Age | Commit message (Collapse) | Author | Files | Lines |
|
[ Upstream commit aee8c67a4faa40a8df4e79316dbfc92d123989c1 ]
When *RSTOR from user memory raises an exception, there is no way to
differentiate them. That's bad because it forces the slow path even when
the failure was not a fault. If the operation raised eg. #GP then going
through the slow path is pointless.
Use _ASM_EXTABLE_FAULT() which stores the trap number and let the exception
fixup return the negated trap number as error.
This allows to separate the fast path and let it handle faults directly and
avoid the slow path for all other exceptions.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121457.601480369@linutronix.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit be1a5408868af341f61f93c191b5e346ee88c82a ]
Split up the #VC handler code into a from-user and a from-kernel part.
This allows clean and correct state tracking, as the #VC handler needs
to enter NMI-state when raised from kernel mode and plain IRQ state when
raised from user-mode.
Fixes: 62441a1fb532 ("x86/sev-es: Correctly track IRQ states in runtime #VC handler")
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210618115409.22735-3-joro@8bytes.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 07ffaf343e34b555c9e7ea39a9c81c439a706f13 ]
Trigger a full TLB flush on behalf of the guest on nested VM-Enter and
VM-Exit when VPID is disabled for L2. kvm_mmu_new_pgd() syncs only the
current PGD, which can theoretically leave stale, unsync'd entries in a
previous guest PGD, which could be consumed if L2 is allowed to load CR3
with PCID_NOFLUSH=1.
Rename KVM_REQ_HV_TLB_FLUSH to KVM_REQ_TLB_FLUSH_GUEST so that it can
be utilized for its obvious purpose of emulating a guest TLB flush.
Note, there is no change the actual TLB flush executed by KVM, even
though the fast PGD switch uses KVM_REQ_TLB_FLUSH_CURRENT. When VPID is
disabled for L2, vpid02 is guaranteed to be '0', and thus
nested_get_vpid02() will return the VPID that is shared by L1 and L2.
Generate the request outside of kvm_mmu_new_pgd(), as getting the common
helper to correctly identify which requested is needed is quite painful.
E.g. using KVM_REQ_TLB_FLUSH_GUEST when nested EPT is in play is wrong as
a TLB flush from the L1 kernel's perspective does not invalidate EPT
mappings. And, by using KVM_REQ_TLB_FLUSH_GUEST, nVMX can do future
simplification by moving the logic into nested_vmx_transition_tlb_flush().
Fixes: 41fab65e7c44 ("KVM: nVMX: Skip MMU sync on nested VMX transition when possible")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210609234235.1244004-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit f1a0a376ca0c4ef1fc3d24e3e502acbb5b795674 ]
As pointed out by commit
de9b8f5dcbd9 ("sched: Fix crash trying to dequeue/enqueue the idle thread")
init_idle() can and will be invoked more than once on the same idle
task. At boot time, it is invoked for the boot CPU thread by
sched_init(). Then smp_init() creates the threads for all the secondary
CPUs and invokes init_idle() on them.
As the hotplug machinery brings the secondaries to life, it will issue
calls to idle_thread_get(), which itself invokes init_idle() yet again.
In this case it's invoked twice more per secondary: at _cpu_up(), and at
bringup_cpu().
Given smp_init() already initializes the idle tasks for all *possible*
CPUs, no further initialization should be required. Now, removing
init_idle() from idle_thread_get() exposes some interesting expectations
with regards to the idle task's preempt_count: the secondary startup always
issues a preempt_disable(), requiring some reset of the preempt count to 0
between hot-unplug and hotplug, which is currently served by
idle_thread_get() -> idle_init().
Given the idle task is supposed to have preemption disabled once and never
see it re-enabled, it seems that what we actually want is to initialize its
preempt_count to PREEMPT_DISABLED and leave it there. Do that, and remove
init_idle() from idle_thread_get().
Secondary startups were patched via coccinelle:
@begone@
@@
-preempt_disable();
...
cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210512094636.2958515-1-valentin.schneider@arm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 49c6f8756cdffeb9af1fbcb86bacacced26465d7 upstream.
Invalidate all MMUs' roles after a CPUID update to force reinitizliation
of the MMU context/helpers. Despite the efforts of commit de3ccd26fafc
("KVM: MMU: record maximum physical address width in kvm_mmu_extended_role"),
there are still a handful of CPUID-based properties that affect MMU
behavior but are not incorporated into mmu_role. E.g. 1gb hugepage
support, AMD vs. Intel handling of bit 8, and SEV's C-Bit location all
factor into the guest's reserved PTE bits.
The obvious alternative would be to add all such properties to mmu_role,
but doing so provides no benefit over simply forcing a reinitialization
on every CPUID update, as setting guest CPUID is a rare operation.
Note, reinitializing all MMUs after a CPUID update does not fix all of
KVM's woes. Specifically, kvm_mmu_page_role doesn't track the CPUID
properties, which means that a vCPU can reuse shadow pages that should
not exist for the new vCPU model, e.g. that map GPAs that are now illegal
(due to MAXPHYADDR changes) or that set bits that are now reserved
(PAGE_SIZE for 1gb pages), etc...
Tracking the relevant CPUID properties in kvm_mmu_page_role would address
the majority of problems, but fully tracking that much state in the
shadow page role comes with an unpalatable cost as it would require a
non-trivial increase in KVM's memory footprint. The GBPAGES case is even
worse, as neither Intel nor AMD provides a way to disable 1gb hugepage
support in the hardware page walker, i.e. it's a virtualization hole that
can't be closed when using TDP.
In other words, resetting the MMU after a CPUID update is largely a
superficial fix. But, it will allow reverting the tracking of MAXPHYADDR
in the mmu_role, and that case in particular needs to mostly work because
KVM's shadow_root_level depends on guest MAXPHYADDR when 5-level paging
is supported. For cases where KVM botches guest behavior, the damage is
limited to that guest. But for the shadow_root_level, a misconfigured
MMU can cause KVM to incorrectly access memory, e.g. due to walking off
the end of its shadow page tables.
Fixes: 7dcd57552008 ("x86/kvm/mmu: check if tdp/shadow MMU reconfiguration is needed")
Cc: Yu Zhang <yu.c.zhang@linux.intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f71a53d1180d5ecc346f0c6a23191d837fe2871b upstream.
Restore CR4.LA57 to the mmu_role to fix an amusing edge case with nested
virtualization. When KVM (L0) is using TDP, CR4.LA57 is not reflected in
mmu_role.base.level because that tracks the shadow root level, i.e. TDP
level. Normally, this is not an issue because LA57 can't be toggled
while long mode is active, i.e. the guest has to first disable paging,
then toggle LA57, then re-enable paging, thus ensuring an MMU
reinitialization.
But if L1 is crafty, it can load a new CR4 on VM-Exit and toggle LA57
without having to bounce through an unpaged section. L1 can also load a
new CR3 on exit, i.e. it doesn't even need to play crazy paging games, a
single entry PML5 is sufficient. Such shenanigans are only problematic
if L0 and L1 use TDP, otherwise L1 and L2 share an MMU that gets
reinitialized on nested VM-Enter/VM-Exit due to mmu_role.base.guest_mode.
Note, in the L2 case with nested TDP, even though L1 can switch between
L2s with different LA57 settings, thus bypassing the paging requirement,
in that case KVM's nested_mmu will track LA57 in base.level.
This reverts commit 8053f924cad30bf9f9a24e02b6c8ddfabf5202ea.
Fixes: 8053f924cad3 ("KVM: x86/mmu: Drop kvm_mmu_extended_role.cr4_la57 hack")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210622175739.3610207-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f9dfb5e390fab2df9f7944bb91e7705aba14cd26 upstream.
The XSAVE init code initializes all enabled and supported components with
XRSTOR(S) to init state. Then it XSAVEs the state of the components back
into init_fpstate which is used in several places to fill in the init state
of components.
This works correctly with XSAVE, but not with XSAVEOPT and XSAVES because
those use the init optimization and skip writing state of components which
are in init state. So init_fpstate.xsave still contains all zeroes after
this operation.
There are two ways to solve that:
1) Use XSAVE unconditionally, but that requires to reshuffle the buffer when
XSAVES is enabled because XSAVES uses compacted format.
2) Save the components which are known to have a non-zero init state by other
means.
Looking deeper, #2 is the right thing to do because all components the
kernel supports have all-zeroes init state except the legacy features (FP,
SSE). Those cannot be hard coded because the states are not identical on all
CPUs, but they can be saved with FXSAVE which avoids all conditionals.
Use FXSAVE to save the legacy FP/SSE components in init_fpstate along with
a BUILD_BUG_ON() which reminds developers to validate that a newly added
component has all zeroes init state. As a bonus remove the now unused
copy_xregs_to_kernel_booting() crutch.
The XSAVE and reshuffle method can still be implemented in the unlikely
case that components are added which have a non-zero init state and no
other means to save them. For now, FXSAVE is just simple and good enough.
[ bp: Fix a typo or two in the text. ]
Fixes: 6bad06b76892 ("x86, xsave: Use xsaveopt in context-switch path when supported")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20210618143444.587311343@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 510b80a6a0f1a0d114c6e33bcea64747d127973c upstream.
When user space brings PKRU into init state, then the kernel handling is
broken:
T1 user space
xsave(state)
state.header.xfeatures &= ~XFEATURE_MASK_PKRU;
xrstor(state)
T1 -> kernel
schedule()
XSAVE(S) -> T1->xsave.header.xfeatures[PKRU] == 0
T1->flags |= TIF_NEED_FPU_LOAD;
wrpkru();
schedule()
...
pk = get_xsave_addr(&T1->fpu->state.xsave, XFEATURE_PKRU);
if (pk)
wrpkru(pk->pkru);
else
wrpkru(DEFAULT_PKRU);
Because the xfeatures bit is 0 and therefore the value in the xsave
storage is not valid, get_xsave_addr() returns NULL and switch_to()
writes the default PKRU. -> FAIL #1!
So that wrecks any copy_to/from_user() on the way back to user space
which hits memory which is protected by the default PKRU value.
Assumed that this does not fail (pure luck) then T1 goes back to user
space and because TIF_NEED_FPU_LOAD is set it ends up in
switch_fpu_return()
__fpregs_load_activate()
if (!fpregs_state_valid()) {
load_XSTATE_from_task();
}
But if nothing touched the FPU between T1 scheduling out and back in,
then the fpregs_state is still valid which means switch_fpu_return()
does nothing and just clears TIF_NEED_FPU_LOAD. Back to user space with
DEFAULT_PKRU loaded. -> FAIL #2!
The fix is simple: if get_xsave_addr() returns NULL then set the
PKRU value to 0 instead of the restrictive default PKRU value in
init_pkru_value.
[ bp: Massage in minor nitpicks from folks. ]
Fixes: 0cecca9d03c9 ("x86/fpu: Eager switch PKRU state")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Rik van Riel <riel@surriel.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20210608144346.045616965@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 12f7764ac61200e32c916f038bdc08f884b0b604 upstream.
switch_fpu_finish() checks current->mm as indicator for kernel threads.
That's wrong because kernel threads can temporarily use a mm of a user
process via kthread_use_mm().
Check the task flags for PF_KTHREAD instead.
Fixes: 0cecca9d03c9 ("x86/fpu: Eager switch PKRU state")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Rik van Riel <riel@surriel.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20210608144345.912645927@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3d6b84132d2a57b5a74100f6923a8feb679ac2ce upstream.
Crash shutdown handler only disables kvmclock and steal time, other PV
features remain active so we risk corrupting memory or getting some
side-effects in kdump kernel. Move crash handler to kvm.c and unify
with CPU offline.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210414123544.1060604-5-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Krzysztof Kozlowski <krzysztof.kozlowski@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c02027b5742b5aa804ef08a4a9db433295533046 upstream.
Currenly, we disable kvmclock from machine_shutdown() hook and this
only happens for boot CPU. We need to disable it for all CPUs to
guard against memory corruption e.g. on restore from hibernate.
Note, writing '0' to kvmclock MSR doesn't clear memory location, it
just prevents hypervisor from updating the location so for the short
while after write and while CPU is still alive, the clock remains usable
and correct so we don't need to switch to some other clocksource.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210414123544.1060604-4-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Andrea Righi <andrea.righi@canonical.com>
Signed-off-by: Krzysztof Kozlowski <krzysztof.kozlowski@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 9a90ed065a155d13db0d0ffeaad5cc54e51c90c6 upstream.
There are machines out there with added value crap^WBIOS which provide an
SMI handler for the local APIC thermal sensor interrupt. Out of reset,
the BSP on those machines has something like 0x200 in that APIC register
(timestamps left in because this whole issue is timing sensitive):
[ 0.033858] read lvtthmr: 0x330, val: 0x200
which means:
- bit 16 - the interrupt mask bit is clear and thus that interrupt is enabled
- bits [10:8] have 010b which means SMI delivery mode.
Now, later during boot, when the kernel programs the local APIC, it
soft-disables it temporarily through the spurious vector register:
setup_local_APIC:
...
/*
* If this comes from kexec/kcrash the APIC might be enabled in
* SPIV. Soft disable it before doing further initialization.
*/
value = apic_read(APIC_SPIV);
value &= ~APIC_SPIV_APIC_ENABLED;
apic_write(APIC_SPIV, value);
which means (from the SDM):
"10.4.7.2 Local APIC State After It Has Been Software Disabled
...
* The mask bits for all the LVT entries are set. Attempts to reset these
bits will be ignored."
And this happens too:
[ 0.124111] APIC: Switch to symmetric I/O mode setup
[ 0.124117] lvtthmr 0x200 before write 0xf to APIC 0xf0
[ 0.124118] lvtthmr 0x10200 after write 0xf to APIC 0xf0
This results in CPU 0 soft lockups depending on the placement in time
when the APIC soft-disable happens. Those soft lockups are not 100%
reproducible and the reason for that can only be speculated as no one
tells you what SMM does. Likely, it confuses the SMM code that the APIC
is disabled and the thermal interrupt doesn't doesn't fire at all,
leading to CPU 0 stuck in SMM forever...
Now, before
4f432e8bb15b ("x86/mce: Get rid of mcheck_intel_therm_init()")
due to how the APIC_LVTTHMR was read before APIC initialization in
mcheck_intel_therm_init(), it would read the value with the mask bit 16
clear and then intel_init_thermal() would replicate it onto the APs and
all would be peachy - the thermal interrupt would remain enabled.
But that commit moved that reading to a later moment in
intel_init_thermal(), resulting in reading APIC_LVTTHMR on the BSP too
late and with its interrupt mask bit set.
Thus, revert back to the old behavior of reading the thermal LVT
register before the APIC gets initialized.
Fixes: 4f432e8bb15b ("x86/mce: Get rid of mcheck_intel_therm_init()")
Reported-by: James Feeney <james@nurealm.net>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org>
Cc: Zhang Rui <rui.zhang@intel.com>
Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Link: https://lkml.kernel.org/r/YKIqDdFNaXYd39wz@zn.tnic
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 7d65f9e80646c595e8c853640a9d0768a33e204c upstream.
PIC interrupts do not support affinity setting and they can end up on
any online CPU. Therefore, it's required to mark the associated vectors
as system-wide reserved. Otherwise, the corresponding irq descriptors
are copied to the secondary CPUs but the vectors are not marked as
assigned or reserved. This works correctly for the IO/APIC case.
When the IO/APIC is disabled via config, kernel command line or lack of
enumeration then all legacy interrupts are routed through the PIC, but
nothing marks them as system-wide reserved vectors.
As a consequence, a subsequent allocation on a secondary CPU can result in
allocating one of these vectors, which triggers the BUG() in
apic_update_vector() because the interrupt descriptor slot is not empty.
Imran tried to work around that by marking those interrupts as allocated
when a CPU comes online. But that's wrong in case that the IO/APIC is
available and one of the legacy interrupts, e.g. IRQ0, has been switched to
PIC mode because then marking them as allocated will fail as they are
already marked as system vectors.
Stay consistent and update the legacy vectors after attempting IO/APIC
initialization and mark them as system vectors in case that no IO/APIC is
available.
Fixes: 69cde0004a4b ("x86/vector: Use matrix allocator for vector assignment")
Reported-by: Imran Khan <imran.f.khan@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20210519233928.2157496-1-imran.f.khan@oracle.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 9bfecd05833918526cc7357d55e393393440c5fa upstream.
While digesting the XSAVE-related horrors which got introduced with
the supervisor/user split, the recent addition of ENQCMD-related
functionality got on the radar and turned out to be similarly broken.
update_pasid(), which is only required when X86_FEATURE_ENQCMD is
available, is invoked from two places:
1) From switch_to() for the incoming task
2) Via a SMP function call from the IOMMU/SMV code
#1 is half-ways correct as it hacks around the brokenness of get_xsave_addr()
by enforcing the state to be 'present', but all the conditionals in that
code are completely pointless for that.
Also the invocation is just useless overhead because at that point
it's guaranteed that TIF_NEED_FPU_LOAD is set on the incoming task
and all of this can be handled at return to user space.
#2 is broken beyond repair. The comment in the code claims that it is safe
to invoke this in an IPI, but that's just wishful thinking.
FPU state of a running task is protected by fregs_lock() which is
nothing else than a local_bh_disable(). As BH-disabled regions run
usually with interrupts enabled the IPI can hit a code section which
modifies FPU state and there is absolutely no guarantee that any of the
assumptions which are made for the IPI case is true.
Also the IPI is sent to all CPUs in mm_cpumask(mm), but the IPI is
invoked with a NULL pointer argument, so it can hit a completely
unrelated task and unconditionally force an update for nothing.
Worse, it can hit a kernel thread which operates on a user space
address space and set a random PASID for it.
The offending commit does not cleanly revert, but it's sufficient to
force disable X86_FEATURE_ENQCMD and to remove the broken update_pasid()
code to make this dysfunctional all over the place. Anything more
complex would require more surgery and none of the related functions
outside of the x86 core code are blatantly wrong, so removing those
would be overkill.
As nothing enables the PASID bit in the IA32_XSS MSR yet, which is
required to make this actually work, this cannot result in a regression
except for related out of tree train-wrecks, but they are broken already
today.
Fixes: 20f0afd1fb3d ("x86/mmu: Allocate/free a PASID")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/87mtsd6gr9.ffs@nanos.tec.linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 5104d7ffcf24749939bea7fdb5378d186473f890 upstream.
Disable preemption when probing a user return MSR via RDSMR/WRMSR. If
the MSR holds a different value per logical CPU, the WRMSR could corrupt
the host's value if KVM is preempted between the RDMSR and WRMSR, and
then rescheduled on a different CPU.
Opportunistically land the helper in common x86, SVM will use the helper
in a future commit.
Fixes: 4be534102624 ("KVM: VMX: Initialize vmx->guest_msrs[] right after allocation")
Cc: stable@vger.kernel.org
Cc: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210504171734.1434054-6-seanjc@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
generations
commit 3743d55b289c203d8f77b7cd47c24926b9d186ae upstream.
Some AMD Ryzen generations has different calculation method on maximum
performance. 255 is not for all ASICs, some specific generations should use 166
as the maximum performance. Otherwise, it will report incorrect frequency value
like below:
~ → lscpu | grep MHz
CPU MHz: 3400.000
CPU max MHz: 7228.3198
CPU min MHz: 2200.0000
[ mingo: Tidied up whitespace use. ]
[ Alexander Monakov <amonakov@ispras.ru>: fix 225 -> 255 typo. ]
Fixes: 41ea667227ba ("x86, sched: Calculate frequency invariance for AMD systems")
Fixes: 3c55e94c0ade ("cpufreq: ACPI: Extend frequency tables to cover boost frequencies")
Reported-by: Jason Bagavatsingham <jason.bagavatsingham@gmail.com>
Fixed-by: Alexander Monakov <amonakov@ispras.ru>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Huang Rui <ray.huang@amd.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Jason Bagavatsingham <jason.bagavatsingham@gmail.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210425073451.2557394-1-ray.huang@amd.com
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=211791
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit a217a6593cec8b315d4c2f344bae33660b39b703 upstream.
In VMX, the host NMI handler needs to be invoked after NMI VM-Exit.
Before commit 1a5488ef0dcf6 ("KVM: VMX: Invoke NMI handler via indirect
call instead of INTn"), this was done by INTn ("int $2"). But INTn
microcode is relatively expensive, so the commit reworked NMI VM-Exit
handling to invoke the kernel handler by function call.
But this missed a detail. The NMI entry point for direct invocation is
fetched from the IDT table and called on the kernel stack. But on 64-bit
the NMI entry installed in the IDT expects to be invoked on the IST stack.
It relies on the "NMI executing" variable on the IST stack to work
correctly, which is at a fixed position in the IST stack. When the entry
point is unexpectedly called on the kernel stack, the RSP-addressed "NMI
executing" variable is obviously also on the kernel stack and is
"uninitialized" and can cause the NMI entry code to run in the wrong way.
Provide a non-ist entry point for VMX which shares the C-function with
the regular NMI entry and invoke the new asm entry point instead.
On 32-bit this just maps to the regular NMI entry point as 32-bit has no
ISTs and is not affected.
[ tglx: Made it independent for backporting, massaged changelog ]
Fixes: 1a5488ef0dcf6 ("KVM: VMX: Invoke NMI handler via indirect call instead of INTn")
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Lai Jiangshan <laijs@linux.alibaba.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/87r1imi8i1.ffs@nanos.tec.linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Merge misc fixes from Andrew Morton:
"14 patches.
Subsystems affected by this patch series: mm (kasan, gup, pagecache,
and kfence), MAINTAINERS, mailmap, nds32, gcov, ocfs2, ia64, and lib"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
lib: fix kconfig dependency on ARCH_WANT_FRAME_POINTERS
kfence, x86: fix preemptible warning on KPTI-enabled systems
lib/test_kasan_module.c: suppress unused var warning
kasan: fix conflict with page poisoning
fs: direct-io: fix missing sdio->boundary
ia64: fix user_stack_pointer() for ptrace()
ocfs2: fix deadlock between setattr and dio_end_io_write
gcov: re-fix clang-11+ support
nds32: flush_dcache_page: use page_mapping_file to avoid races with swapoff
mm/gup: check page posion status for coredump.
.mailmap: fix old email addresses
mailmap: update email address for Jordan Crouse
treewide: change my e-mail address, fix my name
MAINTAINERS: update CZ.NIC's Turris information
|
|
On systems with KPTI enabled, we can currently observe the following
warning:
BUG: using smp_processor_id() in preemptible
caller is invalidate_user_asid+0x13/0x50
CPU: 6 PID: 1075 Comm: dmesg Not tainted 5.12.0-rc4-gda4a2b1a5479-kfence_1+ #1
Hardware name: Hewlett-Packard HP Pro 3500 Series/2ABF, BIOS 8.11 10/24/2012
Call Trace:
dump_stack+0x7f/0xad
check_preemption_disabled+0xc8/0xd0
invalidate_user_asid+0x13/0x50
flush_tlb_one_kernel+0x5/0x20
kfence_protect+0x56/0x80
...
While it normally makes sense to require preemption to be off, so that
the expected CPU's TLB is flushed and not another, in our case it really
is best-effort (see comments in kfence_protect_page()).
Avoid the warning by disabling preemption around flush_tlb_one_kernel().
Link: https://lore.kernel.org/lkml/YGIDBAboELGgMgXy@elver.google.com/
Link: https://lkml.kernel.org/r/20210330065737.652669-1-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Reported-by: Tomi Sarvela <tomi.p.sarvela@intel.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Jann Horn <jannh@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit 8cdddd182bd7 ("ACPI: processor: Fix CPU0 wakeup in
acpi_idle_play_dead()") tried to fix CPU0 hotplug breakage by copying
wakeup_cpu0() + start_cpu0() logic from hlt_play_dead()//mwait_play_dead()
into acpi_idle_play_dead(). The problem is that these functions are not
exported to modules so when CONFIG_ACPI_PROCESSOR=m build fails.
The issue could've been fixed by exporting both wakeup_cpu0()/start_cpu0()
(the later from assembly) but it seems putting the whole pattern into a
new function and exporting it instead is better.
Reported-by: kernel test robot <lkp@intel.com>
Fixes: 8cdddd182bd7 ("CPI: processor: Fix CPU0 wakeup in acpi_idle_play_dead()")
Cc: <stable@vger.kernel.org> # 5.10+
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Commit 496121c02127 ("ACPI: processor: idle: Allow probing on platforms
with one ACPI C-state") broke CPU0 hotplug on certain systems, e.g.
I'm observing the following on AWS Nitro (e.g r5b.xlarge but other
instance types are affected as well):
# echo 0 > /sys/devices/system/cpu/cpu0/online
# echo 1 > /sys/devices/system/cpu/cpu0/online
<10 seconds delay>
-bash: echo: write error: Input/output error
In fact, the above mentioned commit only revealed the problem and did
not introduce it. On x86, to wakeup CPU an NMI is being used and
hlt_play_dead()/mwait_play_dead() loops are prepared to handle it:
/*
* If NMI wants to wake up CPU0, start CPU0.
*/
if (wakeup_cpu0())
start_cpu0();
cpuidle_play_dead() -> acpi_idle_play_dead() (which is now being called on
systems where it wasn't called before the above mentioned commit) serves
the same purpose but it doesn't have a path for CPU0. What happens now on
wakeup is:
- NMI is sent to CPU0
- wakeup_cpu0_nmi() works as expected
- we get back to while (1) loop in acpi_idle_play_dead()
- safe_halt() puts CPU0 to sleep again.
The straightforward/minimal fix is add the special handling for CPU0 on x86
and that's what the patch is doing.
Fixes: 496121c02127 ("ACPI: processor: idle: Allow probing on platforms with one ACPI C-state")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: 5.10+ <stable@vger.kernel.org> # 5.10+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen fixes from Juergen Gross:
"This contains a small series with a more elegant fix of a problem
which was originally fixed in rc2"
* tag 'for-linus-5.12b-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
Revert "xen: fix p2m size in dom0 for disabled memory hotplug case"
xen/x86: make XEN_BALLOON_MEMORY_HOTPLUG_LIMIT depend on MEMORY_HOTPLUG
|
|
This partially reverts commit 882213990d32 ("xen: fix p2m size in dom0
for disabled memory hotplug case")
There's no need to special case XEN_UNPOPULATED_ALLOC anymore in order
to correctly size the p2m. The generic memory hotplug option has
already been tied together with the Xen hotplug limit, so enabling
memory hotplug should already trigger a properly sized p2m on Xen PV.
Note that XEN_UNPOPULATED_ALLOC depends on ZONE_DEVICE which pulls in
MEMORY_HOTPLUG.
Leave the check added to __set_phys_to_machine and the adjusted
comment about EXTRA_MEM_RATIO.
Signed-off-by: Roger Pau Monné <roger.pau@citrix.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Link: https://lore.kernel.org/r/20210324122424.58685-3-roger.pau@citrix.com
[boris: fixed formatting issues]
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Borislav Petkov:
"The freshest pile of shiny x86 fixes for 5.12:
- Add the arch-specific mapping between physical and logical CPUs to
fix devicetree-node lookups
- Restore the IRQ2 ignore logic
- Fix get_nr_restart_syscall() to return the correct restart syscall
number. Split in a 4-patches set to avoid kABI breakage when
backporting to dead kernels"
* tag 'x86_urgent_for_v5.12-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/apic/of: Fix CPU devicetree-node lookups
x86/ioapic: Ignore IRQ2 again
x86: Introduce restart_block->arch_data to remove TS_COMPAT_RESTART
x86: Introduce TS_COMPAT_RESTART to fix get_nr_restart_syscall()
x86: Move TS_COMPAT back to asm/thread_info.h
kernel, fs: Introduce and use set_restart_fn() and arch_set_restart_data()
|
|
Fix a plethora of issues with MSR filtering by installing the resulting
filter as an atomic bundle instead of updating the live filter one range
at a time. The KVM_X86_SET_MSR_FILTER ioctl() isn't truly atomic, as
the hardware MSR bitmaps won't be updated until the next VM-Enter, but
the relevant software struct is atomically updated, which is what KVM
really needs.
Similar to the approach used for modifying memslots, make arch.msr_filter
a SRCU-protected pointer, do all the work configuring the new filter
outside of kvm->lock, and then acquire kvm->lock only when the new filter
has been vetted and created. That way vCPU readers either see the old
filter or the new filter in their entirety, not some half-baked state.
Yuan Yao pointed out a use-after-free in ksm_msr_allowed() due to a
TOCTOU bug, but that's just the tip of the iceberg...
- Nothing is __rcu annotated, making it nigh impossible to audit the
code for correctness.
- kvm_add_msr_filter() has an unpaired smp_wmb(). Violation of kernel
coding style aside, the lack of a smb_rmb() anywhere casts all code
into doubt.
- kvm_clear_msr_filter() has a double free TOCTOU bug, as it grabs
count before taking the lock.
- kvm_clear_msr_filter() also has memory leak due to the same TOCTOU bug.
The entire approach of updating the live filter is also flawed. While
installing a new filter is inherently racy if vCPUs are running, fixing
the above issues also makes it trivial to ensure certain behavior is
deterministic, e.g. KVM can provide deterministic behavior for MSRs with
identical settings in the old and new filters. An atomic update of the
filter also prevents KVM from getting into a half-baked state, e.g. if
installing a filter fails, the existing approach would leave the filter
in a half-baked state, having already committed whatever bits of the
filter were already processed.
[*] https://lkml.kernel.org/r/20210312083157.25403-1-yaoyuan0329os@gmail.com
Fixes: 1a155254ff93 ("KVM: x86: Introduce MSR filtering")
Cc: stable@vger.kernel.org
Cc: Alexander Graf <graf@amazon.com>
Reported-by: Yuan Yao <yaoyuan0329os@gmail.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210316184436.2544875-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Create an infrastructure for tracking Hyper-V TSC page status, i.e. if it
was updated from guest/host side or if we've failed to set it up (because
e.g. guest wrote some garbage to HV_X64_MSR_REFERENCE_TSC) and there's no
need to retry.
Also, in a hypothetical situation when we are in 'always catchup' mode for
TSC we can now avoid contending 'hv->hv_lock' on every guest enter by
setting the state to HV_TSC_PAGE_BROKEN after compute_tsc_page_parameters()
returns false.
Check for HV_TSC_PAGE_SET state instead of '!hv->tsc_ref.tsc_sequence' in
get_time_ref_counter() to properly handle the situation when we failed to
write the updated TSC page values to the guest.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210316143736.964151-4-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Save the current_thread_info()->status of X86 in the new
restart_block->arch_data field so TS_COMPAT_RESTART can be removed again.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210201174716.GA17898@redhat.com
|
|
The comment in get_nr_restart_syscall() says:
* The problem is that we can get here when ptrace pokes
* syscall-like values into regs even if we're not in a syscall
* at all.
Yes, but if not in a syscall then the
status & (TS_COMPAT|TS_I386_REGS_POKED)
check below can't really help:
- TS_COMPAT can't be set
- TS_I386_REGS_POKED is only set if regs->orig_ax was changed by
32bit debugger; and even in this case get_nr_restart_syscall()
is only correct if the tracee is 32bit too.
Suppose that a 64bit debugger plays with a 32bit tracee and
* Tracee calls sleep(2) // TS_COMPAT is set
* User interrupts the tracee by CTRL-C after 1 sec and does
"(gdb) call func()"
* gdb saves the regs by PTRACE_GETREGS
* does PTRACE_SETREGS to set %rip='func' and %orig_rax=-1
* PTRACE_CONT // TS_COMPAT is cleared
* func() hits int3.
* Debugger catches SIGTRAP.
* Restore original regs by PTRACE_SETREGS.
* PTRACE_CONT
get_nr_restart_syscall() wrongly returns __NR_restart_syscall==219, the
tracee calls ia32_sys_call_table[219] == sys_madvise.
Add the sticky TS_COMPAT_RESTART flag which survives after return to user
mode. It's going to be removed in the next step again by storing the
information in the restart block. As a further cleanup it might be possible
to remove also TS_I386_REGS_POKED with that.
Test-case:
$ cvs -d :pserver:anoncvs:anoncvs@sourceware.org:/cvs/systemtap co ptrace-tests
$ gcc -o erestartsys-trap-debuggee ptrace-tests/tests/erestartsys-trap-debuggee.c --m32
$ gcc -o erestartsys-trap-debugger ptrace-tests/tests/erestartsys-trap-debugger.c -lutil
$ ./erestartsys-trap-debugger
Unexpected: retval 1, errno 22
erestartsys-trap-debugger: ptrace-tests/tests/erestartsys-trap-debugger.c:421
Fixes: 609c19a385c8 ("x86/ptrace: Stop setting TS_COMPAT in ptrace code")
Reported-by: Jan Kratochvil <jan.kratochvil@redhat.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210201174709.GA17895@redhat.com
|
|
Move TS_COMPAT back to asm/thread_info.h, close to TS_I386_REGS_POKED.
It was moved to asm/processor.h by b9d989c7218a ("x86/asm: Move the
thread_info::status field to thread_struct"), then later 37a8f7c38339
("x86/asm: Move 'status' from thread_struct to thread_info") moved the
'status' field back but TS_COMPAT was forgotten.
Preparatory patch to fix the COMPAT case for get_nr_restart_syscall()
Fixes: 609c19a385c8 ("x86/ptrace: Stop setting TS_COMPAT in ptrace code")
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210201174649.GA17880@redhat.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull objtool fix from Thomas Gleixner:
"A single objtool fix to handle the PUSHF/POPF validation correctly for
the paravirt changes which modified arch_local_irq_restore not to use
popf"
* tag 'objtool-urgent-2021-03-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
objtool,x86: Fix uaccess PUSHF/POPF validation
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Borislav Petkov:
- A couple of SEV-ES fixes and robustifications: verify usermode stack
pointer in NMI is not coming from the syscall gap, correctly track
IRQ states in the #VC handler and access user insn bytes atomically
in same handler as latter cannot sleep.
- Balance 32-bit fast syscall exit path to do the proper work on exit
and thus not confuse audit and ptrace frameworks.
- Two fixes for the ORC unwinder going "off the rails" into KASAN
redzones and when ORC data is missing.
* tag 'x86_urgent_for_v5.12_rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/sev-es: Use __copy_from_user_inatomic()
x86/sev-es: Correctly track IRQ states in runtime #VC handler
x86/sev-es: Check regs->sp is trusted before adjusting #VC IST stack
x86/sev-es: Introduce ip_within_syscall_gap() helper
x86/entry: Fix entry/exit mismatch on failed fast 32-bit syscalls
x86/unwind/orc: Silence warnings caused by missing ORC data
x86/unwind/orc: Disable KASAN checking in the ORC unwinder, part 2
|
|
Pull KVM fixes from Paolo Bonzini:
"More fixes for ARM and x86"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: LAPIC: Advancing the timer expiration on guest initiated write
KVM: x86/mmu: Skip !MMU-present SPTEs when removing SP in exclusive mode
KVM: kvmclock: Fix vCPUs > 64 can't be online/hotpluged
kvm: x86: annotate RCU pointers
KVM: arm64: Fix exclusive limit for IPA size
KVM: arm64: Reject VM creation when the default IPA size is unsupported
KVM: arm64: Ensure I-cache isolation between vcpus of a same VM
KVM: arm64: Don't use cbz/adr with external symbols
KVM: arm64: Fix range alignment when walking page tables
KVM: arm64: Workaround firmware wrongly advertising GICv2-on-v3 compatibility
KVM: arm64: Rename __vgic_v3_get_ich_vtr_el2() to __vgic_v3_get_gic_config()
KVM: arm64: Don't access PMSELR_EL0/PMUSERENR_EL0 when no PMU is available
KVM: arm64: Turn kvm_arm_support_pmu_v3() into a static key
KVM: arm64: Fix nVHE hyp panic host context restore
KVM: arm64: Avoid corrupting vCPU context register in guest exit
KVM: arm64: nvhe: Save the SPE context early
kvm: x86: use NULL instead of using plain integer as pointer
KVM: SVM: Connect 'npt' module param to KVM's internal 'npt_enabled'
KVM: x86: Ensure deadline timer has truly expired before posting its IRQ
|
|
This patch adds the annotation to fix the following sparse errors:
arch/x86/kvm//x86.c:8147:15: error: incompatible types in comparison expression (different address spaces):
arch/x86/kvm//x86.c:8147:15: struct kvm_apic_map [noderef] __rcu *
arch/x86/kvm//x86.c:8147:15: struct kvm_apic_map *
arch/x86/kvm//x86.c:10628:16: error: incompatible types in comparison expression (different address spaces):
arch/x86/kvm//x86.c:10628:16: struct kvm_apic_map [noderef] __rcu *
arch/x86/kvm//x86.c:10628:16: struct kvm_apic_map *
arch/x86/kvm//x86.c:10629:15: error: incompatible types in comparison expression (different address spaces):
arch/x86/kvm//x86.c:10629:15: struct kvm_pmu_event_filter [noderef] __rcu *
arch/x86/kvm//x86.c:10629:15: struct kvm_pmu_event_filter *
arch/x86/kvm//lapic.c:267:15: error: incompatible types in comparison expression (different address spaces):
arch/x86/kvm//lapic.c:267:15: struct kvm_apic_map [noderef] __rcu *
arch/x86/kvm//lapic.c:267:15: struct kvm_apic_map *
arch/x86/kvm//lapic.c:269:9: error: incompatible types in comparison expression (different address spaces):
arch/x86/kvm//lapic.c:269:9: struct kvm_apic_map [noderef] __rcu *
arch/x86/kvm//lapic.c:269:9: struct kvm_apic_map *
arch/x86/kvm//lapic.c:637:15: error: incompatible types in comparison expression (different address spaces):
arch/x86/kvm//lapic.c:637:15: struct kvm_apic_map [noderef] __rcu *
arch/x86/kvm//lapic.c:637:15: struct kvm_apic_map *
arch/x86/kvm//lapic.c:994:15: error: incompatible types in comparison expression (different address spaces):
arch/x86/kvm//lapic.c:994:15: struct kvm_apic_map [noderef] __rcu *
arch/x86/kvm//lapic.c:994:15: struct kvm_apic_map *
arch/x86/kvm//lapic.c:1036:15: error: incompatible types in comparison expression (different address spaces):
arch/x86/kvm//lapic.c:1036:15: struct kvm_apic_map [noderef] __rcu *
arch/x86/kvm//lapic.c:1036:15: struct kvm_apic_map *
arch/x86/kvm//lapic.c:1173:15: error: incompatible types in comparison expression (different address spaces):
arch/x86/kvm//lapic.c:1173:15: struct kvm_apic_map [noderef] __rcu *
arch/x86/kvm//lapic.c:1173:15: struct kvm_apic_map *
arch/x86/kvm//pmu.c:190:18: error: incompatible types in comparison expression (different address spaces):
arch/x86/kvm//pmu.c:190:18: struct kvm_pmu_event_filter [noderef] __rcu *
arch/x86/kvm//pmu.c:190:18: struct kvm_pmu_event_filter *
arch/x86/kvm//pmu.c:251:18: error: incompatible types in comparison expression (different address spaces):
arch/x86/kvm//pmu.c:251:18: struct kvm_pmu_event_filter [noderef] __rcu *
arch/x86/kvm//pmu.c:251:18: struct kvm_pmu_event_filter *
arch/x86/kvm//pmu.c:522:18: error: incompatible types in comparison expression (different address spaces):
arch/x86/kvm//pmu.c:522:18: struct kvm_pmu_event_filter [noderef] __rcu *
arch/x86/kvm//pmu.c:522:18: struct kvm_pmu_event_filter *
arch/x86/kvm//pmu.c:522:18: error: incompatible types in comparison expression (different address spaces):
arch/x86/kvm//pmu.c:522:18: struct kvm_pmu_event_filter [noderef] __rcu *
arch/x86/kvm//pmu.c:522:18: struct kvm_pmu_event_filter *
Signed-off-by: Muhammad Usama Anjum <musamaanjum@gmail.com>
Message-Id: <20210305191123.GA497469@LEGION>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Commit ab234a260b1f ("x86/pv: Rework arch_local_irq_restore() to not
use popf") replaced "push %reg; popf" with something like: "test
$0x200, %reg; jz 1f; sti; 1:", which breaks the pushf/popf symmetry
that commit ea24213d8088 ("objtool: Add UACCESS validation") relies
on.
The result is:
drivers/gpu/drm/amd/amdgpu/si.o: warning: objtool: si_common_hw_init()+0xf36: PUSHF stack exhausted
Meanwhile, commit c9c324dc22aa ("objtool: Support stack layout changes
in alternatives") makes that we can actually use stack-ops in
alternatives, which means we can revert 1ff865e343c2 ("x86,smap: Fix
smap_{save,restore}() alternatives").
That in turn means we can limit the PUSHF/POPF handling of
ea24213d8088 to those instructions that are in alternatives.
Fixes: ab234a260b1f ("x86/pv: Rework arch_local_irq_restore() to not use popf")
Reported-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lkml.kernel.org/r/YEY4rIbQYa5fnnEp@hirez.programming.kicks-ass.net
|
|
The #VC handler must run in atomic context and cannot sleep. This is a
problem when it tries to fetch instruction bytes from user-space via
copy_from_user().
Introduce a insn_fetch_from_user_inatomic() helper which uses
__copy_from_user_inatomic() to safely copy the instruction bytes to
kernel memory in the #VC handler.
Fixes: 5e3427a7bc432 ("x86/sev-es: Handle instruction fetches from user-space")
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: stable@vger.kernel.org # v5.10+
Link: https://lkml.kernel.org/r/20210303141716.29223-6-joro@8bytes.org
|
|
Introduce a helper to check whether an exception came from the syscall
gap and use it in the SEV-ES code. Extend the check to also cover the
compatibility SYSCALL entry path.
Fixes: 315562c9af3d5 ("x86/sev-es: Adjust #VC IST Stack on entering NMI handler")
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: stable@vger.kernel.org # 5.10+
Link: https://lkml.kernel.org/r/20210303141716.29223-2-joro@8bytes.org
|
|
Pull KVM fixes from Paolo Bonzini:
- Doc fixes
- selftests fixes
- Add runstate information to the new Xen support
- Allow compiling out the Xen interface
- 32-bit PAE without EPT bugfix
- NULL pointer dereference bugfix
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: SVM: Clear the CR4 register on reset
KVM: x86/xen: Add support for vCPU runstate information
KVM: x86/xen: Fix return code when clearing vcpu_info and vcpu_time_info
selftests: kvm: Mmap the entire vcpu mmap area
KVM: Documentation: Fix index for KVM_CAP_PPC_DAWR1
KVM: x86: allow compiling out the Xen hypercall interface
KVM: xen: flush deferred static key before checking it
KVM: x86/mmu: Set SPTE_AD_WRPROT_ONLY_MASK if and only if PML is enabled
KVM: x86: hyper-v: Fix Hyper-V context null-ptr-deref
KVM: x86: remove misplaced comment on active_mmu_pages
KVM: Documentation: rectify rst markup in kvm_run->flags
Documentation: kvm: fix messy conversion from .txt to .rst
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen fixes from Juergen Gross:
"Two security issues (XSA-367 and XSA-369)"
* tag 'for-linus-5.12b-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
xen: fix p2m size in dom0 for disabled memory hotplug case
xen-netback: respect gnttab_map_refs()'s return value
Xen/gnttab: handle p2m update errors on a per-slot basis
|
|
Since commit 9e2369c06c8a18 ("xen: add helpers to allocate unpopulated
memory") foreign mappings are using guest physical addresses allocated
via ZONE_DEVICE functionality.
This will result in problems for the case of no balloon memory hotplug
being configured, as the p2m list will only cover the initial memory
size of the domain. Any ZONE_DEVICE allocated address will be outside
the p2m range and thus a mapping can't be established with that memory
address.
Fix that by extending the p2m size for that case. At the same time add
a check for a to be created mapping to be within the p2m limits in
order to detect errors early.
While changing a comment, remove some 32-bit leftovers.
This is XSA-369.
Fixes: 9e2369c06c8a18 ("xen: add helpers to allocate unpopulated memory")
Cc: <stable@vger.kernel.org> # 5.9
Reported-by: Marek Marczykowski-Górecki <marmarek@invisiblethingslab.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Jan Beulich <jbeulich@suse.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
|
|
This is how Xen guests do steal time accounting. The hypervisor records
the amount of time spent in each of running/runnable/blocked/offline
states.
In the Xen accounting, a vCPU is still in state RUNSTATE_running while
in Xen for a hypercall or I/O trap, etc. Only if Xen explicitly schedules
does the state become RUNSTATE_blocked. In KVM this means that even when
the vCPU exits the kvm_run loop, the state remains RUNSTATE_running.
The VMM can explicitly set the vCPU to RUNSTATE_blocked by using the
KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT attribute, and can also use
KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST to retrospectively add a given
amount of time to the blocked state and subtract it from the running
state.
The state_entry_time corresponds to get_kvmclock_ns() at the time the
vCPU entered the current state, and the total times of all four states
should always add up to state_entry_time.
Co-developed-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20210301125309.874953-2-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Pull more KVM updates from Paolo Bonzini:
"x86:
- take into account HVA before retrying on MMU notifier race
- fixes for nested AMD guests without NPT
- allow INVPCID in guest without PCID
- disable PML in hardware when not in use
- MMU code cleanups:
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (28 commits)
KVM: SVM: Fix nested VM-Exit on #GP interception handling
KVM: vmx/pmu: Fix dummy check if lbr_desc->event is created
KVM: x86/mmu: Consider the hva in mmu_notifier retry
KVM: x86/mmu: Skip mmu_notifier check when handling MMIO page fault
KVM: Documentation: rectify rst markup in KVM_GET_SUPPORTED_HV_CPUID
KVM: nSVM: prepare guest save area while is_guest_mode is true
KVM: x86/mmu: Remove a variety of unnecessary exports
KVM: x86: Fold "write-protect large" use case into generic write-protect
KVM: x86/mmu: Don't set dirty bits when disabling dirty logging w/ PML
KVM: VMX: Dynamically enable/disable PML based on memslot dirty logging
KVM: x86: Further clarify the logic and comments for toggling log dirty
KVM: x86: Move MMU's PML logic to common code
KVM: x86/mmu: Make dirty log size hook (PML) a value, not a function
KVM: x86/mmu: Expand on the comment in kvm_vcpu_ad_need_write_protect()
KVM: nVMX: Disable PML in hardware when running L2
KVM: x86/mmu: Consult max mapping level when zapping collapsible SPTEs
KVM: x86/mmu: Pass the memslot to the rmap callbacks
KVM: x86/mmu: Split out max mapping level calculation to helper
KVM: x86/mmu: Expand collapsible SPTE zap for TDP MMU to ZONE_DEVICE and HugeTLB pages
KVM: nVMX: no need to undo inject_page_fault change on nested vmexit
...
|
|
Instead of removing the fault handling portion of the stack trace based on
the fault handler's name, just use struct pt_regs directly.
Change kfence_handle_page_fault() to take a struct pt_regs, and plumb it
through to kfence_report_error() for out-of-bounds, use-after-free, or
invalid access errors, where pt_regs is used to generate the stack trace.
If the kernel is a DEBUG_KERNEL, also show registers for more information.
Link: https://lkml.kernel.org/r/20201105092133.2075331-1-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Suggested-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jann Horn <jannh@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Add architecture specific implementation details for KFENCE and enable
KFENCE for the x86 architecture. In particular, this implements the
required interface in <asm/kfence.h> for setting up the pool and
providing helper functions for protecting and unprotecting pages.
For x86, we need to ensure that the pool uses 4K pages, which is done
using the set_memory_4k() helper function.
[elver@google.com: add missing copyright and description header]
Link: https://lkml.kernel.org/r/20210118092159.145934-2-elver@google.com
Link: https://lkml.kernel.org/r/20201103175841.3495947-3-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Alexander Potapenko <glider@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Co-developed-by: Marco Elver <elver@google.com>
Reviewed-by: Jann Horn <jannh@google.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hillf Danton <hdanton@sina.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joern Engel <joern@purestorage.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: SeongJae Park <sjpark@amazon.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The 'mmu_page_hash' is used as hash table while 'active_mmu_pages' is a
list. Remove the misplaced comment as it's mostly stating the obvious
anyways.
Signed-off-by: Dongli Zhang <dongli.zhang@oracle.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210226061945.1222-1-dongli.zhang@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 irq entry updates from Thomas Gleixner:
"The irq stack switching was moved out of the ASM entry code in course
of the entry code consolidation. It ended up being suboptimal in
various ways.
This reworks the X86 irq stack handling:
- Make the stack switching inline so the stackpointer manipulation is
not longer at an easy to find place.
- Get rid of the unnecessary indirect call.
- Avoid the double stack switching in interrupt return and reuse the
interrupt stack for softirq handling.
- A objtool fix for CONFIG_FRAME_POINTER=y builds where it got
confused about the stack pointer manipulation"
* tag 'x86-entry-2021-02-24' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
objtool: Fix stack-swizzle for FRAME_POINTER=y
um: Enforce the usage of asm-generic/softirq_stack.h
x86/softirq/64: Inline do_softirq_own_stack()
softirq: Move do_softirq_own_stack() to generic asm header
softirq: Move __ARCH_HAS_DO_SOFTIRQ to Kconfig
x86: Select CONFIG_HAVE_IRQ_EXIT_ON_IRQ_STACK
x86/softirq: Remove indirection in do_softirq_own_stack()
x86/entry: Use run_sysvec_on_irqstack_cond() for XEN upcall
x86/entry: Convert device interrupts to inline stack switching
x86/entry: Convert system vectors to irq stack macro
x86/irq: Provide macro for inlining irq stack switching
x86/apic: Split out spurious handling code
x86/irq/64: Adjust the per CPU irq stack pointer by 8
x86/irq: Sanitize irq stack tracking
x86/entry: Fix instrumentation annotation
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull Simple Firmware Interface (SFI) support removal from Rafael Wysocki:
"Drop support for depercated platforms using SFI, drop the entire
support for SFI that has been long deprecated too and make some
janitorial changes on top of that (Andy Shevchenko)"
* tag 'sfi-removal-5.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
x86/platform/intel-mid: Update Copyright year and drop file names
x86/platform/intel-mid: Remove unused header inclusion in intel-mid.h
x86/platform/intel-mid: Drop unused __intel_mid_cpu_chip and Co.
x86/platform/intel-mid: Get rid of intel_scu_ipc_legacy.h
x86/PCI: Describe @reg for type1_access_ok()
x86/PCI: Get rid of custom x86 model comparison
sfi: Remove framework for deprecated firmware
cpufreq: sfi-cpufreq: Remove driver for deprecated firmware
media: atomisp: Remove unused header
mfd: intel_msic: Remove driver for deprecated platform
x86/apb_timer: Remove driver for deprecated platform
x86/platform/intel-mid: Remove unused leftovers (vRTC)
x86/platform/intel-mid: Remove unused leftovers (msic)
x86/platform/intel-mid: Remove unused leftovers (msic_thermal)
x86/platform/intel-mid: Remove unused leftovers (msic_power_btn)
x86/platform/intel-mid: Remove unused leftovers (msic_gpio)
x86/platform/intel-mid: Remove unused leftovers (msic_battery)
x86/platform/intel-mid: Remove unused leftovers (msic_ocd)
x86/platform/intel-mid: Remove unused leftovers (msic_audio)
platform/x86: intel_scu_wdt: Drop mistakenly added const
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc
Pull char/misc driver updates from Greg KH:
"Here is the large set of char/misc/whatever driver subsystem updates
for 5.12-rc1. Over time it seems like this tree is collecting more and
more tiny driver subsystems in one place, making it easier for those
maintainers, which is why this is getting larger.
Included in here are:
- coresight driver updates
- habannalabs driver updates
- virtual acrn driver addition (proper acks from the x86 maintainers)
- broadcom misc driver addition
- speakup driver updates
- soundwire driver updates
- fpga driver updates
- amba driver updates
- mei driver updates
- vfio driver updates
- greybus driver updates
- nvmeem driver updates
- phy driver updates
- mhi driver updates
- interconnect driver udpates
- fsl-mc bus driver updates
- random driver fix
- some small misc driver updates (rtsx, pvpanic, etc.)
All of these have been in linux-next for a while, with the only
reported issue being a merge conflict due to the dfl_device_id
addition from the fpga subsystem in here"
* tag 'char-misc-5.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: (311 commits)
spmi: spmi-pmic-arb: Fix hw_irq overflow
Documentation: coresight: Add PID tracing description
coresight: etm-perf: Support PID tracing for kernel at EL2
coresight: etm-perf: Clarify comment on perf options
ACRN: update MAINTAINERS: mailing list is subscribers-only
regmap: sdw-mbq: use MODULE_LICENSE("GPL")
regmap: sdw: use no_pm routines for SoundWire 1.2 MBQ
regmap: sdw: use _no_pm functions in regmap_read/write
soundwire: intel: fix possible crash when no device is detected
MAINTAINERS: replace my with email with replacements
mhi: Fix double dma free
uapi: map_to_7segment: Update example in documentation
uio: uio_pci_generic: don't fail probe if pdev->irq equals to IRQ_NOTCONNECTED
drivers/misc/vmw_vmci: restrict too big queue size in qp_host_alloc_queue
firewire: replace tricky statement by two simple ones
vme: make remove callback return void
firmware: google: make coreboot driver's remove callback return void
firmware: xilinx: Use explicit values for all enum values
sample/acrn: Introduce a sample of HSM ioctl interface usage
virt: acrn: Introduce an interface for Service VM to control vCPU
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull objtool updates from Thomas Gleixner:
- Make objtool work for big-endian cross compiles
- Make stack tracking via stack pointer memory operations match
push/pop semantics to prepare for architectures w/o PUSH/POP
instructions.
- Add support for analyzing alternatives
- Improve retpoline detection and handling
- Improve assembly code coverage on x86
- Provide support for inlined stack switching
* tag 'objtool-core-2021-02-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits)
objtool: Support stack-swizzle
objtool,x86: Additionally decode: mov %rsp, (%reg)
x86/unwind/orc: Change REG_SP_INDIRECT
x86/power: Support objtool validation in hibernate_asm_64.S
x86/power: Move restore_registers() to top of the file
x86/power: Annotate indirect branches as safe
x86/acpi: Support objtool validation in wakeup_64.S
x86/acpi: Annotate indirect branch as safe
x86/ftrace: Support objtool vmlinux.o validation in ftrace_64.S
x86/xen/pvh: Annotate indirect branch as safe
x86/xen: Support objtool vmlinux.o validation in xen-head.S
x86/xen: Support objtool validation in xen-asm.S
objtool: Add xen_start_kernel() to noreturn list
objtool: Combine UNWIND_HINT_RET_OFFSET and UNWIND_HINT_FUNC
objtool: Add asm version of STACK_FRAME_NON_STANDARD
objtool: Assume only ELF functions do sibling calls
x86/ftrace: Add UNWIND_HINT_FUNC annotation for ftrace_stub
objtool: Support retpoline jump detection for vmlinux.o
objtool: Fix ".cold" section suffix check for newer versions of GCC
objtool: Fix retpoline detection in asm code
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Pull crypto update from Herbert Xu:
"API:
- Restrict crypto_cipher to internal API users only.
Algorithms:
- Add x86 aesni acceleration for cts.
- Improve x86 aesni acceleration for xts.
- Remove x86 acceleration of some uncommon algorithms.
- Remove RIPE-MD, Tiger and Salsa20.
- Remove tnepres.
- Add ARM acceleration for BLAKE2s and BLAKE2b.
Drivers:
- Add Keem Bay OCS HCU driver.
- Add Marvell OcteonTX2 CPT PF driver.
- Remove PicoXcell driver.
- Remove mediatek driver"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (154 commits)
hwrng: timeriomem - Use device-managed registration API
crypto: hisilicon/qm - fix printing format issue
crypto: hisilicon/qm - do not reset hardware when CE happens
crypto: hisilicon/qm - update irqflag
crypto: hisilicon/qm - fix the value of 'QM_SQC_VFT_BASE_MASK_V2'
crypto: hisilicon/qm - fix request missing error
crypto: hisilicon/qm - removing driver after reset
crypto: octeontx2 - fix -Wpointer-bool-conversion warning
crypto: hisilicon/hpre - enable Elliptic curve cryptography
crypto: hisilicon - PASID fixed on Kunpeng 930
crypto: hisilicon/qm - fix use of 'dma_map_single'
crypto: hisilicon/hpre - tiny fix
crypto: hisilicon/hpre - adapt the number of clusters
crypto: cpt - remove casting dma_alloc_coherent
crypto: keembay-ocs-aes - Fix 'q' assignment during CCM B0 generation
crypto: xor - Fix typo of optimization
hwrng: optee - Use device-managed registration API
crypto: arm64/crc-t10dif - move NEON yield to C code
crypto: arm64/aes-ce-mac - simplify NEON yield
crypto: arm64/aes-neonbs - remove NEON yield calls
...
|
|
Pull KVM updates from Paolo Bonzini:
"x86:
- Support for userspace to emulate Xen hypercalls
- Raise the maximum number of user memslots
- Scalability improvements for the new MMU.
Instead of the complex "fast page fault" logic that is used in
mmu.c, tdp_mmu.c uses an rwlock so that page faults are concurrent,
but the code that can run against page faults is limited. Right now
only page faults take the lock for reading; in the future this will
be extended to some cases of page table destruction. I hope to
switch the default MMU around 5.12-rc3 (some testing was delayed
due to Chinese New Year).
- Cleanups for MAXPHYADDR checks
- Use static calls for vendor-specific callbacks
- On AMD, use VMLOAD/VMSAVE to save and restore host state
- Stop using deprecated jump label APIs
- Workaround for AMD erratum that made nested virtualization
unreliable
- Support for LBR emulation in the guest
- Support for communicating bus lock vmexits to userspace
- Add support for SEV attestation command
- Miscellaneous cleanups
PPC:
- Support for second data watchpoint on POWER10
- Remove some complex workarounds for buggy early versions of POWER9
- Guest entry/exit fixes
ARM64:
- Make the nVHE EL2 object relocatable
- Cleanups for concurrent translation faults hitting the same page
- Support for the standard TRNG hypervisor call
- A bunch of small PMU/Debug fixes
- Simplification of the early init hypercall handling
Non-KVM changes (with acks):
- Detection of contended rwlocks (implemented only for qrwlocks,
because KVM only needs it for x86)
- Allow __DISABLE_EXPORTS from assembly code
- Provide a saner follow_pfn replacements for modules"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (192 commits)
KVM: x86/xen: Explicitly pad struct compat_vcpu_info to 64 bytes
KVM: selftests: Don't bother mapping GVA for Xen shinfo test
KVM: selftests: Fix hex vs. decimal snafu in Xen test
KVM: selftests: Fix size of memslots created by Xen tests
KVM: selftests: Ignore recently added Xen tests' build output
KVM: selftests: Add missing header file needed by xAPIC IPI tests
KVM: selftests: Add operand to vmsave/vmload/vmrun in svm.c
KVM: SVM: Make symbol 'svm_gp_erratum_intercept' static
locking/arch: Move qrwlock.h include after qspinlock.h
KVM: PPC: Book3S HV: Fix host radix SLB optimisation with hash guests
KVM: PPC: Book3S HV: Ensure radix guest has no SLB entries
KVM: PPC: Don't always report hash MMU capability for P9 < DD2.2
KVM: PPC: Book3S HV: Save and restore FSCR in the P9 path
KVM: PPC: remove unneeded semicolon
KVM: PPC: Book3S HV: Use POWER9 SLBIA IH=6 variant to clear SLB
KVM: PPC: Book3S HV: No need to clear radix host SLB before loading HPT guest
KVM: PPC: Book3S HV: Fix radix guest SLB side channel
KVM: PPC: Book3S HV: Remove support for running HPT guest on RPT host without mixed mode support
KVM: PPC: Book3S HV: Introduce new capability for 2nd DAWR
KVM: PPC: Book3S HV: Add infrastructure to support 2nd DAWR
...
|