summaryrefslogtreecommitdiff
path: root/arch/x86/include/asm
AgeCommit message (Collapse)AuthorFilesLines
2019-05-23x86/speculation/mds: Add mitigation mode VMWERVThomas Gleixner1-0/+1
commit 22dd8365088b6403630b82423cf906491859b65e upstream. In virtualized environments it can happen that the host has the microcode update which utilizes the VERW instruction to clear CPU buffers, but the hypervisor is not yet updated to expose the X86_FEATURE_MD_CLEAR CPUID bit to guests. Introduce an internal mitigation mode VMWERV which enables the invocation of the CPU buffer clearing even if X86_FEATURE_MD_CLEAR is not set. If the system has no updated microcode this results in a pointless execution of the VERW instruction wasting a few CPU cycles. If the microcode is updated, but not exposed to a guest then the CPU buffers will be cleared. That said: Virtual Machines Will Eventually Receive Vaccine Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2019-05-23x86/speculation/mds: Add mitigation control for MDSThomas Gleixner1-0/+6
commit bc1241700acd82ec69fde98c5763ce51086269f8 upstream. Now that the mitigations are in place, add a command line parameter to control the mitigation, a mitigation selector function and a SMT update mechanism. This is the minimal straight forward initial implementation which just provides an always on/off mode. The command line parameter is: mds=[full|off] This is consistent with the existing mitigations for other speculative hardware vulnerabilities. The idle invocation is dynamically updated according to the SMT state of the system similar to the dynamic update of the STIBP mitigation. The idle mitigation is limited to CPUs which are only affected by MSBDS and not any other variant, because the other variants cannot be mitigated on SMT enabled systems. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com> [bwh: Backported to 3.16: - Drop " __ro_after_init" - Adjust filename, context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2019-05-23x86/speculation/mds: Conditionally clear CPU buffers on idle entryThomas Gleixner3-0/+22
commit 07f07f55a29cb705e221eda7894dd67ab81ef343 upstream. Add a static key which controls the invocation of the CPU buffer clear mechanism on idle entry. This is independent of other MDS mitigations because the idle entry invocation to mitigate the potential leakage due to store buffer repartitioning is only necessary on SMT systems. Add the actual invocations to the different halt/mwait variants which covers all usage sites. mwaitx is not patched as it's not available on Intel CPUs. The buffer clear is only invoked before entering the C-State to prevent that stale data from the idling CPU is spilled to the Hyper-Thread sibling after the Store buffer got repartitioned and all entries are available to the non idle sibling. When coming out of idle the store buffer is partitioned again so each sibling has half of it available. Now CPU which returned from idle could be speculatively exposed to contents of the sibling, but the buffers are flushed either on exit to user space or on VMENTER. When later on conditional buffer clearing is implemented on top of this, then there is no action required either because before returning to user space the context switch will set the condition flag which causes a flush on the return to user path. Note, that the buffer clearing on idle is only sensible on CPUs which are solely affected by MSBDS and not any other variant of MDS because the other MDS variants cannot be mitigated when SMT is enabled, so the buffer clearing on idle would be a window dressing exercise. This intentionally does not handle the case in the acpi/processor_idle driver which uses the legacy IO port interface for C-State transitions for two reasons: - The acpi/processor_idle driver was replaced by the intel_idle driver almost a decade ago. Anything Nehalem upwards supports it and defaults to that new driver. - The legacy IO port interface is likely to be used on older and therefore unaffected CPUs or on systems which do not receive microcode updates anymore, so there is no point in adding that. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com> [bwh: Backported to 3.16: - Drop change in _mwaitx() - Adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2019-05-23x86/speculation/mds: Clear CPU buffers on exit to userThomas Gleixner1-0/+28
commit 04dcbdb8057827b043b3c71aa397c4c63e67d086 upstream. Add a static key which controls the invocation of the CPU buffer clear mechanism on exit to user space and add the call into prepare_exit_to_usermode() and do_nmi() right before actually returning. Add documentation which kernel to user space transition this covers and explain why some corner cases are not mitigated. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com> [bwh: Backported to 3.16: Add an assembly macro equivalent to mds_user_clear_cpu_buffers() and use this in the system call exit path, as we don't have prepare_exit_to_usermode()] Cc: Dominik Brodowski <linux@dominikbrodowski.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: x86@kernel.org Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2019-05-23x86/speculation/mds: Add mds_clear_cpu_buffers()Thomas Gleixner1-0/+25
commit 6a9e529272517755904b7afa639f6db59ddb793e upstream. The Microarchitectural Data Sampling (MDS) vulernabilities are mitigated by clearing the affected CPU buffers. The mechanism for clearing the buffers uses the unused and obsolete VERW instruction in combination with a microcode update which triggers a CPU buffer clear when VERW is executed. Provide a inline function with the assembly magic. The argument of the VERW instruction must be a memory operand as documented: "MD_CLEAR enumerates that the memory-operand variant of VERW (for example, VERW m16) has been extended to also overwrite buffers affected by MDS. This buffer overwriting functionality is not guaranteed for the register operand variant of VERW." Documentation also recommends to use a writable data segment selector: "The buffer overwriting occurs regardless of the result of the VERW permission check, as well as when the selector is null or causes a descriptor load segment violation. However, for lowest latency we recommend using a selector that indicates a valid writable data segment." Add x86 specific documentation about MDS and the internal workings of the mitigation. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com> [bwh: Backported to 3.16: drop changes to doc index and configuration] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2019-05-23x86/speculation/mds: Add BUG_MSBDS_ONLYThomas Gleixner1-0/+1
commit e261f209c3666e842fd645a1e31f001c3a26def9 upstream. This bug bit is set on CPUs which are only affected by Microarchitectural Store Buffer Data Sampling (MSBDS) and not by any other MDS variant. This is important because the Store Buffers are partitioned between Hyper-Threads so cross thread forwarding is not possible. But if a thread enters or exits a sleep state the store buffer is repartitioned which can expose data from one thread to the other. This transition can be mitigated. That means that for CPUs which are only affected by MSBDS SMT can be enabled, if the CPU is not affected by other SMT sensitive vulnerabilities, e.g. L1TF. The XEON PHI variants fall into that category. Also the Silvermont/Airmont ATOMs, but for them it's not really relevant as they do not support SMT, but mark them for completeness sake. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com> [bwh: Backported to 3.16: - Assign the next available bug flag - Adjust context, indentation] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2019-05-23x86/speculation/mds: Add basic bug infrastructure for MDSAndi Kleen1-0/+2
commit ed5194c2732c8084af9fd159c146ea92bf137128 upstream. Microarchitectural Data Sampling (MDS), is a class of side channel attacks on internal buffers in Intel CPUs. The variants are: - Microarchitectural Store Buffer Data Sampling (MSBDS) (CVE-2018-12126) - Microarchitectural Fill Buffer Data Sampling (MFBDS) (CVE-2018-12130) - Microarchitectural Load Port Data Sampling (MLPDS) (CVE-2018-12127) MSBDS leaks Store Buffer Entries which can be speculatively forwarded to a dependent load (store-to-load forwarding) as an optimization. The forward can also happen to a faulting or assisting load operation for a different memory address, which can be exploited under certain conditions. Store buffers are partitioned between Hyper-Threads so cross thread forwarding is not possible. But if a thread enters or exits a sleep state the store buffer is repartitioned which can expose data from one thread to the other. MFBDS leaks Fill Buffer Entries. Fill buffers are used internally to manage L1 miss situations and to hold data which is returned or sent in response to a memory or I/O operation. Fill buffers can forward data to a load operation and also write data to the cache. When the fill buffer is deallocated it can retain the stale data of the preceding operations which can then be forwarded to a faulting or assisting load operation, which can be exploited under certain conditions. Fill buffers are shared between Hyper-Threads so cross thread leakage is possible. MLDPS leaks Load Port Data. Load ports are used to perform load operations from memory or I/O. The received data is then forwarded to the register file or a subsequent operation. In some implementations the Load Port can contain stale data from a previous operation which can be forwarded to faulting or assisting loads under certain conditions, which again can be exploited eventually. Load ports are shared between Hyper-Threads so cross thread leakage is possible. All variants have the same mitigation for single CPU thread case (SMT off), so the kernel can treat them as one MDS issue. Add the basic infrastructure to detect if the current CPU is affected by MDS. [ tglx: Rewrote changelog ] Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com> [bwh: Backported to 3.16: - Use CPU feature word 10 and next available bug flag - Adjust filename, context, indentation] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2019-05-23x86/speculation: Add seccomp Spectre v2 user space protection modeThomas Gleixner1-0/+1
commit 6b3e64c237c072797a9ec918654a60e3a46488e2 upstream. If 'prctl' mode of user space protection from spectre v2 is selected on the kernel command-line, STIBP and IBPB are applied on tasks which restrict their indirect branch speculation via prctl. SECCOMP enables the SSBD mitigation for sandboxed tasks already, so it makes sense to prevent spectre v2 user space to user space attacks as well. The Intel mitigation guide documents how STIPB works: Setting bit 1 (STIBP) of the IA32_SPEC_CTRL MSR on a logical processor prevents the predicted targets of indirect branches on any logical processor of that core from being controlled by software that executes (or executed previously) on another logical processor of the same core. Ergo setting STIBP protects the task itself from being attacked from a task running on a different hyper-thread and protects the tasks running on different hyper-threads from being attacked. While the document suggests that the branch predictors are shielded between the logical processors, the observed performance regressions suggest that STIBP simply disables the branch predictor more or less completely. Of course the document wording is vague, but the fact that there is also no requirement for issuing IBPB when STIBP is used points clearly in that direction. The kernel still issues IBPB even when STIBP is used until Intel clarifies the whole mechanism. IBPB is issued when the task switches out, so malicious sandbox code cannot mistrain the branch predictor for the next user space task on the same logical processor. Signed-off-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Link: https://lkml.kernel.org/r/20181125185006.051663132@linutronix.de [bwh: Backported to 3.16: adjust filename] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2019-05-23x86/speculation: Add prctl() control for indirect branch speculationThomas Gleixner1-0/+1
commit 9137bb27e60e554dab694eafa4cca241fa3a694f upstream. Add the PR_SPEC_INDIRECT_BRANCH option for the PR_GET_SPECULATION_CTRL and PR_SET_SPECULATION_CTRL prctls to allow fine grained per task control of indirect branch speculation via STIBP and IBPB. Invocations: Check indirect branch speculation status with - prctl(PR_GET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, 0, 0, 0); Enable indirect branch speculation with - prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_ENABLE, 0, 0); Disable indirect branch speculation with - prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_DISABLE, 0, 0); Force disable indirect branch speculation with - prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_FORCE_DISABLE, 0, 0); See Documentation/userspace-api/spec_ctrl.rst. Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Link: https://lkml.kernel.org/r/20181125185005.866780996@linutronix.de [bwh: Backported to 3.16: - Drop changes in tools/include/uapi/linux/prctl.h - Adjust filename, context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2019-05-23x86/speculation: Prevent stale SPEC_CTRL msr contentThomas Gleixner2-8/+7
commit 6d991ba509ebcfcc908e009d1db51972a4f7a064 upstream. The seccomp speculation control operates on all tasks of a process, but only the current task of a process can update the MSR immediately. For the other threads the update is deferred to the next context switch. This creates the following situation with Process A and B: Process A task 2 and Process B task 1 are pinned on CPU1. Process A task 2 does not have the speculation control TIF bit set. Process B task 1 has the speculation control TIF bit set. CPU0 CPU1 MSR bit is set ProcB.T1 schedules out ProcA.T2 schedules in MSR bit is cleared ProcA.T1 seccomp_update() set TIF bit on ProcA.T2 ProcB.T1 schedules in MSR is not updated <-- FAIL This happens because the context switch code tries to avoid the MSR update if the speculation control TIF bits of the incoming and the outgoing task are the same. In the worst case ProcB.T1 and ProcA.T2 are the only tasks scheduling back and forth on CPU1, which keeps the MSR stale forever. In theory this could be remedied by IPIs, but chasing the remote task which could be migrated is complex and full of races. The straight forward solution is to avoid the asychronous update of the TIF bit and defer it to the next context switch. The speculation control state is stored in task_struct::atomic_flags by the prctl and seccomp updates already. Add a new TIF_SPEC_FORCE_UPDATE bit and set this after updating the atomic_flags. Check the bit on context switch and force a synchronous update of the speculation control if set. Use the same mechanism for updating the current task. Reported-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1811272247140.1875@nanos.tec.linutronix.de [bwh: Backported to 3.16: - Assign the first available thread_info flag - Exclude _TIF_SPEC_FORCE_UPDATE from _TIF_WORK_MASK and _TIF_ALLWORK_MASK] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2019-05-23x86/speculation: Prepare for conditional IBPB in switch_mm()Thomas Gleixner2-0/+8
commit 4c71a2b6fd7e42814aa68a6dec88abf3b42ea573 upstream. The IBPB speculation barrier is issued from switch_mm() when the kernel switches to a user space task with a different mm than the user space task which ran last on the same CPU. An additional optimization is to avoid IBPB when the incoming task can be ptraced by the outgoing task. This optimization only works when switching directly between two user space tasks. When switching from a kernel task to a user space task the optimization fails because the previous task cannot be accessed anymore. So for quite some scenarios the optimization is just adding overhead. The upcoming conditional IBPB support will issue IBPB only for user space tasks which have the TIF_SPEC_IB bit set. This requires to handle the following cases: 1) Switch from a user space task (potential attacker) which has TIF_SPEC_IB set to a user space task (potential victim) which has TIF_SPEC_IB not set. 2) Switch from a user space task (potential attacker) which has TIF_SPEC_IB not set to a user space task (potential victim) which has TIF_SPEC_IB set. This needs to be optimized for the case where the IBPB can be avoided when only kernel threads ran in between user space tasks which belong to the same process. The current check whether two tasks belong to the same context is using the tasks context id. While correct, it's simpler to use the mm pointer because it allows to mangle the TIF_SPEC_IB bit into it. The context id based mechanism requires extra storage, which creates worse code. When a task is scheduled out its TIF_SPEC_IB bit is mangled as bit 0 into the per CPU storage which is used to track the last user space mm which was running on a CPU. This bit can be used together with the TIF_SPEC_IB bit of the incoming task to make the decision whether IBPB needs to be issued or not to cover the two cases above. As conditional IBPB is going to be the default, remove the dubious ptrace check for the IBPB always case and simply issue IBPB always when the process changes. Move the storage to a different place in the struct as the original one created a hole. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Link: https://lkml.kernel.org/r/20181125185005.466447057@linutronix.de [bwh: Backported to 3.16: - Drop changes in initialize_tlbstate_and_flush() - Adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2019-05-23x86/speculation: Avoid __switch_to_xtra() callsThomas Gleixner1-2/+11
commit 5635d99953f04b550738f6f4c1c532667c3fd872 upstream. The TIF_SPEC_IB bit does not need to be evaluated in the decision to invoke __switch_to_xtra() when: - CONFIG_SMP is disabled - The conditional STIPB mode is disabled The TIF_SPEC_IB bit still controls IBPB in both cases so the TIF work mask checks might invoke __switch_to_xtra() for nothing if TIF_SPEC_IB is the only set bit in the work masks. Optimize it out by masking the bit at compile time for CONFIG_SMP=n and at run time when the static key controlling the conditional STIBP mode is disabled. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Link: https://lkml.kernel.org/r/20181125185005.374062201@linutronix.de [bwh: Backported to 3.16: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2019-05-23x86/process: Consolidate and simplify switch_to_xtra() codeThomas Gleixner1-3/+0
commit ff16701a29cba3aafa0bd1656d766813b2d0a811 upstream. Move the conditional invocation of __switch_to_xtra() into an inline function so the logic can be shared between 32 and 64 bit. Remove the handthrough of the TSS pointer and retrieve the pointer directly in the bitmap handling function. Use this_cpu_ptr() instead of the per_cpu() indirection. This is a preparatory change so integration of conditional indirect branch speculation optimization happens only in one place. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Link: https://lkml.kernel.org/r/20181125185005.280855518@linutronix.de [bwh: Backported to 3.16: - Use init_tss instead of cpu_tss_rw - __switch_to() still uses the tss variable, so don't delete it - Adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2019-05-23x86/speculation: Prepare for per task indirect branch speculation controlTim Chen2-3/+19
commit 5bfbe3ad5840d941b89bcac54b821ba14f50a0ba upstream. To avoid the overhead of STIBP always on, it's necessary to allow per task control of STIBP. Add a new task flag TIF_SPEC_IB and evaluate it during context switch if SMT is active and flag evaluation is enabled by the speculation control code. Add the conditional evaluation to x86_virt_spec_ctrl() as well so the guest/host switch works properly. This has no effect because TIF_SPEC_IB cannot be set yet and the static key which controls evaluation is off. Preparatory patch for adding the control code. [ tglx: Simplify the context switch logic and make the TIF evaluation depend on SMP=y and on the static key controlling the conditional update. Rename it to TIF_SPEC_IB because it controls both STIBP and IBPB ] Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Link: https://lkml.kernel.org/r/20181125185005.176917199@linutronix.de [bwh: Backported to 3.16: - Exclude _TIF_SPEC_IB from _TIF_WORK_MASK and _TIF_ALLWORK_MASK - Adjust filename, context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2019-05-23x86/speculation: Add command line control for indirect branch speculationThomas Gleixner1-0/+10
commit fa1202ef224391b6f5b26cdd44cc50495e8fab54 upstream. Add command line control for user space indirect branch speculation mitigations. The new option is: spectre_v2_user= The initial options are: - on: Unconditionally enabled - off: Unconditionally disabled -auto: Kernel selects mitigation (default off for now) When the spectre_v2= command line argument is either 'on' or 'off' this implies that the application to application control follows that state even if a contradicting spectre_v2_user= argument is supplied. Originally-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Link: https://lkml.kernel.org/r/20181125185005.082720373@linutronix.de [bwh: Backported to 3.16: - Don't use __ro_after_init or cpu_smt_control - Adjust filename] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2019-05-23x86/speculation: Rename SSBD update functionsThomas Gleixner1-3/+3
commit 26c4d75b234040c11728a8acb796b3a85ba7507c upstream. During context switch, the SSBD bit in SPEC_CTRL MSR is updated according to changes of the TIF_SSBD flag in the current and next running task. Currently, only the bit controlling speculative store bypass disable in SPEC_CTRL MSR is updated and the related update functions all have "speculative_store" or "ssb" in their names. For enhanced mitigation control other bits in SPEC_CTRL MSR need to be updated as well, which makes the SSB names inadequate. Rename the "speculative_store*" functions to a more generic name. No functional change. Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Link: https://lkml.kernel.org/r/20181125185004.058866968@linutronix.de Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2019-05-23x86/speculation: Update the TIF_SSBD commentTim Chen1-1/+1
commit 8eb729b77faf83ac4c1f363a9ad68d042415f24c upstream. "Reduced Data Speculation" is an obsolete term. The correct new name is "Speculative store bypass disable" - which is abbreviated into SSBD. Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Link: https://lkml.kernel.org/r/20181125185003.593893901@linutronix.de [bwh: Backported to 3.16: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2019-05-23x86/cpu: Sanitize FAM6_ATOM namingPeter Zijlstra1-13/+17
commit f2c4db1bd80720cd8cb2a5aa220d9bc9f374f04e upstream. Going primarily by: https://en.wikipedia.org/wiki/List_of_Intel_Atom_microprocessors with additional information gleaned from other related pages; notably: - Bonnell shrink was called Saltwell - Moorefield is the Merriefield refresh which makes it Airmont The general naming scheme is: FAM6_ATOM_UARCH_SOCTYPE for i in `git grep -l FAM6_ATOM` ; do sed -i -e 's/ATOM_PINEVIEW/ATOM_BONNELL/g' \ -e 's/ATOM_LINCROFT/ATOM_BONNELL_MID/' \ -e 's/ATOM_PENWELL/ATOM_SALTWELL_MID/g' \ -e 's/ATOM_CLOVERVIEW/ATOM_SALTWELL_TABLET/g' \ -e 's/ATOM_CEDARVIEW/ATOM_SALTWELL/g' \ -e 's/ATOM_SILVERMONT1/ATOM_SILVERMONT/g' \ -e 's/ATOM_SILVERMONT2/ATOM_SILVERMONT_X/g' \ -e 's/ATOM_MERRIFIELD/ATOM_SILVERMONT_MID/g' \ -e 's/ATOM_MOOREFIELD/ATOM_AIRMONT_MID/g' \ -e 's/ATOM_DENVERTON/ATOM_GOLDMONT_X/g' \ -e 's/ATOM_GEMINI_LAKE/ATOM_GOLDMONT_PLUS/g' ${i} done Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: dave.hansen@linux.intel.com Cc: len.brown@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> [bwh: Backported to 3.16: - Drop changes to CPU IDs that weren't already included - Adjust filenames, context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2019-05-23x86/speculation: Remove SPECTRE_V2_IBRS in enum spectre_v2_mitigationJiang Biao1-1/+0
commit d9f4426c73002957be5dd39936f44a09498f7560 upstream. SPECTRE_V2_IBRS in enum spectre_v2_mitigation is never used. Remove it. Signed-off-by: Jiang Biao <jiang.biao2@zte.com.cn> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: hpa@zytor.com Cc: dwmw2@amazon.co.uk Cc: konrad.wilk@oracle.com Cc: bp@suse.de Cc: zhong.weidong@zte.com.cn Link: https://lkml.kernel.org/r/1531872194-39207-1-git-send-email-jiang.biao2@zte.com.cn [bwh: Backported to 3.16: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2019-05-23x86/speculation: Support Enhanced IBRS on future CPUsSai Praneeth2-0/+2
commit 706d51681d636a0c4a5ef53395ec3b803e45ed4d upstream. Future Intel processors will support "Enhanced IBRS" which is an "always on" mode i.e. IBRS bit in SPEC_CTRL MSR is enabled once and never disabled. From the specification [1]: "With enhanced IBRS, the predicted targets of indirect branches executed cannot be controlled by software that was executed in a less privileged predictor mode or on another logical processor. As a result, software operating on a processor with enhanced IBRS need not use WRMSR to set IA32_SPEC_CTRL.IBRS after every transition to a more privileged predictor mode. Software can isolate predictor modes effectively simply by setting the bit once. Software need not disable enhanced IBRS prior to entering a sleep state such as MWAIT or HLT." If Enhanced IBRS is supported by the processor then use it as the preferred spectre v2 mitigation mechanism instead of Retpoline. Intel's Retpoline white paper [2] states: "Retpoline is known to be an effective branch target injection (Spectre variant 2) mitigation on Intel processors belonging to family 6 (enumerated by the CPUID instruction) that do not have support for enhanced IBRS. On processors that support enhanced IBRS, it should be used for mitigation instead of retpoline." The reason why Enhanced IBRS is the recommended mitigation on processors which support it is that these processors also support CET which provides a defense against ROP attacks. Retpoline is very similar to ROP techniques and might trigger false positives in the CET defense. If Enhanced IBRS is selected as the mitigation technique for spectre v2, the IBRS bit in SPEC_CTRL MSR is set once at boot time and never cleared. Kernel also has to make sure that IBRS bit remains set after VMEXIT because the guest might have cleared the bit. This is already covered by the existing x86_spec_ctrl_set_guest() and x86_spec_ctrl_restore_host() speculation control functions. Enhanced IBRS still requires IBPB for full mitigation. [1] Speculative-Execution-Side-Channel-Mitigations.pdf [2] Retpoline-A-Branch-Target-Injection-Mitigation.pdf Both documents are available at: https://bugzilla.kernel.org/show_bug.cgi?id=199511 Originally-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Tim C Chen <tim.c.chen@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Ravi Shankar <ravi.v.shankar@intel.com> Link: https://lkml.kernel.org/r/1533148945-24095-1-git-send-email-sai.praneeth.prakhya@intel.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> [bwh: Backported to 3.16: - Use the first available bit from word 7 - Adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2019-05-23x86/cpufeature: Carve out X86_FEATURE_*Borislav Petkov15-285/+287
commit cd4d09ec6f6c12a2cc3db5b7d8876a325a53545b upstream. Move them to a separate header and have the following dependency: x86/cpufeatures.h <- x86/processor.h <- x86/cpufeature.h This makes it easier to use the header in asm code and not include the whole cpufeature.h and add guards for asm. Suggested-by: H. Peter Anvin <hpa@zytor.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1453842730-28463-5-git-send-email-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org> [bwh: Backported to 3.16 to avoid a dependency loop: - Drop some inapplicable changes - Move all the previously backported feature and bug flags across - Also change <asm/nospec-branch.h> and lib/retpoline.S to use <asm/cpufeatures.h> - Also include <asm/cpufeatures.h> in <asm/barrier.h>, as the vdso fails to build without that - Adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2019-05-23x86/headers: Don't include asm/processor.h in asm/atomic.hAndi Kleen2-2/+0
commit 153a4334c439cfb62e1d31cee0c790ba4157813d upstream. asm/atomic.h doesn't really need asm/processor.h anymore. Everything it uses has moved to other header files. So remove that include. processor.h is a nasty header that includes lots of other headers and makes it prone to include loops. Removing the include here makes asm/atomic.h a "leaf" header that can be safely included in most other headers. The only fallout is in the lib/atomic tester which relied on this implicit include. Give it an explicit include. (the include is in ifdef because the user is also in ifdef) Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: rostedt@goodmis.org Link: http://lkml.kernel.org/r/1449018060-1742-1-git-send-email-andi@firstfloor.org Signed-off-by: Ingo Molnar <mingo@kernel.org> [bwh: Backported to 3.16 to avoid a dependency loop; adjusted context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2019-05-23x86/asm: Add asm macros for static keys/jump labelsAndy Lutomirski1-8/+44
commit 2671c3e4fe2a34bd9bf2eecdf5d1149d4b55dbdf upstream. Unfortunately, we can only do this if HAVE_JUMP_LABEL. In principle, we could do some serious surgery on the core jump label infrastructure to keep the patch infrastructure available on x86 on all builds, but that's probably not worth it. Implementing the macros using a conditional branch as a fallback seems like a bad idea: we'd have to clobber flags. This limitation can't cause silent failures -- trying to include asm/jump_label.h at all on a non-HAVE_JUMP_LABEL kernel will error out. The macro's users are responsible for handling this issue themselves. Signed-off-by: Andy Lutomirski <luto@kernel.org> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/63aa45c4b692e8469e1876d6ccbb5da707972990.1447361906.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2019-05-23x86/asm: Error out if asm/jump_label.h is included inappropriatelyAndy Lutomirski1-0/+13
commit c28454332fe0b65e22c3a2717e5bf05b5b47ca20 upstream. Rather than potentially generating incorrect code on a non-HAVE_JUMP_LABEL kernel if someone includes asm/jump_label.h, error out. Signed-off-by: Andy Lutomirski <luto@kernel.org> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/99407f0ac7fa3ab03a3d31ce076d47b5c2f44795.1447361906.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2019-05-23jump_label/x86: Work around asm build bug on older/backported GCCsPeter Zijlstra1-4/+4
commit d420acd816c07c7be31bd19d09cbcb16e5572fa6 upstream. Boris reported that gcc version 4.4.4 20100503 (Red Hat 4.4.4-2) fails to build linux-next kernels that have this fresh commit via the locking tree: 11276d5306b8 ("locking/static_keys: Add a new static_key interface") The problem appears to be that even though @key and @branch are compile time constants, it doesn't see the following expression as an immediate value: &((char *)key)[branch] More recent GCCs don't appear to have this problem. In particular, Red Hat backported the 'asm goto' feature into 4.4, 'normal' 4.4 compilers will not have this feature and thus not run into this asm. The workaround is to supply both values to the asm as immediates and do the addition in asm. Suggested-by: H. Peter Anvin <hpa@zytor.com> Reported-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Tested-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2019-05-23locking/static_keys: Add a new static_key interfacePeter Zijlstra1-2/+19
commit 11276d5306b8e5b438a36bbff855fe792d7eaa61 upstream. There are various problems and short-comings with the current static_key interface: - static_key_{true,false}() read like a branch depending on the key value, instead of the actual likely/unlikely branch depending on init value. - static_key_{true,false}() are, as stated above, tied to the static_key init values STATIC_KEY_INIT_{TRUE,FALSE}. - we're limited to the 2 (out of 4) possible options that compile to a default NOP because that's what our arch_static_branch() assembly emits. So provide a new static_key interface: DEFINE_STATIC_KEY_TRUE(name); DEFINE_STATIC_KEY_FALSE(name); Which define a key of different types with an initial true/false value. Then allow: static_branch_likely() static_branch_unlikely() to take a key of either type and emit the right instruction for the case. This means adding a second arch_static_branch_jump() assembly helper which emits a JMP per default. In order to determine the right instruction for the right state, encode the branch type in the LSB of jump_entry::key. This is the final step in removing the naming confusion that has led to a stream of avoidable bugs such as: a833581e372a ("x86, perf: Fix static_key bug in load_mm_cr4()") ... but it also allows new static key combinations that will give us performance enhancements in the subsequent patches. Tested-by: Rabin Vincent <rabin@rab.in> # arm Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Michael Ellerman <mpe@ellerman.id.au> # ppc Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> # s390 Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> [bwh: Backported to 3.16: - For s390, use the 31-bit-compatible macros in arch_static_branch_jump() - Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2019-05-23jump_label: Allow asm/jump_label.h to be included in assemblyAnton Blanchard1-3/+2
commit 55dd0df781e58ec23d218376ea4a676e7362a98c upstream. Wrap asm/jump_label.h for all archs with #ifndef __ASSEMBLY__. Since these are kernel only headers, we don't need #ifdef __KERNEL__ so can simplify things a bit. If an architecture wants to use jump labels in assembly, it will still need to define a macro to create the __jump_table entries (see ARCH_STATIC_BRANCH in the powerpc asm/jump_label.h for an example). Signed-off-by: Anton Blanchard <anton@samba.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: benh@kernel.crashing.org Cc: catalin.marinas@arm.com Cc: davem@davemloft.net Cc: heiko.carstens@de.ibm.com Cc: jbaron@akamai.com Cc: linux@arm.linux.org.uk Cc: linuxppc-dev@lists.ozlabs.org Cc: liuj97@gmail.com Cc: mgorman@suse.de Cc: mmarek@suse.cz Cc: mpe@ellerman.id.au Cc: paulus@samba.org Cc: ralf@linux-mips.org Cc: rostedt@goodmis.org Cc: schwidefsky@de.ibm.com Cc: will.deacon@arm.com Link: http://lkml.kernel.org/r/1428551492-21977-1-git-send-email-anton@samba.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2019-05-23x86/cpufeature: Add bug flags to /proc/cpuinfoBorislav Petkov1-2/+8
commit 80a208bd3948aceddf0429bd9f9b4cd858d526df upstream. Dump the flags which denote we have detected and/or have applied bug workarounds to the CPU we're executing on, in a similar manner to the feature flags. The advantage is that those are not accumulating over time like the CPU features. Signed-off-by: Borislav Petkov <bp@suse.de> Link: http://lkml.kernel.org/r/1403609105-8332-2-git-send-email-bp@alien8.de Signed-off-by: H. Peter Anvin <hpa@zytor.com> [bwh: Backported to 3.16: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2019-05-02x86/uaccess: Don't leak the AC flag into __put_user() value evaluationAndy Lutomirski1-3/+4
commit 2a418cf3f5f1caf911af288e978d61c9844b0695 upstream. When calling __put_user(foo(), ptr), the __put_user() macro would call foo() in between __uaccess_begin() and __uaccess_end(). If that code were buggy, then those bugs would be run without SMAP protection. Fortunately, there seem to be few instances of the problem in the kernel. Nevertheless, __put_user() should be fixed to avoid doing this. Therefore, evaluate __put_user()'s argument before setting AC. This issue was noticed when an objtool hack by Peter Zijlstra complained about genregs_get() and I compared the assembly output to the C source. [ bp: Massage commit message and fixed up whitespace. ] Fixes: 11f1a4b9755f ("x86: reorganize SMAP handling in user space accesses") Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Brian Gerst <brgerst@gmail.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Link: http://lkml.kernel.org/r/20190225125231.845656645@infradead.org [bwh: Backported to 3.16: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2019-04-04KVM: x86: Use jmp to invoke kvm_spurious_fault() from .fixupSean Christopherson1-1/+1
commit e81434995081fd7efb755fd75576b35dbb0850b1 upstream. ____kvm_handle_fault_on_reboot() provides a generic exception fixup handler that is used to cleanly handle faults on VMX/SVM instructions during reboot (or at least try to). If there isn't a reboot in progress, ____kvm_handle_fault_on_reboot() treats any exception as fatal to KVM and invokes kvm_spurious_fault(), which in turn generates a BUG() to get a stack trace and die. When it was originally added by commit 4ecac3fd6dc2 ("KVM: Handle virtualization instruction #UD faults during reboot"), the "call" to kvm_spurious_fault() was handcoded as PUSH+JMP, where the PUSH'd value is the RIP of the faulting instructing. The PUSH+JMP trickery is necessary because the exception fixup handler code lies outside of its associated function, e.g. right after the function. An actual CALL from the .fixup code would show a slightly bogus stack trace, e.g. an extra "random" function would be inserted into the trace, as the return RIP on the stack would point to no known function (and the unwinder will likely try to guess who owns the RIP). Unfortunately, the JMP was replaced with a CALL when the macro was reworked to not spin indefinitely during reboot (commit b7c4145ba2eb "KVM: Don't spin on virt instruction faults during reboot"). This causes the aforementioned behavior where a bogus function is inserted into the stack trace, e.g. my builds like to blame free_kvm_area(). Revert the CALL back to a JMP. The changelog for commit b7c4145ba2eb ("KVM: Don't spin on virt instruction faults during reboot") contains nothing that indicates the switch to CALL was deliberate. This is backed up by the fact that the PUSH <insn RIP> was left intact. Note that an alternative to the PUSH+JMP magic would be to JMP back to the "real" code and CALL from there, but that would require adding a JMP in the non-faulting path to avoid calling kvm_spurious_fault() and would add no value, i.e. the stack trace would be the same. Using CALL: ------------[ cut here ]------------ kernel BUG at /home/sean/go/src/kernel.org/linux/arch/x86/kvm/x86.c:356! invalid opcode: 0000 [#1] SMP CPU: 4 PID: 1057 Comm: qemu-system-x86 Not tainted 4.20.0-rc6+ #75 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 RIP: 0010:kvm_spurious_fault+0x5/0x10 [kvm] Code: <0f> 0b 66 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 41 55 49 89 fd 41 RSP: 0018:ffffc900004bbcc8 EFLAGS: 00010046 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffffffffffff RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffff888273fd8000 R08: 00000000000003e8 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000784 R12: ffffc90000371fb0 R13: 0000000000000000 R14: 000000026d763cf4 R15: ffff888273fd8000 FS: 00007f3d69691700(0000) GS:ffff888277800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000055f89bc56fe0 CR3: 0000000271a5a001 CR4: 0000000000362ee0 Call Trace: free_kvm_area+0x1044/0x43ea [kvm_intel] ? vmx_vcpu_run+0x156/0x630 [kvm_intel] ? kvm_arch_vcpu_ioctl_run+0x447/0x1a40 [kvm] ? kvm_vcpu_ioctl+0x368/0x5c0 [kvm] ? kvm_vcpu_ioctl+0x368/0x5c0 [kvm] ? __set_task_blocked+0x38/0x90 ? __set_current_blocked+0x50/0x60 ? __fpu__restore_sig+0x97/0x490 ? do_vfs_ioctl+0xa1/0x620 ? __x64_sys_futex+0x89/0x180 ? ksys_ioctl+0x66/0x70 ? __x64_sys_ioctl+0x16/0x20 ? do_syscall_64+0x4f/0x100 ? entry_SYSCALL_64_after_hwframe+0x44/0xa9 Modules linked in: vhost_net vhost tap kvm_intel kvm irqbypass bridge stp llc ---[ end trace 9775b14b123b1713 ]--- Using JMP: ------------[ cut here ]------------ kernel BUG at /home/sean/go/src/kernel.org/linux/arch/x86/kvm/x86.c:356! invalid opcode: 0000 [#1] SMP CPU: 6 PID: 1067 Comm: qemu-system-x86 Not tainted 4.20.0-rc6+ #75 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 RIP: 0010:kvm_spurious_fault+0x5/0x10 [kvm] Code: <0f> 0b 66 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 41 55 49 89 fd 41 RSP: 0018:ffffc90000497cd0 EFLAGS: 00010046 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffffffffffff RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffff88827058bd40 R08: 00000000000003e8 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000784 R12: ffffc90000369fb0 R13: 0000000000000000 R14: 00000003c8fc6642 R15: ffff88827058bd40 FS: 00007f3d7219e700(0000) GS:ffff888277900000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f3d64001000 CR3: 0000000271c6b004 CR4: 0000000000362ee0 Call Trace: vmx_vcpu_run+0x156/0x630 [kvm_intel] ? kvm_arch_vcpu_ioctl_run+0x447/0x1a40 [kvm] ? kvm_vcpu_ioctl+0x368/0x5c0 [kvm] ? kvm_vcpu_ioctl+0x368/0x5c0 [kvm] ? __set_task_blocked+0x38/0x90 ? __set_current_blocked+0x50/0x60 ? __fpu__restore_sig+0x97/0x490 ? do_vfs_ioctl+0xa1/0x620 ? __x64_sys_futex+0x89/0x180 ? ksys_ioctl+0x66/0x70 ? __x64_sys_ioctl+0x16/0x20 ? do_syscall_64+0x4f/0x100 ? entry_SYSCALL_64_after_hwframe+0x44/0xa9 Modules linked in: vhost_net vhost tap kvm_intel kvm irqbypass bridge stp llc ---[ end trace f9daedb85ab3ddba ]--- Fixes: b7c4145ba2eb ("KVM: Don't spin on virt instruction faults during reboot") Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2019-02-11KVM: x86: remove code for lazy FPU handlingPaolo Bonzini1-2/+0
commit bd7e5b0899a429445cc6e3037c13f8b5ae3be903 upstream. The FPU is always active now when running KVM. Reviewed-by: David Matlack <dmatlack@google.com> Reviewed-by: Bandan Das <bsd@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> [bwh: Backported to 3.16: - eagerfpu is still optional (but enabled by default) so disable KVM if eagerfpu is disabled - Remove one additional use of KVM_REQ_DEACTIVATE_FPU which was removed earlier upstream in commit c592b5734706 "x86/fpu: Remove use_eager_fpu()" - Adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2019-02-11x86/pae: use 64 bit atomic xchg function in native_ptep_get_and_clearJuergen Gross1-4/+3
commit b2d7a075a1ccef2fb321d595802190c8e9b39004 upstream. Using only 32-bit writes for the pte will result in an intermediate L1TF vulnerable PTE. When running as a Xen PV guest this will at once switch the guest to shadow mode resulting in a loss of performance. Use arch_atomic64_xchg() instead which will perform the requested operation atomically with all 64 bits. Some performance considerations according to: https://software.intel.com/sites/default/files/managed/ad/dc/Intel-Xeon-Scalable-Processor-throughput-latency.pdf The main number should be the latency, as there is no tight loop around native_ptep_get_and_clear(). "lock cmpxchg8b" has a latency of 20 cycles, while "lock xchg" (with a memory operand) isn't mentioned in that document. "lock xadd" (with xadd having 3 cycles less latency than xchg) has a latency of 11, so we can assume a latency of 14 for "lock xchg". Signed-off-by: Juergen Gross <jgross@suse.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Jan Beulich <jbeulich@suse.com> Tested-by: Jason Andryuk <jandryuk@gmail.com> Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> [bwh: Backported to 3.16: Use atomic64_cxhg()] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2019-02-11x86/mm: Fix regression with huge pages on PAEKirill A. Shutemov3-18/+13
commit 70f1528747651b20c7769d3516ade369f9963237 upstream. Recent PAT patchset has caused issue on 32-bit PAE machines: page:eea45000 count:0 mapcount:-128 mapping: (null) index:0x0 flags: 0x40000000() page dumped because: VM_BUG_ON_PAGE(page_mapcount(page) < 0) ------------[ cut here ]------------ kernel BUG at /home/build/linux-boris/mm/huge_memory.c:1485! invalid opcode: 0000 [#1] SMP [...] Call Trace: unmap_single_vma ? __wake_up unmap_vmas unmap_region do_munmap vm_munmap SyS_munmap do_fast_syscall_32 ? __do_page_fault sysenter_past_esp Code: ... EIP: [<c11bde80>] zap_huge_pmd+0x240/0x260 SS:ESP 0068:f6459d98 The problem is in pmd_pfn_mask() and pmd_flags_mask(). These helpers use PMD_PAGE_MASK to calculate resulting mask. PMD_PAGE_MASK is 'unsigned long', not 'unsigned long long' as phys_addr_t is on 32-bit PAE (ARCH_PHYS_ADDR_T_64BIT). As a result, the upper bits of resulting mask get truncated. pud_pfn_mask() and pud_flags_mask() aren't problematic since we don't have PUD page table level on 32-bit systems, but it's reasonable to keep them consistent with PMD counterpart. Introduce PHYSICAL_PMD_PAGE_MASK and PHYSICAL_PUD_PAGE_MASK in addition to existing PHYSICAL_PAGE_MASK and reworks helpers to use them. Reported-and-Tested-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> [ Fix -Woverflow warnings from the realmode code. ] Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Toshi Kani <toshi.kani@hpe.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jürgen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: elliott@hpe.com Cc: konrad.wilk@oracle.com Cc: linux-mm <linux-mm@kvack.org> Fixes: f70abb0fc3da ("x86/asm: Fix pud/pmd interfaces to handle large PAT bit") Link: http://lkml.kernel.org/r/1448878233-11390-2-git-send-email-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2019-02-11x86/mm: Simplify p[g4um]d_page() macrosTom Lendacky1-5/+8
commit fd7e315988b784509ba3f1b42f539bd0b1fca9bb upstream. Create a pgd_pfn() macro similar to the p[4um]d_pfn() macros and then use the p[g4um]d_pfn() macros in the p[g4um]d_page() macros instead of duplicating the code. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: Dave Young <dyoung@redhat.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Larry Woodman <lwoodman@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Toshimitsu Kani <toshi.kani@hpe.com> Cc: kasan-dev@googlegroups.com Cc: kvm@vger.kernel.org Cc: linux-arch@vger.kernel.org Cc: linux-doc@vger.kernel.org Cc: linux-efi@vger.kernel.org Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/e61eb533a6d0aac941db2723d8aa63ef6b882dee.1500319216.git.thomas.lendacky@amd.com Signed-off-by: Ingo Molnar <mingo@kernel.org> [Backported to 4.9 stable by AK, suggested by Michael Hocko] Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Wenkuan Wang <Wenkuan.Wang@windriver.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2019-02-11x86/asm: Fix pud/pmd interfaces to handle large PAT bitToshi Kani2-8/+10
commit f70abb0fc3da1b2945c92751ccda2744081bf2b7 upstream. Now that we have pud/pmd mask interfaces, which handle pfn & flags mask properly for the large PAT bit. Fix pud/pmd pfn & flags interfaces by replacing PTE_PFN_MASK and PTE_FLAGS_MASK with the pud/pmd mask interfaces. Suggested-by: Juergen Gross <jgross@suse.com> Signed-off-by: Toshi Kani <toshi.kani@hpe.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Juergen Gross <jgross@suse.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Konrad Wilk <konrad.wilk@oracle.com> Cc: Robert Elliot <elliott@hpe.com> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/1442514264-12475-5-git-send-email-toshi.kani@hpe.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Wenkuan Wang <Wenkuan.Wang@windriver.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2019-02-11x86/asm: Move PUD_PAGE macros to page_types.hToshi Kani2-3/+3
commit 832102671855f73962e7a04fdafd48b9385ea5c6 upstream. PUD_SHIFT is defined according to a given kernel configuration, which allows it be commonly used by any x86 kernels. However, PUD_PAGE_SIZE and PUD_PAGE_MASK, which are set from PUD_SHIFT, are defined in page_64_types.h, which can be used by 64-bit kernel only. Move PUD_PAGE_SIZE and PUD_PAGE_MASK to page_types.h so that they can be used by any x86 kernels as well. Signed-off-by: Toshi Kani <toshi.kani@hpe.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Juergen Gross <jgross@suse.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Konrad Wilk <konrad.wilk@oracle.com> Cc: Robert Elliot <elliott@hpe.com> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/1442514264-12475-3-git-send-email-toshi.kani@hpe.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Wenkuan Wang <Wenkuan.Wang@windriver.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2019-02-11x86/asm: Add pud/pmd mask interfaces to handle large PAT bitToshi Kani1-2/+34
commit 4be4c1fb9a754b100466ebaec50f825be0b2050b upstream. The PAT bit gets relocated to bit 12 when PUD and PMD mappings are used. This bit 12, however, is not covered by PTE_FLAGS_MASK, which is used for masking pfn and flags for all levels. Add pud/pmd mask interfaces to handle pfn and flags properly by using P?D_PAGE_MASK when PUD/PMD mappings are used, i.e. PSE bit is set. Suggested-by: Juergen Gross <jgross@suse.com> Signed-off-by: Toshi Kani <toshi.kani@hpe.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Juergen Gross <jgross@suse.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Konrad Wilk <konrad.wilk@oracle.com> Cc: Robert Elliot <elliott@hpe.com> Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/1442514264-12475-4-git-send-email-toshi.kani@hpe.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Wenkuan Wang <Wenkuan.Wang@windriver.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2018-12-17x86/percpu: Fix this_cpu_read()Peter Zijlstra1-4/+4
commit b59167ac7bafd804c91e49ad53c6d33a7394d4c8 upstream. Eric reported that a sequence count loop using this_cpu_read() got optimized out. This is wrong, this_cpu_read() must imply READ_ONCE() because the interface is IRQ-safe, therefore an interrupt can have changed the per-cpu value. Fixes: 7c3576d261ce ("[PATCH] i386: Convert PDA into the percpu section") Reported-by: Eric Dumazet <edumazet@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Eric Dumazet <edumazet@google.com> Cc: hpa@zytor.com Cc: eric.dumazet@gmail.com Cc: bp@alien8.de Link: https://lkml.kernel.org/r/20181011104019.748208519@infradead.org [bwh: Backported to 3.16: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2018-12-17x86/mm: Use WRITE_ONCE() when setting PTEsNadav Amit1-8/+8
commit 9bc4f28af75a91aea0ae383f50b0a430c4509303 upstream. When page-table entries are set, the compiler might optimize their assignment by using multiple instructions to set the PTE. This might turn into a security hazard if the user somehow manages to use the interim PTE. L1TF does not make our lives easier, making even an interim non-present PTE a security hazard. Using WRITE_ONCE() to set PTEs and friends should prevent this potential security hazard. I skimmed the differences in the binary with and without this patch. The differences are (obviously) greater when CONFIG_PARAVIRT=n as more code optimizations are possible. For better and worse, the impact on the binary with this patch is pretty small. Skimming the code did not cause anything to jump out as a security hazard, but it seems that at least move_soft_dirty_pte() caused set_pte_at() to use multiple writes. Signed-off-by: Nadav Amit <namit@vmware.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: Andy Lutomirski <luto@kernel.org> Link: https://lkml.kernel.org/r/20180902181451.80520-1-namit@vmware.com [bwh: Backported to 3.16: - Use ACCESS_ONCE() instead of WRITE_ONCE() - Drop changes in pmdp_establish(), native_set_p4d(), pudp_set_access_flags()] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2018-12-17x86/process: Don't mix user/kernel regs in 64bit __show_regs()Jann Horn1-1/+11
commit 9fe6299dde587788f245e9f7a5a1b296fad4e8c7 upstream. When the kernel.print-fatal-signals sysctl has been enabled, a simple userspace crash will cause the kernel to write a crash dump that contains, among other things, the kernel gsbase into dmesg. As suggested by Andy, limit output to pt_regs, FS_BASE and KERNEL_GS_BASE in this case. This also moves the bitness-specific logic from show_regs() into process_{32,64}.c. Fixes: 45807a1df9f5 ("vdso: print fatal signals") Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bpetkov@suse.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Link: https://lkml.kernel.org/r/20180831194151.123586-1-jannh@google.com [bwh: Backported to 3.16: - Keep using user_mode_vm() to in 32-bit show_regs() - Also update call to __show_regs() in kmemcheck - Don't add redundant rdmsrl()s in 64-bit __show_regs() - Adjust filenames, context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2018-12-17x86/microcode/intel: Add a helper which gives the microcode revisionBorislav Petkov1-0/+15
commit 4167709bbf826512a52ebd6aafda2be104adaec9 upstream. Since on Intel we're required to do CPUID(1) first, before reading the microcode revision MSR, let's add a special helper which does the required steps so that we don't forget to do them next time, when we want to read the microcode revision. Signed-off-by: Borislav Petkov <bp@suse.de> Link: http://lkml.kernel.org/r/20170109114147.5082-4-bp@alien8.de Signed-off-by: Thomas Gleixner <tglx@linutronix.de> [bwh: Backported to 3.16: - Don't touch prev_rev variable in apply_microcode() - Keep using sync_core(), which will alway includes the necessary CPUID - Adjust filename, context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2018-12-17x86/speculation/l1tf: Increase l1tf memory limit for Nehalem+Andi Kleen1-1/+3
commit cc51e5428ea54f575d49cfcede1d4cb3a72b4ec4 upstream. On Nehalem and newer core CPUs the CPU cache internally uses 44 bits physical address space. The L1TF workaround is limited by this internal cache address width, and needs to have one bit free there for the mitigation to work. Older client systems report only 36bit physical address space so the range check decides that L1TF is not mitigated for a 36bit phys/32GB system with some memory holes. But since these actually have the larger internal cache width this warning is bogus because it would only really be needed if the system had more than 43bits of memory. Add a new internal x86_cache_bits field. Normally it is the same as the physical bits field reported by CPUID, but for Nehalem and newerforce it to be at least 44bits. Change the L1TF memory size warning to use the new cache_bits field to avoid bogus warnings and remove the bogus comment about memory size. Fixes: 17dbca119312 ("x86/speculation/l1tf: Add sysfs reporting for l1tf") Reported-by: George Anchev <studio@anchev.net> Reported-by: Christopher Snowhill <kode54@gmail.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: x86@kernel.org Cc: linux-kernel@vger.kernel.org Cc: Michael Hocko <mhocko@suse.com> Cc: vbabka@suse.cz Link: https://lkml.kernel.org/r/20180824170351.34874-1-andi@firstfloor.org [bwh: Backported to 3.16: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2018-11-20x86/apm: Don't access __preempt_count with zeroed fsVille Syrjälä1-6/+0
commit 6f6060a5c9cc76fdbc22748264e6aa3779ec2427 upstream. APM_DO_POP_SEGS does not restore fs/gs which were zeroed by APM_DO_ZERO_SEGS. Trying to access __preempt_count with zeroed fs doesn't really work. Move the ibrs call outside the APM_DO_SAVE_SEGS/APM_DO_RESTORE_SEGS invocations so that fs is actually restored before calling preempt_enable(). Fixes the following sort of oopses: [ 0.313581] general protection fault: 0000 [#1] PREEMPT SMP [ 0.313803] Modules linked in: [ 0.314040] CPU: 0 PID: 268 Comm: kapmd Not tainted 4.16.0-rc1-triton-bisect-00090-gdd84441a7971 #19 [ 0.316161] EIP: __apm_bios_call_simple+0xc8/0x170 [ 0.316161] EFLAGS: 00210016 CPU: 0 [ 0.316161] EAX: 00000102 EBX: 00000000 ECX: 00000102 EDX: 00000000 [ 0.316161] ESI: 0000530e EDI: dea95f64 EBP: dea95f18 ESP: dea95ef0 [ 0.316161] DS: 007b ES: 007b FS: 0000 GS: 0000 SS: 0068 [ 0.316161] CR0: 80050033 CR2: 00000000 CR3: 015d3000 CR4: 000006d0 [ 0.316161] Call Trace: [ 0.316161] ? cpumask_weight.constprop.15+0x20/0x20 [ 0.316161] on_cpu0+0x44/0x70 [ 0.316161] apm+0x54e/0x720 [ 0.316161] ? __switch_to_asm+0x26/0x40 [ 0.316161] ? __schedule+0x17d/0x590 [ 0.316161] kthread+0xc0/0xf0 [ 0.316161] ? proc_apm_show+0x150/0x150 [ 0.316161] ? kthread_create_worker_on_cpu+0x20/0x20 [ 0.316161] ret_from_fork+0x2e/0x38 [ 0.316161] Code: da 8e c2 8e e2 8e ea 57 55 2e ff 1d e0 bb 5d b1 0f 92 c3 5d 5f 07 1f 89 47 0c 90 8d b4 26 00 00 00 00 90 8d b4 26 00 00 00 00 90 <64> ff 0d 84 16 5c b1 74 7f 8b 45 dc 8e e0 8b 45 d8 8e e8 8b 45 [ 0.316161] EIP: __apm_bios_call_simple+0xc8/0x170 SS:ESP: 0068:dea95ef0 [ 0.316161] ---[ end trace 656253db2deaa12c ]--- Fixes: dd84441a7971 ("x86/speculation: Use IBRS if available before calling into firmware") Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: "H. Peter Anvin" <hpa@zytor.com> Link: https://lkml.kernel.org/r/20180709133534.5963-1-ville.syrjala@linux.intel.com Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2018-11-20x86/bugs: Add AMD's SPEC_CTRL MSR usageKonrad Rzeszutek Wilk1-0/+1
commit 6ac2f49edb1ef5446089c7c660017732886d62d6 upstream. The AMD document outlining the SSBD handling 124441_AMD64_SpeculativeStoreBypassDisable_Whitepaper_final.pdf mentions that if CPUID 8000_0008.EBX[24] is set we should be using the SPEC_CTRL MSR (0x48) over the VIRT SPEC_CTRL MSR (0xC001_011f) for speculative store bypass disable. This in effect means we should clear the X86_FEATURE_VIRT_SSBD flag so that we would prefer the SPEC_CTRL MSR. See the document titled: 124441_AMD64_SpeculativeStoreBypassDisable_Whitepaper_final.pdf A copy of this document is available at https://bugzilla.kernel.org/show_bug.cgi?id=199889 Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Janakarajan Natarajan <Janakarajan.Natarajan@amd.com> Cc: kvm@vger.kernel.org Cc: KarimAllah Ahmed <karahmed@amazon.de> Cc: andrew.cooper3@citrix.com Cc: Joerg Roedel <joro@8bytes.org> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Borislav Petkov <bp@suse.de> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Kees Cook <keescook@chromium.org> Link: https://lkml.kernel.org/r/20180601145921.9500-3-konrad.wilk@oracle.com [bwh: Backported to 3.16: - The feature bit is in feature word 11 - Update feature test in guest_cpuid_has_spec_ctrl() instead of svm_{get,set}_msr() - Adjust filenames, context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2018-11-20x86/bugs: Add AMD's variant of SSB_NOKonrad Rzeszutek Wilk1-0/+1
commit 24809860012e0130fbafe536709e08a22b3e959e upstream. The AMD document outlining the SSBD handling 124441_AMD64_SpeculativeStoreBypassDisable_Whitepaper_final.pdf mentions that the CPUID 8000_0008.EBX[26] will mean that the speculative store bypass disable is no longer needed. A copy of this document is available at: https://bugzilla.kernel.org/show_bug.cgi?id=199889 Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Janakarajan Natarajan <Janakarajan.Natarajan@amd.com> Cc: kvm@vger.kernel.org Cc: andrew.cooper3@citrix.com Cc: Andy Lutomirski <luto@kernel.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Borislav Petkov <bp@suse.de> Cc: David Woodhouse <dwmw@amazon.co.uk> Link: https://lkml.kernel.org/r/20180601145921.9500-2-konrad.wilk@oracle.com [bwh: Backported to 3.16: - The feature bit is in feature word 11 - Adjust filename, context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2018-11-20x86/cpufeatures: Hide AMD-specific speculation flagsBen Hutchings1-3/+3
Hide the AMD_{IBRS,IBPB,STIBP} flag from /proc/cpuinfo. This was done upstream as part of commit e7c587da1252 "x86/speculation: Use synthetic bits for IBRS/IBPB/STIBP". I already backported that commit but accidentally dropped this part. Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2018-11-20x86/spectre_v1: Disable compiler optimizations over array_index_mask_nospec()Dan Williams1-1/+1
commit eab6870fee877258122a042bfd99ee7908c40280 upstream. Mark Rutland noticed that GCC optimization passes have the potential to elide necessary invocations of the array_index_mask_nospec() instruction sequence, so mark the asm() volatile. Mark explains: "The volatile will inhibit *some* cases where the compiler could lift the array_index_nospec() call out of a branch, e.g. where there are multiple invocations of array_index_nospec() with the same arguments: if (idx < foo) { idx1 = array_idx_nospec(idx, foo) do_something(idx1); } < some other code > if (idx < foo) { idx2 = array_idx_nospec(idx, foo); do_something_else(idx2); } ... since the compiler can determine that the two invocations yield the same result, and reuse the first result (likely the same register as idx was in originally) for the second branch, effectively re-writing the above as: if (idx < foo) { idx = array_idx_nospec(idx, foo); do_something(idx); } < some other code > if (idx < foo) { do_something_else(idx); } ... if we don't take the first branch, then speculatively take the second, we lose the nospec protection. There's more info on volatile asm in the GCC docs: https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html#Volatile " Reported-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Fixes: babdde2698d4 ("x86: Implement array_index_mask_nospec") Link: https://lkml.kernel.org/lkml/152838798950.14521.4893346294059739135.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2018-11-20x86/speculation: Fix up array_index_nospec_mask() asm constraintDan Williams1-1/+1
commit be3233fbfcb8f5acb6e3bcd0895c3ef9e100d470 upstream. Allow the compiler to handle @size as an immediate value or memory directly rather than allocating a register. Reported-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/151797010204.1289.1510000292250184993.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2018-10-21x86/apic: Fix signedness bug in APIC ID validity checksLi RongQing2-3/+3
commit a774635db5c430cbf21fa5d2f2df3d23aaa8e782 upstream. The APIC ID as parsed from ACPI MADT is validity checked with the apic->apic_id_valid() callback, which depends on the selected APIC type. For non X2APIC types APIC IDs >= 0xFF are invalid, but values > 0x7FFFFFFF are detected as valid. This happens because the 'apicid' argument of the apic_id_valid() callback is type 'int'. So the resulting comparison apicid < 0xFF evaluates to true for all unsigned int values > 0x7FFFFFFF which are handed to default_apic_id_valid(). As a consequence, invalid APIC IDs in !X2APIC mode are considered valid and accounted as possible CPUs. Change the apicid argument type of the apic_id_valid() callback to u32 so the evaluation is unsigned and returns the correct result. [ tglx: Massaged changelog ] Signed-off-by: Li RongQing <lirongqing@baidu.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: jgross@suse.com Cc: Dou Liyang <douly.fnst@cn.fujitsu.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: hpa@zytor.com Link: https://lkml.kernel.org/r/1523322966-10296-1-git-send-email-lirongqing@baidu.com [bwh: Backported to 3.16: - Drop change to xen_id_always_valid() - Adjust filenames, context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
2018-10-03x86/speculation/l1tf: Make pmd/pud_mknotpresent() invertAndi Kleen1-5/+6
commit 0768f91530ff46683e0b372df14fd79fe8d156e5 upstream. Some cases in THP like: - MADV_FREE - mprotect - split mark the PMD non present for temporarily to prevent races. The window for an L1TF attack in these contexts is very small, but it wants to be fixed for correctness sake. Use the proper low level functions for pmd/pud_mknotpresent() to address this. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> [bwh: Backported to 3.16: - Drop change to pud_mknotpresent() - pmd_mknotpresent() does not touch _PAGE_NONE] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>