the VERW instruction wasting a few CPU cycles. If the microcode is updated, but not exposed to a guest then the CPU buffers will be cleared. That said: Virtual Machines Will Eventually Receive Vaccine Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-14x86/speculation/mds: Add mitigation control for MDSThomas Gleixner1-0/+5
commit bc1241700acd82ec69fde98c5763ce51086269f8 upstream Now that the mitigations are in place, add a command line parameter to control the mitigation, a mitigation selector function and a SMT update mechanism. This is the minimal straight forward initial implementation which just provides an always on/off mode. The command line parameter is: mds=[full|off] This is consistent with the existing mitigations for other speculative hardware vulnerabilities. The idle invocation is dynamically updated according to the SMT state of the system similar to the dynamic update of the STIBP mitigation. The idle mitigation is limited to CPUs which are only affected by MSBDS and not any other variant, because the other variants cannot be mitigated on SMT enabled systems. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-14x86/speculation/mds: Conditionally clear CPU buffers on idle entryThomas Gleixner3-0/+23
commit 07f07f55a29cb705e221eda7894dd67ab81ef343 upstream Add a static key which controls the invocation of the CPU buffer clear mechanism on idle entry. This is independent of other MDS mitigations because the idle entry invocation to mitigate the potential leakage due to store buffer repartitioning is only necessary on SMT systems. Add the actual invocations to the different halt/mwait variants which covers all usage sites. mwaitx is not patched as it's not available on Intel CPUs. The buffer clear is only invoked before entering the C-State to prevent that stale data from the idling CPU is spilled to the Hyper-Thread sibling after the Store buffer got repartitioned and all entries are available to the non idle sibling. When coming out of idle the store buffer is partitioned again so each sibling has half of it available. Now CPU which returned from idle could be speculatively exposed to contents of the sibling, but the buffers are flushed either on exit to user space or on VMENTER. When later on conditional buffer clearing is implemented on top of this, then there is no action required either because before returning to user space the context switch will set the condition flag which causes a flush on the return to user path. Note, that the buffer clearing on idle is only sensible on CPUs which are solely affected by MSBDS and not any other variant of MDS because the other MDS variants cannot be mitigated when SMT is enabled, so the buffer clearing on idle would be a window dressing exercise. This intentionally does not handle the case in the acpi/processor_idle driver which uses the legacy IO port interface for C-State transitions for two reasons: - The acpi/processor_idle driver was replaced by the intel_idle driver almost a decade ago. Anything Nehalem upwards supports it and defaults to that new driver. - The legacy IO port interface is likely to be used on older and therefore unaffected CPUs or on systems which do not receive microcode updates anymore, so there is no point in adding that. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-14x86/speculation/mds: Clear CPU buffers on exit to userThomas Gleixner1-0/+13
commit 04dcbdb8057827b043b3c71aa397c4c63e67d086 upstream Add a static key which controls the invocation of the CPU buffer clear mechanism on exit to user space and add the call into prepare_exit_to_usermode() and do_nmi() right before actually returning. Add documentation which kernel to user space transition this covers and explain why some corner cases are not mitigated. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-14x86/speculation/mds: Add mds_clear_cpu_buffers()Thomas Gleixner1-0/+25
commit 6a9e529272517755904b7afa639f6db59ddb793e upstream The Microarchitectural Data Sampling (MDS) vulernabilities are mitigated by clearing the affected CPU buffers. The mechanism for clearing the buffers uses the unused and obsolete VERW instruction in combination with a microcode update which triggers a CPU buffer clear when VERW is executed. Provide a inline function with the assembly magic. The argument of the VERW instruction must be a memory operand as documented: "MD_CLEAR enumerates that the memory-operand variant of VERW (for example, VERW m16) has been extended to also overwrite buffers affected by MDS. This buffer overwriting functionality is not guaranteed for the register operand variant of VERW." Documentation also recommends to use a writable data segment selector: "The buffer overwriting occurs regardless of the result of the VERW permission check, as well as when the selector is null or causes a descriptor load segment violation. However, for lowest latency we recommend using a selector that indicates a valid writable data segment." Add x86 specific documentation about MDS and the internal workings of the mitigation. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-14x86/speculation/mds: Add BUG_MSBDS_ONLYThomas Gleixner1-0/+1
commit e261f209c3666e842fd645a1e31f001c3a26def9 upstream This bug bit is set on CPUs which are only affected by Microarchitectural Store Buffer Data Sampling (MSBDS) and not by any other MDS variant. This is important because the Store Buffers are partitioned between Hyper-Threads so cross thread forwarding is not possible. But if a thread enters or exits a sleep state the store buffer is repartitioned which can expose data from one thread to the other. This transition can be mitigated. That means that for CPUs which are only affected by MSBDS SMT can be enabled, if the CPU is not affected by other SMT sensitive vulnerabilities, e.g. L1TF. The XEON PHI variants fall into that category. Also the Silvermont/Airmont ATOMs, but for them it's not really relevant as they do not support SMT, but mark them for completeness sake. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-14x86/speculation/mds: Add basic bug infrastructure for MDSAndi Kleen2-0/+7
commit ed5194c2732c8084af9fd159c146ea92bf137128 upstream Microarchitectural Data Sampling (MDS), is a class of side channel attacks on internal buffers in Intel CPUs. The variants are: - Microarchitectural Store Buffer Data Sampling (MSBDS) (CVE-2018-12126) - Microarchitectural Fill Buffer Data Sampling (MFBDS) (CVE-2018-12130) - Microarchitectural Load Port Data Sampling (MLPDS) (CVE-2018-12127) MSBDS leaks Store Buffer Entries which can be speculatively forwarded to a dependent load (store-to-load forwarding) as an optimization. The forward can also happen to a faulting or assisting load operation for a different memory address, which can be exploited under certain conditions. Store buffers are partitioned between Hyper-Threads so cross thread forwarding is not possible. But if a thread enters or exits a sleep state the store buffer is repartitioned which can expose data from one thread to the other. MFBDS leaks Fill Buffer Entries. Fill buffers are used internally to manage L1 miss situations and to hold data which is returned or sent in response to a memory or I/O operation. Fill buffers can forward data to a load operation and also write data to the cache. When the fill buffer is deallocated it can retain the stale data of the preceding operations which can then be forwarded to a faulting or assisting load operation, which can be exploited under certain conditions. Fill buffers are shared between Hyper-Threads so cross thread leakage is possible. MLDPS leaks Load Port Data. Load ports are used to perform load operations from memory or I/O. The received data is then forwarded to the register file or a subsequent operation. In some implementations the Load Port can contain stale data from a previous operation which can be forwarded to faulting or assisting loads under certain conditions, which again can be exploited eventually. Load ports are shared between Hyper-Threads so cross thread leakage is possible. All variants have the same mitigation for single CPU thread case (SMT off), so the kernel can treat them as one MDS issue. Add the basic infrastructure to detect if the current CPU is affected by MDS. [ tglx: Rewrote changelog ] Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-14x86/msr-index: Cleanup bit definesThomas Gleixner1-16/+18
commit d8eabc37310a92df40d07c5a8afc53cebf996716 upstream Greg pointed out that speculation related bit defines are using (1 << N) format instead of BIT(N). Aside of that (1 << N) is wrong as it should use 1UL at least. Clean it up. [ Josh Poimboeuf: Fix tools build ] Reported-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-05KVM: x86: Whitelist port 0x7e for pre-incrementing %ripSean Christopherson1-0/+1
commit 8764ed55c9705e426d889ff16c26f398bba70b9b upstream. KVM's recent bug fix to update %rip after emulating I/O broke userspace that relied on the previous behavior of incrementing %rip prior to exiting to userspace. When running a Windows XP guest on AMD hardware, Qemu may patch "OUT 0x7E" instructions in reaction to the OUT itself. Because KVM's old behavior was to increment %rip before exiting to userspace to handle the I/O, Qemu manually adjusted %rip to account for the OUT instruction. Arguably this is a userspace bug as KVM requires userspace to re-enter the kernel to complete instruction emulation before taking any other actions. That being said, this is a bit of a grey area and breaking userspace that has worked for many years is bad. Pre-increment %rip on OUT to port 0x7e before exiting to userspace to hack around the issue. Fixes: 45def77ebf79e ("KVM: x86: update %rip after emulating IO") Reported-by: Simon Becherer <simon@becherer.de> Reported-and-tested-by: Iakov Karpov <srid@rkmail.ru> Reported-by: Gabriele Balducci <balducci@units.it> Reported-by: Antti Antinoja <reader@fennosys.fi> Cc: stable@vger.kernel.org Cc: Takashi Iwai <tiwai@suse.com> Cc: Jiri Slaby <jslaby@suse.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-04KVM: SVM: Workaround errata#1096 (insn_len maybe zero on SMAP violation)Singh, Brijesh1-0/+2
[ Upstream commit 05d5a48635259e621ea26d01e8316c6feeb34190 ] Errata#1096: On a nested data page fault when CR.SMAP=1 and the guest data read generates a SMAP violation, GuestInstrBytes field of the VMCB on a VMEXIT will incorrectly return 0h instead the correct guest instruction bytes . Recommend Workaround: To determine what instruction the guest was executing the hypervisor will have to decode the instruction at the instruction pointer. The recommended workaround can not be implemented for the SEV guest because guest memory is encrypted with the guest specific key, and instruction decoder will not be able to decode the instruction bytes. If we hit this errata in the SEV guest then log the message and request a guest shutdown. Reported-by: Venkatesh Srinivas <venkateshs@google.com> Cc: Jim Mattson <jmattson@google.com> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Joerg Roedel <joro@8bytes.org> Cc: "Radim Krčmář" <rkrcmar@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Brijesh Singh <brijesh.singh@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Sasha Levin (Microsoft) <sashal@kernel.org>
2019-04-17x86/asm: Use stricter assembly constraints in bitopsAlexander Potapenko1-23/+18
commit 5b77e95dd7790ff6c8fbf1cd8d0104ebed818a03 upstream. There's a number of problems with how arch/x86/include/asm/bitops.h is currently using assembly constraints for the memory region bitops are modifying: 1) Use memory clobber in bitops that touch arbitrary memory Certain bit operations that read/write bits take a base pointer and an arbitrarily large offset to address the bit relative to that base. Inline assembly constraints aren't expressive enough to tell the compiler that the assembly directive is going to touch a specific memory location of unknown size, therefore we have to use the "memory" clobber to indicate that the assembly is going to access memory locations other than those listed in the inputs/outputs. To indicate that BTR/BTS instructions don't necessarily touch the first sizeof(long) bytes of the argument, we also move the address to assembly inputs. This particular change leads to size increase of 124 kernel functions in a defconfig build. For some of them the diff is in NOP operations, other end up re-reading values from memory and may potentially slow down the execution. But without these clobbers the compiler is free to cache the contents of the bitmaps and use them as if they weren't changed by the inline assembly. 2) Use byte-sized arguments for operations touching single bytes. Passing a long value to ANDB/ORB/XORB instructions makes the compiler treat sizeof(long) bytes as being clobbered, which isn't the case. This may theoretically lead to worse code in the case of heavy optimization. Practical impact: I've built a defconfig kernel and looked through some of the functions generated by GCC 7.3.0 with and without this clobber, and didn't spot any miscompilations. However there is a (trivial) theoretical case where this code leads to miscompilation: https://lkml.org/lkml/2019/3/28/393 using just GCC 8.3.0 with -O2. It isn't hard to imagine someone writes such a function in the kernel someday. So the primary motivation is to fix an existing misuse of the asm directive, which happens to work in certain configurations now, but isn't guaranteed to work under different circumstances. [ --mingo: Added -stable tag because defconfig only builds a fraction of the kernel and the trivial testcase looks normal enough to be used in existing or in-development code. ] Signed-off-by: Alexander Potapenko <glider@google.com> Cc: <stable@vger.kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: James Y Knight <jyknight@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20190402112813.193378-1-glider@google.com [ Edited the changelog, tidied up one of the defines. ] Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-17x86/asm: Remove dead __GNUC__ conditionalsRasmus Villemoes3-41/+0
commit 88ca66d8540ca26119b1428cddb96b37925bdf01 upstream. The minimum supported gcc version is >= 4.6, so these can be removed. Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190111084931.24601-1-linux@rasmusvillemoes.dk Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-17xen: Prevent buffer overflow in privcmd ioctlDan Carpenter1-0/+3
commit 42d8644bd77dd2d747e004e367cb0c895a606f39 upstream. The "call" variable comes from the user in privcmd_ioctl_hypercall(). It's an offset into the hypercall_page[] which has (PAGE_SIZE / 32) elements. We need to put an upper bound on it to prevent an out of bounds access. Cc: stable@vger.kernel.org Fixes: 1246ae0bb992 ("xen: add variable hypercall caller") Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: Juergen Gross <jgross@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-05docs/core-api/mm: fix user memory accessors formattingMike Rapoport1-12/+12
[ Upstream commit bc8ff3ca6589d63c6d10f5ee8bed38f74851b469 ] The descriptions of userspace memory access functions had minor issues with formatting that made kernel-doc unable to properly detect the function/macro names and the return value sections: ./arch/x86/include/asm/uaccess.h:80: info: Scanning doc for ./arch/x86/include/asm/uaccess.h:139: info: Scanning doc for ./arch/x86/include/asm/uaccess.h:231: info: Scanning doc for ./arch/x86/include/asm/uaccess.h:505: info: Scanning doc for ./arch/x86/include/asm/uaccess.h:530: info: Scanning doc for ./arch/x86/lib/usercopy_32.c:58: info: Scanning doc for ./arch/x86/lib/usercopy_32.c:69: warning: No description found for return value of 'clear_user' ./arch/x86/lib/usercopy_32.c:78: info: Scanning doc for ./arch/x86/lib/usercopy_32.c:90: warning: No description found for return value of '__clear_user' Fix the formatting. Link: http://lkml.kernel.org/r/1549549644-4903-3-git-send-email-rppt@linux.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-04-03KVM: x86: update %rip after emulating IOSean Christopherson1-0/+1
commit 45def77ebf79e2e8942b89ed79294d97ce914fa0 upstream. Most (all?) x86 platforms provide a port IO based reset mechanism, e.g. OUT 92h or CF9h. Userspace may emulate said mechanism, i.e. reset a vCPU in response to KVM_EXIT_IO, without explicitly announcing to KVM that it is doing a reset, e.g. Qemu jams vCPU state and resumes running. To avoid corruping %rip after such a reset, commit 0967b7bf1c22 ("KVM: Skip pio instruction when it is emulated, not executed") changed the behavior of PIO handlers, i.e. today's "fast" PIO handling to skip the instruction prior to exiting to userspace. Full emulation doesn't need such tricks becase re-emulating the instruction will naturally handle %rip being changed to point at the reset vector. Updating %rip prior to executing to userspace has several drawbacks: - Userspace sees the wrong %rip on the exit, e.g. if PIO emulation fails it will likely yell about the wrong address. - Single step exits to userspace for are effectively dropped as KVM_EXIT_DEBUG is overwritten with KVM_EXIT_IO. - Behavior of PIO emulation is different depending on whether it goes down the fast path or the slow path. Rather than skip the PIO instruction before exiting to userspace, snapshot the linear %rip and cancel PIO completion if the current value does not match the snapshot. For a 64-bit vCPU, i.e. the most common scenario, the snapshot and comparison has negligible overhead as VMCS.GUEST_RIP will be cached regardless, i.e. there is no extra VMREAD in this case. All other alternatives to snapshotting the linear %rip that don't rely on an explicit reset announcenment suffer from one corner case or another. For example, canceling PIO completion on any write to %rip fails if userspace does a save/restore of %rip, and attempting to avoid that issue by canceling PIO only if %rip changed then fails if PIO collides with the reset %rip. Attempting to zero in on the exact reset vector won't work for APs, which means adding more hooks such as the vCPU's MP_STATE, and so on and so forth. Checking for a linear %rip match technically suffers from corner cases, e.g. userspace could theoretically rewrite the underlying code page and expect a different instruction to execute, or the guest hardcodes a PIO reset at 0xfffffff0, but those are far, far outside of what can be considered normal operation. Fixes: 432baf60eee3 ("KVM: VMX: use kvm_fast_pio_in for handling IN I/O") Cc: <stable@vger.kernel.org> Reported-by: Jim Mattson <jmattson@google.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-03KVM: x86: Emulate MSR_IA32_ARCH_CAPABILITIES on AMD hostsSean Christopherson1-0/+1
commit 0cf9135b773bf32fba9dd8e6699c1b331ee4b749 upstream. The CPUID flag ARCH_CAPABILITIES is unconditioinally exposed to host userspace for all x86 hosts, i.e. KVM advertises ARCH_CAPABILITIES regardless of hardware support under the pretense that KVM fully emulates MSR_IA32_ARCH_CAPABILITIES. Unfortunately, only VMX hosts handle accesses to MSR_IA32_ARCH_CAPABILITIES (despite KVM_GET_MSRS also reporting MSR_IA32_ARCH_CAPABILITIES for all hosts). Move the MSR_IA32_ARCH_CAPABILITIES handling to common x86 code so that it's emulated on AMD hosts. Fixes: 1eaafe91a0df4 ("kvm: x86: IA32_ARCH_CAPABILITIES is always supported") Cc: stable@vger.kernel.org Reported-by: Xiaoyao Li <xiaoyao.li@linux.intel.com> Cc: Jim Mattson <jmattson@google.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-03-27x86/unwind: Handle NULL pointer calls better in frame unwinderJann Horn1-0/+6
commit f4f34e1b82eb4219d8eaa1c7e2e17ca219a6a2b5 upstream. When the frame unwinder is invoked for an oops caused by a call to NULL, it currently skips the parent function because BP still points to the parent's stack frame; the (nonexistent) current function only has the first half of a stack frame, and BP doesn't point to it yet. Add a special case for IP==0 that calculates a fake BP from SP, then uses the real BP for the next frame. Note that this handles first_frame specially: Return information about the parent function as long as the saved IP is >=first_frame, even if the fake BP points below it. With an artificially-added NULL call in prctl_set_seccomp(), before this patch, the trace is: Call Trace: ? prctl_set_seccomp+0x3a/0x50 __x64_sys_prctl+0x457/0x6f0 ? __ia32_sys_prctl+0x750/0x750 do_syscall_64+0x72/0x160 entry_SYSCALL_64_after_hwframe+0x44/0xa9 After this patch, the trace is: Call Trace: prctl_set_seccomp+0x3a/0x50 __x64_sys_prctl+0x457/0x6f0 ? __ia32_sys_prctl+0x750/0x750 do_syscall_64+0x72/0x160 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: syzbot <syzbot+ca95b2b7aef9e7cbd6ab@syzkaller.appspotmail.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: Michal Marek <michal.lkml@markovi.net> Cc: linux-kbuild@vger.kernel.org Link: https://lkml.kernel.org/r/20190301031201.7416-1-jannh@google.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-03-23KVM: Call kvm_arch_memslots_updated() before updating memslotsSean Christopherson1-1/+1
commit 152482580a1b0accb60676063a1ac57b2d12daf6 upstream. kvm_arch_memslots_updated() is at this point in time an x86-specific hook for handling MMIO generation wraparound. x86 stashes 19 bits of the memslots generation number in its MMIO sptes in order to avoid full page fault walks for repeat faults on emulated MMIO addresses. Because only 19 bits are used, wrapping the MMIO generation number is possible, if unlikely. kvm_arch_memslots_updated() alerts x86 that the generation has changed so that it can invalidate all MMIO sptes in case the effective MMIO generation has wrapped so as to avoid using a stale spte, e.g. a (very) old spte that was created with generation==0. Given that the purpose of kvm_arch_memslots_updated() is to prevent consuming stale entries, it needs to be called before the new generation is propagated to memslots. Invalidating the MMIO sptes after updating memslots means that there is a window where a vCPU could dereference the new memslots generation, e.g. 0, and incorrectly reuse an old MMIO spte that was created with (pre-wrap) generation==0. Fixes: e59dbe09f8e6 ("KVM: Introduce kvm_arch_memslots_updated()") Cc: <stable@vger.kernel.org> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-03-14x86: Add TSX Force Abort CPUID/MSRPeter Zijlstra (Intel)2-0/+7
Skylake systems will receive a microcode update to address a TSX errata. This microcode will (by default) clobber PMC3 when TSX instructions are (speculatively or not) executed. It also provides an MSR to cause all TSX transaction to abort and preserve PMC3. Add the CPUID enumeration and MSR definition. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-03-02Merge branch 'x86-urgent-for-linus' of ↵Linus Torvalds2-3/+5
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 fixes from Thomas Gleixner: "Two last minute fixes: - Prevent value evaluation via functions happening in the user access enabled region of __put_user() (put another way: make sure to evaluate the value to be stored in user space _before_ enabling user space accesses) - Correct the definition of a Hyper-V hypercall constant" * 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/hyper-v: Fix definition of HV_MAX_FLUSH_REP_COUNT x86/uaccess: Don't leak the AC flag into __put_user() value evaluation
2019-02-28x86/hyper-v: Fix definition of HV_MAX_FLUSH_REP_COUNTLan Tianyu1-1/+1
The max flush rep count of HvFlushGuestPhysicalAddressList hypercall is equal with how many entries of union hv_gpa_page_range can be populated into the input parameter page. The code lacks parenthesis around PAGE_SIZE - 2 * sizeof(u64) which results in bogus computations. Add them. Fixes: cc4edae4b924 ("x86/hyper-v: Add HvFlushGuestAddressList hypercall support") Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: kys@microsoft.com Cc: haiyangz@microsoft.com Cc: sthemmin@microsoft.com Cc: sashal@kernel.org Cc: bp@alien8.de Cc: hpa@zytor.com Cc: gregkh@linuxfoundation.org Cc: devel@linuxdriverproject.org Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20190225143114.5149-1-Tianyu.Lan@microsoft.com
2019-02-25x86/uaccess: Don't leak the AC flag into __put_user() value evaluationAndy Lutomirski1-2/+4
When calling __put_user(foo(), ptr), the __put_user() macro would call foo() in between __uaccess_begin() and __uaccess_end(). If that code were buggy, then those bugs would be run without SMAP protection. Fortunately, there seem to be few instances of the problem in the kernel. Nevertheless, __put_user() should be fixed to avoid doing this. Therefore, evaluate __put_user()'s argument before setting AC. This issue was noticed when an objtool hack by Peter Zijlstra complained about genregs_get() and I compared the assembly output to the C source. [ bp: Massage commit message and fixed up whitespace. ] Fixes: 11f1a4b9755f ("x86: reorganize SMAP handling in user space accesses") Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: stable@vger.kernel.org Link: http://lkml.kernel.org/r/20190225125231.845656645@infradead.org
2019-02-22KVM: MMU: record maximum physical address width in kvm_mmu_extended_roleYu Zhang1-0/+1
Previously, commit 7dcd57552008 ("x86/kvm/mmu: check if tdp/shadow MMU reconfiguration is needed") offered some optimization to avoid the unnecessary reconfiguration. Yet one scenario is broken - when cpuid changes VM's maximum physical address width, reconfiguration is needed to reset the reserved bits. Also, the TDP may need to reset its shadow_root_level when this value is changed. To fix this, a new field, maxphyaddr, is introduced in the extended role structure to keep track of the configured guest physical address width. Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-22x86/kvm/mmu: fix switch between root and guest MMUsVitaly Kuznetsov1-0/+1
Commit 14c07ad89f4d ("x86/kvm/mmu: introduce guest_mmu") brought one subtle change: previously, when switching back from L2 to L1, we were resetting MMU hooks (like mmu->get_cr3()) in kvm_init_mmu() called from nested_vmx_load_cr3() and now we do that in nested_ept_uninit_mmu_context() when we re-target vcpu->arch.mmu pointer. The change itself looks logical: if nested_ept_init_mmu_context() changes something than nested_ept_uninit_mmu_context() restores it back. There is, however, one thing: the following call chain: nested_vmx_load_cr3() kvm_mmu_new_cr3() __kvm_mmu_new_cr3() fast_cr3_switch() cached_root_available() now happens with MMU hooks pointing to the new MMU (root MMU in our case) while previously it was happening with the old one. cached_root_available() tries to stash current root but it is incorrect to read current CR3 with mmu->get_cr3(), we need to use old_mmu->get_cr3() which in case we're switching from L2 to L1 is guest_mmu. (BTW, in shadow page tables case this is a non-issue because we don't switch MMU). While we could've tried to guess that we're switching between MMUs and call the right ->get_cr3() from cached_root_available() this seems to be overly complicated. Instead, just stash the corresponding CR3 when setting root_hpa and make cached_root_available() use the stashed value. Fixes: 14c07ad89f4d ("x86/kvm/mmu: introduce guest_mmu") Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-02-17Merge branch 'x86-urgent-for-linus' of ↵Linus Torvalds2-1/+9
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 fixes from Ingo Molnar: "Three changes: - An UV fix/quirk to pull UV BIOS calls into the efi_runtime_lock locking regime. (This done by aliasing __efi_uv_runtime_lock to efi_runtime_lock, which should make the quirk nature obvious and maintain the general policy that the EFI lock (name...) isn't exposed to drivers.) - Our version of MAGA: Make a.out Great Again. - Add a new Intel model name enumerator to an upstream header to help reduce dependencies going forward" * 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/platform/UV: Use efi_runtime_lock to serialise BIOS calls x86/CPU: Add Icelake model number x86/a.out: Clear the dump structure initially
2019-02-15x86/platform/UV: Use efi_runtime_lock to serialise BIOS callsHedi Berriche1-1/+7
Calls into UV firmware must be protected against concurrency, expose the efi_runtime_lock to the UV platform, and use it to serialise UV BIOS calls. Signed-off-by: Hedi Berriche <hedi.berriche@hpe.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Russ Anderson <rja@hpe.com> Reviewed-by: Dimitri Sivanich <sivanich@hpe.com> Reviewed-by: Mike Travis <mike.travis@hpe.com> Cc: Andy Shevchenko <andy@infradead.org> Cc: Bhupesh Sharma <bhsharma@redhat.com> Cc: Darren Hart <dvhart@infradead.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: linux-efi <linux-efi@vger.kernel.org> Cc: platform-driver-x86@vger.kernel.org Cc: stable@vger.kernel.org # v4.9+ Cc: Steve Wahl <steve.wahl@hpe.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190213193413.25560-5-hedi.berriche@hpe.com
2019-02-14x86/CPU: Add Icelake model numberRajneesh Bhardwaj1-0/+2
Add the CPUID model number of Icelake (ICL) mobile processors to the Intel family list. Icelake U/Y series uses model number 0x7E. Signed-off-by: Rajneesh Bhardwaj <rajneesh.bhardwaj@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "David E. Box" <david.e.box@intel.com> Cc: dvhart@infradead.org Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: platform-driver-x86@vger.kernel.org Cc: Qiuxu Zhuo <qiuxu.zhuo@intel.com> Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190214115712.19642-2-rajneesh.bhardwaj@linux.intel.com
2019-02-10Merge branch 'x86-urgent-for-linus' of ↵Linus Torvalds1-1/+1
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 fixes from Ingo Molnar: "A handful of fixes: - Fix an MCE corner case bug/crash found via MCE injection testing - Fix 5-level paging boot crash - Fix MCE recovery cache invalidation bug - Fix regression on Xen guests caused by a recent PMD level mremap speedup optimization" * 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/mm: Make set_pmd_at() paravirt aware x86/mm/cpa: Fix set_mce_nospec() x86/boot/compressed/64: Do not corrupt EDX on EFER.LME=1 setting x86/MCE: Initialize mce.bank in the case of a fatal error in mce_no_way_out()
2019-02-10x86/mm: Make set_pmd_at() paravirt awareJuergen Gross1-1/+1
set_pmd_at() calls native_set_pmd() unconditionally on x86. This was fine as long as only huge page entries were written via set_pmd_at(), as Xen pv guests don't support those. Commit 2c91bd4a4e2e53 ("mm: speed up mremap by 20x on large regions") introduced a usage of set_pmd_at() possible on pv guests, leading to failures like: BUG: unable to handle kernel paging request at ffff888023e26778 #PF error: [PROT] [WRITE] RIP: e030:move_page_tables+0x7c1/0xae0 move_vma.isra.3+0xd1/0x2d0 __se_sys_mremap+0x3c6/0x5b0 do_syscall_64+0x49/0x100 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Make set_pmd_at() paravirt aware by just letting it use set_pmd(). Fixes: 2c91bd4a4e2e53 ("mm: speed up mremap by 20x on large regions") Reported-by: Sander Eikelenboom <linux@eikelenboom.it> Signed-off-by: Juergen Gross <jgross@suse.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: xen-devel@lists.xenproject.org Cc: boris.ostrovsky@oracle.com Cc: sstabellini@kernel.org Cc: hpa@zytor.com Cc: bp@alien8.de Cc: torvalds@linux-foundation.org Link: https://lkml.kernel.org/r/20190210074056.11842-1-jgross@suse.com
2019-02-03Merge branch 'x86-urgent-for-linus' of ↵Linus Torvalds2-3/+4
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 fixes from Thomas Gleixner: "A few updates for x86: - Fix an unintended sign extension issue in the fault handling code - Rename the new resource control config switch so it's less confusing - Avoid setting up EFI info in kexec when the EFI runtime is disabled. - Fix the microcode version check in the AMD microcode loader so it only loads higher version numbers and never downgrades - Set EFER.LME in the 32bit trampoline before returning to long mode to handle older AMD/KVM behaviour properly. - Add Darren and Andy as x86/platform reviewers" * 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/resctrl: Avoid confusion over the new X86_RESCTRL config x86/kexec: Don't setup EFI info if EFI runtime is not enabled x86/microcode/amd: Don't falsely trick the late loading mechanism MAINTAINERS: Add Andy and Darren as arch/x86/platform/ reviewers x86/fault: Fix sign-extend unintended sign extension x86/boot/compressed/64: Set EFER.LME=1 in 32-bit trampoline before returning to long mode x86/cpu: Add Atom Tremont (Jacobsville)
2019-02-02x86/resctrl: Avoid confusion over the new X86_RESCTRL configJohannes Weiner1-2/+2
"Resource Control" is a very broad term for this CPU feature, and a term that is also associated with containers, cgroups etc. This can easily cause confusion. Make the user prompt more specific. Match the config symbol name. [ bp: In the future, the corresponding ARM arch-specific code will be under ARM_CPU_RESCTRL and the arch-agnostic bits will be carved out under the CPU_RESCTRL umbrella symbol. ] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Babu Moger <Babu.Moger@amd.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Morse <james.morse@arm.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: linux-doc@vger.kernel.org Cc: Peter Zijlstra <peterz@infradead.org> Cc: Pu Wen <puwen@hygon.cn> Cc: Reinette Chatre <reinette.chatre@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190130195621.GA30653@cmpxchg.org
2019-02-02x86_64: increase stack size for KASAN_EXTRAQian Cai1-0/+4
If the kernel is configured with KASAN_EXTRA, the stack size is increasted significantly because this option sets "-fstack-reuse" to "none" in GCC [1]. As a result, it triggers stack overrun quite often with 32k stack size compiled using GCC 8. For example, this reproducer https://github.com/linux-test-project/ltp/blob/master/testcases/kernel/syscalls/madvise/madvise06.c triggers a "corrupted stack end detected inside scheduler" very reliably with CONFIG_SCHED_STACK_END_CHECK enabled. There are just too many functions that could have a large stack with KASAN_EXTRA due to large local variables that have been called over and over again without being able to reuse the stacks. Some noticiable ones are size 7648 shrink_page_list 3584 xfs_rmap_convert 3312 migrate_page_move_mapping 3312 dev_ethtool 3200 migrate_misplaced_transhuge_page 3168 copy_process There are other 49 functions are over 2k in size while compiling kernel with "-Wframe-larger-than=" even with a related minimal config on this machine. Hence, it is too much work to change Makefiles for each object to compile without "-fsanitize-address-use-after-scope" individually. [1] https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81715#c23 Although there is a patch in GCC 9 to help the situation, GCC 9 probably won't be released in a few months and then it probably take another 6-month to 1-year for all major distros to include it as a default. Hence, the stack usage with KASAN_EXTRA can be revisited again in 2020 when GCC 9 is everywhere. Until then, this patch will help users avoid stack overrun. This has already been fixed for arm64 for the same reason via 6e8830674ea ("arm64: kasan: Increase stack size for KASAN_EXTRA"). Link: http://lkml.kernel.org/r/20190109215209.2903-1-cai@lca.pw Signed-off-by: Qian Cai <cai@lca.pw> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-29x86/cpu: Add Atom Tremont (Jacobsville)Kan Liang1-1/+2
Add the Atom Tremont model number to the Intel family list. [ Tony: Also update comment at head of file to say "_X" suffix is also used for microserver parts. ] Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com> Signed-off-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Aristeu Rozanski <aris@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: linux-edac <linux-edac@vger.kernel.org> Cc: Mauro Carvalho Chehab <mchehab@s-opensource.com> Cc: Megha Dey <megha.dey@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qiuxu Zhuo <qiuxu.zhuo@intel.com> Cc: Rajneesh Bhardwaj <rajneesh.bhardwaj@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190125195902.17109-4-tony.luck@intel.com
2019-01-27Merge branch 'x86-urgent-for-linus' of ↵Linus Torvalds1-0/+18
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 fixes from Thomas Gleixner: "A set of fixes for x86: - Fix the swapped outb() parameters in the KASLR code - Fix the PKEY handling at fork which missed to preserve the pkey state for the child. Comes with a test case to validate that. - Fix the entry stack handling for XEN PV to respect that XEN PV systems enter the function already on the current thread stack and not on the trampoline. - Fix kexec load failure caused by using a stale value when the kexec_buf structure is reused for subsequent allocations. - Fix a bogus sizeof() in the memory encryption code - Enforce PCI dependency for the Intel Low Power Subsystem - Enforce PCI_LOCKLESS_CONFIG when PCI is enabled" * 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/Kconfig: Select PCI_LOCKLESS_CONFIG if PCI is enabled x86/entry/64/compat: Fix stack switching for XEN PV x86/kexec: Fix a kexec_file_load() failure x86/mm/mem_encrypt: Fix erroneous sizeof() x86/selftests/pkeys: Fork() to check for state being preserved x86/pkeys: Properly copy pkey state at fork() x86/kaslr: Fix incorrect i8254 outb() parameters x86/intel/lpss: Make PCI dependency explicit
2019-01-20x86: uaccess: Inhibit speculation past access_ok() in user_access_begin()Will Deacon1-1/+1
Commit 594cc251fdd0 ("make 'user_access_begin()' do 'access_ok()'") makes the access_ok() check part of the user_access_begin() preceding a series of 'unsafe' accesses. This has the desirable effect of ensuring that all 'unsafe' accesses have been range-checked, without having to pick through all of the callsites to verify whether the appropriate checking has been made. However, the consolidated range check does not inhibit speculation, so it is still up to the caller to ensure that they are not susceptible to any speculative side-channel attacks for user addresses that ultimately fail the access_ok() check. This is an oversight, so use __uaccess_begin_nospec() to ensure that speculation is inhibited until the access_ok() check has passed. Reported-by: Julien Thierry <julien.thierry@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-15x86/pkeys: Properly copy pkey state at fork()Dave Hansen1-0/+18
Memory protection key behavior should be the same in a child as it was in the parent before a fork. But, there is a bug that resets the state in the child at fork instead of preserving it. The creation of new mm's is a bit convoluted. At fork(), the code does: 1. memcpy() the parent mm to initialize child 2. mm_init() to initalize some select stuff stuff 3. dup_mmap() to create true copies that memcpy() did not do right For pkeys two bits of state need to be preserved across a fork: 'execute_only_pkey' and 'pkey_allocation_map'. Those are preserved by the memcpy(), but mm_init() invokes init_new_context() which overwrites 'execute_only_pkey' and 'pkey_allocation_map' with "new" values. The author of the code erroneously believed that init_new_context is *only* called at execve()-time. But, alas, init_new_context() is used at execve() and fork(). The result is that, after a fork(), the child's pkey state ends up looking like it does after an execve(), which is totally wrong. pkeys that are already allocated can be allocated again, for instance. To fix this, add code called by dup_mmap() to copy the pkey state from parent to child explicitly. Also add a comment above init_new_context() to make it more clear to the next poor sod what this code is used for. Fixes: e8c24d3a23a ("x86/pkeys: Allocation/free syscalls") Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: bp@alien8.de Cc: hpa@zytor.com Cc: peterz@infradead.org Cc: mpe@ellerman.id.au Cc: will.deacon@arm.com Cc: luto@kernel.org Cc: jroedel@suse.de Cc: stable@vger.kernel.org Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Will Deacon <will.deacon@arm.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Joerg Roedel <jroedel@suse.de> Link: https://lkml.kernel.org/r/20190102215655.7A69518C@viggo.jf.intel.com
2019-01-09x86/cache: Rename config option to CONFIG_X86_RESCTRLBorislav Petkov1-2/+2
CONFIG_RESCTRL is too generic. The final goal is to have a generic option called like this which is selected by the arch-specific ones CONFIG_X86_RESCTRL and CONFIG_ARM64_RESCTRL. The generic one will cover the resctrl filesystem and other generic and shared bits of functionality. Signed-off-by: Borislav Petkov <bp@suse.de> Suggested-by: Ingo Molnar <mingo@kernel.org> Requested-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Babu Moger <babu.moger@amd.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: James Morse <james.morse@arm.com> Cc: Reinette Chatre <reinette.chatre@intel.com> Cc: Tony Luck <tony.luck@intel.com> Cc: x86@kernel.org Link: http://lkml.kernel.org/r/20190108171401.GC12235@zn.tnic
2019-01-06arch: remove redundant UAPI generic-y definesMasahiro Yamada1-2/+0
Now that Kbuild automatically creates asm-generic wrappers for missing mandatory headers, it is redundant to list the same headers in generic-y and mandatory-y. Suggested-by: Sam Ravnborg <sam@ravnborg.org> Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> Acked-by: Sam Ravnborg <sam@ravnborg.org>
2019-01-06arch: remove stale comments "UAPI Header export list"Masahiro Yamada1-1/+0
These comments are leftovers of commit fcc8487d477a ("uapi: export all headers under uapi directories"). Prior to that commit, exported headers must be explicitly added to header-y. Now, all headers under the uapi/ directories are exported. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2019-01-06jump_label: move 'asm goto' support test to KconfigMasahiro Yamada3-17/+4
Currently, CONFIG_JUMP_LABEL just means "I _want_ to use jump label". The jump label is controlled by HAVE_JUMP_LABEL, which is defined like this: #if defined(CC_HAVE_ASM_GOTO) && defined(CONFIG_JUMP_LABEL) # define HAVE_JUMP_LABEL #endif We can improve this by testing 'asm goto' support in Kconfig, then make JUMP_LABEL depend on CC_HAS_ASM_GOTO. Ugly #ifdef HAVE_JUMP_LABEL will go away, and CONFIG_JUMP_LABEL will match to the real kernel capability. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
2019-01-05Merge branch 'akpm' (patches from Andrew)Linus Torvalds2-3/+3
Merge more updates from Andrew Morton: - procfs updates - various misc bits - lib/ updates - epoll updates - autofs - fatfs - a few more MM bits * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (58 commits) mm/page_io.c: fix polled swap page in checkpatch: add Co-developed-by to signature tags docs: fix Co-Developed-by docs drivers/base/platform.c: kmemleak ignore a known leak fs: don't open code lru_to_page() fs/: remove caller signal_pending branch predictions mm/: remove caller signal_pending branch predictions arch/arc/mm/fault.c: remove caller signal_pending_branch predictions kernel/sched/: remove caller signal_pending branch predictions kernel/locking/mutex.c: remove caller signal_pending branch predictions mm: select HAVE_MOVE_PMD on x86 for faster mremap mm: speed up mremap by 20x on large regions mm: treewide: remove unused address argument from pte_alloc functions initramfs: cleanup incomplete rootfs scripts/gdb: fix lx-version string output kernel/kcov.c: mark write_comp_data() as notrace kernel/sysctl: add panic_print into sysctl panic: add options to print system info when panic happens bfs: extra sanity checking and static inode bitmap exec: separate MM_ANONPAGES and RLIMIT_STACK accounting ...
2019-01-05x86: re-introduce non-generic memcpy_{to,from}ioLinus Torvalds2-18/+8
This has been broken forever, and nobody ever really noticed because it's purely a performance issue. Long long ago, in commit 6175ddf06b61 ("x86: Clean up mem*io functions") Brian Gerst simplified the memory copies to and from iomem, since on x86, the instructions to access iomem are exactly the same as the regular instructions. That is technically true, and things worked, and nobody said anything. Besides, back then the regular memcpy was pretty simple and worked fine. Nobody noticed except for David Laight, that is. David has a testing a TLP monitor he was writing for an FPGA, and has been occasionally complaining about how memcpy_toio() writes things one byte at a time. Which is completely unacceptable from a performance standpoint, even if it happens to technically work. The reason it's writing one byte at a time is because while it's technically true that accesses to iomem are the same as accesses to regular memory on x86, the _granularity_ (and ordering) of accesses matter to iomem in ways that they don't matter to regular cached memory. In particular, when ERMS is set, we default to using "rep movsb" for larger memory copies. That is indeed perfectly fine for real memory, since the whole point is that the CPU is going to do cacheline optimizations and executes the memory copy efficiently for cached memory. With iomem? Not so much. With iomem, "rep movsb" will indeed work, but it will copy things one byte at a time. Slowly and ponderously. Now, originally, back in 2010 when commit 6175ddf06b61 was done, we didn't use ERMS, and this was much less noticeable. Our normal memcpy() was simpler in other ways too. Because in fact, it's not just about using the string instructions. Our memcpy() these days does things like "read and write overlapping values" to handle the last bytes of the copy. Again, for normal memory, overlapping accesses isn't an issue. For iomem? It can be. So this re-introduces the specialized memcpy_toio(), memcpy_fromio() and memset_io() functions. It doesn't particularly optimize them, but it tries to at least not be horrid, or do overlapping accesses. In fact, this uses the existing __inline_memcpy() function that we still had lying around that uses our very traditional "rep movsl" loop followed by movsw/movsb for the final bytes. Somebody may decide to try to improve on it, but if we've gone almost a decade with only one person really ever noticing and complaining, maybe it's not worth worrying about further, once it's not _completely_ broken? Reported-by: David Laight <David.Laight@aculab.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-05Use __put_user_goto in __put_user_size() and unsafe_put_user()Linus Torvalds1-31/+22
This actually enables the __put_user_goto() functionality in unsafe_put_user(). For an example of the effect of this, this is the code generated for the unsafe_put_user(signo, &infop->si_signo, Efault); in the waitid() system call: movl %ecx,(%rbx) # signo, MEM[(struct __large_struct *)_2] It's just one single store instruction, along with generating an exception table entry pointing to the Efault label case in case that instruction faults. Before, we would generate this: xorl %edx, %edx movl %ecx,(%rbx) # signo, MEM[(struct __large_struct *)_3] testl %edx, %edx jne .L309 with the exception table generated for that 'mov' instruction causing us to jump to a stub that set %edx to -EFAULT and then jumped back to the 'testl' instruction. So not only do we now get rid of the extra code in the normal sequence, we also avoid unnecessarily keeping that extra error register live across it all. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-05x86 uaccess: Introduce __put_user_gotoLinus Torvalds1-11/+17
This is finally the actual reason for the odd error handling in the "unsafe_get/put_user()" functions, introduced over three years ago. Using a "jump to error label" interface is somewhat odd, but very convenient as a programming interface, and more importantly, it fits very well with simply making the target be the exception handler address directly from the inline asm. The reason it took over three years to actually do this? We need "asm goto" support for it, which only became the default on x86 last year. It's now been a year that we've forced asm goto support (see commit e501ce957a78 "x86: Force asm-goto"), and so let's just do it here too. [ Side note: this commit was originally done back in 2016. The above commentary about timing is obviously about it only now getting merged into my real upstream tree - Linus ] Sadly, gcc still only supports "asm goto" with asms that do not have any outputs, so we are limited to only the put_user case for this. Maybe in several more years we can do the get_user case too. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-05mm: treewide: remove unused address argument from pte_alloc functionsJoel Fernandes (Google)1-2/+2
Patch series "Add support for fast mremap". This series speeds up the mremap(2) syscall by copying page tables at the PMD level even for non-THP systems. There is concern that the extra 'address' argument that mremap passes to pte_alloc may do something subtle architecture related in the future that may make the scheme not work. Also we find that there is no point in passing the 'address' to pte_alloc since its unused. This patch therefore removes this argument tree-wide resulting in a nice negative diff as well. Also ensuring along the way that the enabled architectures do not do anything funky with the 'address' argument that goes unnoticed by the optimization. Build and boot tested on x86-64. Build tested on arm64. The config enablement patch for arm64 will be posted in the future after more testing. The changes were obtained by applying the following Coccinelle script. (thanks Julia for answering all Coccinelle questions!). Following fix ups were done manually: * Removal of address argument from pte_fragment_alloc * Removal of pte_alloc_one_fast definitions from m68k and microblaze. // Options: --include-headers --no-includes // Note: I split the 'identifier fn' line, so if you are manually // running it, please unsplit it so it runs for you. virtual patch @pte_alloc_func_def depends on patch exists@ identifier E2; identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; type T2; @@ fn(... - , T2 E2 ) { ... } @pte_alloc_func_proto_noarg depends on patch exists@ type T1, T2, T3, T4; identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; @@ ( - T3 fn(T1, T2); + T3 fn(T1); | - T3 fn(T1, T2, T4); + T3 fn(T1, T2); ) @pte_alloc_func_proto depends on patch exists@ identifier E1, E2, E4; type T1, T2, T3, T4; identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; @@ ( - T3 fn(T1 E1, T2 E2); + T3 fn(T1 E1); | - T3 fn(T1 E1, T2 E2, T4 E4); + T3 fn(T1 E1, T2 E2); ) @pte_alloc_func_call depends on patch exists@ expression E2; identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; @@ fn(... -, E2 ) @pte_alloc_macro depends on patch exists@ identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$"; identifier a, b, c; expression e; position p; @@ ( - #define fn(a, b, c) e + #define fn(a, b) e | - #define fn(a, b) e + #define fn(a) e ) Link: http://lkml.kernel.org/r/20181108181201.88826-2-joelaf@google.com Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Suggested-by: Kirill A. Shutemov <kirill@shutemov.name> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Cc: Michal Hocko <mhocko@kernel.org> Cc: Julia Lawall <Julia.Lawall@lip6.fr> Cc: Kirill A. Shutemov <kirill@shutemov.name> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-05fls: change parameter to unsigned intMatthew Wilcox1-1/+1
When testing in userspace, UBSAN pointed out that shifting into the sign bit is undefined behaviour. It doesn't really make sense to ask for the highest set bit of a negative value, so just turn the argument type into an unsigned int. Some architectures (eg ppc) already had it declared as an unsigned int, so I don't expect too many problems. Link: http://lkml.kernel.org/r/20181105221117.31828-1-willy@infradead.org Signed-off-by: Matthew Wilcox <willy@infradead.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-04make 'user_access_begin()' do 'access_ok()'Linus Torvalds1-1/+8
Originally, the rule used to be that you'd have to do access_ok() separately, and then user_access_begin() before actually doing the direct (optimized) user access. But experience has shown that people then decide not to do access_ok() at all, and instead rely on it being implied by other operations or similar. Which makes it very hard to verify that the access has actually been range-checked. If you use the unsafe direct user accesses, hardware features (either SMAP - Supervisor Mode Access Protection - on x86, or PAN - Privileged Access Never - on ARM) do force you to use user_access_begin(). But nothing really forces the range check. By putting the range check into user_access_begin(), we actually force people to do the right thing (tm), and the range check vill be visible near the actual accesses. We have way too long a history of people trying to avoid them. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-04Remove 'type' argument from access_ok() functionLinus Torvalds3-7/+4
Nobody has actually used the type (VERIFY_READ vs VERIFY_WRITE) argument of the user address range verification function since we got rid of the old racy i386-only code to walk page tables by hand. It existed because the original 80386 would not honor the write protect bit when in kernel mode, so you had to do COW by hand before doing any user access. But we haven't supported that in a long time, and these days the 'type' argument is a purely historical artifact. A discussion about extending 'user_access_begin()' to do the range checking resulted this patch, because there is no way we're going to move the old VERIFY_xyz interface to that model. And it's best done at the end of the merge window when I've done most of my merges, so let's just get this done once and for all. This patch was mostly done with a sed-script, with manual fix-ups for the cases that weren't of the trivial 'access_ok(VERIFY_xyz' form. There were a couple of notable cases: - csky still had the old "verify_area()" name as an alias. - the iter_iov code had magical hardcoded knowledge of the actual values of VERIFY_{READ,WRITE} (not that they mattered, since nothing really used it) - microblaze used the type argument for a debug printout but other than those oddities this should be a total no-op patch. I tried to fix up all architectures, did fairly extensive grepping for access_ok() uses, and the changes are trivial, but I may have missed something. Any missed conversion should be trivially fixable, though. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28mm: make free_reserved_area() return "const char *"Alexey Dobriyan1-1/+1
and propagate through down the call stack. Link: http://lkml.kernel.org/r/20181124091411.GC10969@avx2 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>