Age | Commit message (Collapse) | Author | Files | Lines |
|
The utilization of arch_scale_freq_tick() for CPU frequency readouts is
incomplete as it failed to move the function prototype and the define
out of the CONFIG_SMP && CONFIG_X86_64 #ifdef.
Make them unconditionally available.
Fixes: bb6e89df9028 ("x86/aperfmperf: Make parts of the frequency invariance code unconditional")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/lkml/202205010106.06xRBR2C-lkp@intel.com
|
|
The frequency invariance support is currently limited to x86/64 and SMP,
which is the vast majority of machines.
arch_scale_freq_tick() is called every tick on all CPUs and reads the APERF
and MPERF MSRs. The CPU frequency getters function do the same via dedicated
IPIs.
While it could be argued that on systems where frequency invariance support
is disabled (32bit, !SMP) the per tick read of the APERF and MPERF MSRs can
be avoided, it does not make sense to keep the extra code and the resulting
runtime issues of mass IPIs around.
As a first step split out the non frequency invariance specific
initialization code and the read MSR portion of arch_scale_freq_tick(). The
rest of the code is still conditional and guarded with a static key.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/r/20220415161206.761988704@linutronix.de
|
|
AMD boot CPU initialization happens late via ACPI/CPPC which prevents the
Intel parts from being marked __init.
Split out the common code and provide a dedicated interface for the AMD
initialization and mark the Intel specific code and data __init.
The remaining text size is almost cut in half:
text: 2614 -> 1350
init.text: 0 -> 786
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/r/20220415161206.592465719@linutronix.de
|
|
This code is convoluted and because it can be invoked post init via the
ACPI/CPPC code, all of the initialization functionality is built in instead
of being part of init text and init data.
As a first step create separate calls for the boot and the application
processors.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/r/20220415161206.536733494@linutronix.de
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI updates from Rafael Wysocki:
"From the new functionality perspective, the most significant items
here are the new driver for the 'ARM Generic Diagnostic Dump and
Reset' device, the extension of fine grain fan control in the ACPI fan
driver, and the change making it possible to use CPPC information to
obtain CPU capacity.
There are also a few new quirks, a bunch of fixes, including the
platform-level _OSC handling change to make it actually take the
platform firmware response into account, some code and documentation
cleanups, and a notable update of the ACPI device enumeration
documentation.
Specifics:
- Use uintptr_t and offsetof() in the ACPICA code to avoid compiler
warnings regarding NULL pointer arithmetic (Rafael Wysocki).
- Fix possible NULL pointer dereference in acpi_ns_walk_namespace()
when passed "acpi=off" in the command line (Rafael Wysocki).
- Fix and clean up acpi_os_read/write_port() (Rafael Wysocki).
- Introduce acpi_bus_for_each_dev() and use it for walking all ACPI
device objects in the Type C code (Rafael Wysocki).
- Fix the _OSC platform capabilities negotioation and prevent CPPC
from being used if the platform firmware indicates that it not
supported via _OSC (Rafael Wysocki).
- Use ida_alloc() instead of ida_simple_get() for ACPI enumeration of
devices (Rafael Wysocki).
- Add AGDI and CEDT to the list of known ACPI table signatures (Ilkka
Koskinen, Robert Kiraly).
- Add power management debug messages related to suspend-to-idle in
two places (Rafael Wysocki).
- Fix __acpi_node_get_property_reference() return value and clean up
that function (Andy Shevchenko, Sakari Ailus).
- Fix return value of the __setup handler in the ACPI PM timer clock
source driver (Randy Dunlap).
- Clean up double words in two comments (Tom Rix).
- Add "skip i2c clients" quirks for Lenovo Yoga Tablet 1050F/L and
Nextbook Ares 8 (Hans de Goede).
- Clean up frequency invariance handling on x86 in the ACPI CPPC
library (Huang Rui).
- Work around broken XSDT on the Advantech DAC-BJ01 board (Mark
Cilissen).
- Make wakeup events checks in the ACPI EC driver more
straightforward and clean up acpi_ec_submit_event() (Rafael
Wysocki).
- Make it possible to obtain the CPU capacity with the help of CPPC
information (Ionela Voinescu).
- Improve fine grained fan control in the ACPI fan driver and
document it (Srinivas Pandruvada).
- Add device HID and quirk for Microsoft Surface Go 3 to the ACPI
battery driver (Maximilian Luz).
- Make the ACPI driver for Intel SoCs (LPSS) let the SPI driver know
the exact type of the controller (Andy Shevchenko).
- Force native backlight mode on Clevo NL5xRU and NL5xNU (Werner
Sembach).
- Fix return value of __setup handlers in the APEI code (Randy
Dunlap).
- Add Arm Generic Diagnostic Dump and Reset device driver (Ilkka
Koskinen).
- Limit printable size of BERT table data (Darren Hart).
- Fix up HEST and GHES initialization (Shuai Xue).
- Update the ACPI device enumeration documentation and unify the ASL
style in GPIO-related examples (Andy Shevchenko)"
* tag 'acpi-5.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (52 commits)
clocksource: acpi_pm: fix return value of __setup handler
ACPI: bus: Avoid using CPPC if not supported by firmware
Revert "ACPI: Pass the same capabilities to the _OSC regardless of the query flag"
ACPI: video: Force backlight native for Clevo NL5xRU and NL5xNU
arm64, topology: enable use of init_cpu_capacity_cppc()
arch_topology: obtain cpu capacity using information from CPPC
x86, ACPI: rename init_freq_invariance_cppc() to arch_init_invariance_cppc()
ACPI: AGDI: Add driver for Arm Generic Diagnostic Dump and Reset device
ACPI: tables: Add AGDI to the list of known table signatures
ACPI/APEI: Limit printable size of BERT table data
ACPI: docs: gpio-properties: Unify ASL style for GPIO examples
ACPI / x86: Work around broken XSDT on Advantech DAC-BJ01 board
ACPI: APEI: fix return value of __setup handlers
x86/ACPI: CPPC: Move init_freq_invariance_cppc() into x86 CPPC
x86: Expose init_freq_invariance() to topology header
x86/ACPI: CPPC: Move AMD maximum frequency ratio setting function into x86 CPPC
x86/ACPI: CPPC: Rename cppc_msr.c to cppc.c
ACPI / x86: Add skip i2c clients quirk for Lenovo Yoga Tablet 1050F/L
ACPI / x86: Add skip i2c clients quirk for Nextbook Ares 8
ACPICA: Avoid walking the ACPI Namespace if it is not there
...
|
|
init_freq_invariance_cppc() was called in acpi_cppc_processor_probe(),
after CPU performance information and controls were populated from the
per-cpu _CPC objects.
But these _CPC objects provide information that helps with both CPU
(u-arch) and frequency invariance. Therefore, change the function name
to a more generic one, while adding the arch_ prefix, as this function
is expected to be defined differently by different architectures.
Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
The init_freq_invariance_cppc code actually doesn't need the SMP
functionality. So setting the CONFIG_SMP as the check condition for
init_freq_invariance_cppc may cause the confusion to misunderstand the
CPPC. And the x86 CPPC file is better space to store the CPPC related
functions, while the init_freq_invariance_cppc is out of smpboot, that
means, the CONFIG_SMP won't be mandatory condition any more. And It's more
clear than before.
Signed-off-by: Huang Rui <ray.huang@amd.com>
[ rjw: Subject adjustment ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
The function init_freq_invariance will be used on x86 CPPC, so expose it in
the topology header.
Signed-off-by: Huang Rui <ray.huang@amd.com>
[ rjw: Subject adjustment ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
The AMD maximum frequency ratio setting function depends on CPPC, so the
x86 CPPC implementation file is better space for this function.
Signed-off-by: Huang Rui <ray.huang@amd.com>
[ rjw: Subject adjustment ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
PPIN is the Protected Processor Identification Number.
This is used to identify the socket as a Field Replaceable Unit (FRU).
Existing code only displays this when reporting errors. But this makes
it inconvenient for large clusters to use it for its intended purpose
of inventory control.
Add ppin to /sys/devices/system/cpu/cpu*/topology to make what
is already available using RDMSR more easily accessible. Make
the file read only for root in case there are still people
concerned about making a unique system "serial number" available.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Link: https://lore.kernel.org/r/20220131230111.2004669-6-tony.luck@intel.com
|
|
The init_freq_invariance_cppc function is implemented in smpboot and depends on
CONFIG_SMP.
MODPOST vmlinux.symvers
MODINFO modules.builtin.modinfo
GEN modules.builtin
LD .tmp_vmlinux.kallsyms1
ld: drivers/acpi/cppc_acpi.o: in function `acpi_cppc_processor_probe':
/home/ray/brahma3/linux/drivers/acpi/cppc_acpi.c:819: undefined reference to `init_freq_invariance_cppc'
make: *** [Makefile:1161: vmlinux] Error 1
See https://lore.kernel.org/lkml/484af487-7511-647e-5c5b-33d4429acdec@infradead.org/.
Fixes: 41ea667227ba ("x86, sched: Calculate frequency invariance for AMD systems")
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Huang Rui <ray.huang@amd.com>
[ rjw: Subject edits ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
There are x86 CPU architectures (e.g. Jacobsville) where L2 cahce is
shared among a cluster of cores instead of being exclusive to one
single core.
To prevent oversubscription of L2 cache, load should be balanced
between such L2 clusters, especially for tasks with no shared data.
On benchmark such as SPECrate mcf test, this change provides a boost
to performance especially on medium load system on Jacobsville. on a
Jacobsville that has 24 Atom cores, arranged into 6 clusters of 4
cores each, the benchmark number is as follow:
Improvement over baseline kernel for mcf_r
copies run time base rate
1 -0.1% -0.2%
6 25.1% 25.1%
12 18.8% 19.0%
24 0.3% 0.3%
So this looks pretty good. In terms of the system's task distribution,
some pretty bad clumping can be seen for the vanilla kernel without
the L2 cluster domain for the 6 and 12 copies case. With the extra
domain for cluster, the load does get evened out between the clusters.
Note this patch isn't an universal win as spreading isn't necessarily
a win, particually for those workload who can benefit from packing.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Barry Song <song.bao.hua@hisilicon.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210924085104.44806-4-21cnbao@gmail.com
|
|
Move it outside of CONFIG_SMP in order to avoid ifdeffery at the usage
sites.
Fixes: 76e2fc63ca40 ("x86/cpu/amd: Set __max_die_per_package on AMD")
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210114111814.5346-1-bp@alien8.de
|
|
This is the first pass in creating the ability to calculate the
frequency invariance on AMD systems. This approach uses the CPPC
highest performance and nominal performance values that range from
0 - 255 instead of a high and base frquency. This is because we do
not have the ability on AMD to get a highest frequency value.
On AMD systems the highest performance and nominal performance
vaues do correspond to the highest and base frequencies for the system
so using them should produce an appropriate ratio but some tweaking
is likely necessary.
Due to CPPC being initialized later in boot than when the frequency
invariant calculation is currently made, I had to create a callback
from the CPPC init code to do the calculation after we have CPPC
data.
Special thanks to "kernel test robot <lkp@intel.com>" for reporting that
compilation of drivers/acpi/cppc_acpi.c is conditional to
CONFIG_ACPI_CPPC_LIB, not just CONFIG_ACPI.
[ ggherdovich@suse.cz: made safe under CPU hotplug, edited changelog. ]
Signed-off-by: Nathan Fontenot <nathan.fontenot@amd.com>
Signed-off-by: Giovanni Gherdovich <ggherdovich@suse.cz>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20201112182614.10700-2-ggherdovich@suse.cz
|
|
The product mcnt * arch_max_freq_ratio can overflows u64.
For context, a large value for arch_max_freq_ratio would be 5000,
corresponding to a turbo_freq/base_freq ratio of 5 (normally it's more like
1500-2000). A large increment frequency for the MPERF counter would be 5GHz
(the base clock of all CPUs on the market today is less than that). With
these figures, a CPU would need to go without a scheduler tick for around 8
days for the u64 overflow to happen. It is unlikely, but the check is
warranted.
Under similar conditions, the difference acnt of two consecutive APERF
readings can overflow as well.
In these circumstances is appropriate to disable frequency invariant
accounting: the feature relies on measures of the clock frequency done at
every scheduler tick, which need to be "fresh" to be at all meaningful.
A note on i386: prior to version 5.1, the GCC compiler didn't have the
builtin function __builtin_mul_overflow. In these GCC versions the macro
check_mul_overflow needs __udivdi3() to do (u64)a/b, which the kernel
doesn't provide. For this reason this change fails to build on i386 if
GCC<5.1, and we protect the entire frequency invariant code behind
CONFIG_X86_64 (special thanks to "kbuild test robot" <lkp@intel.com>).
Fixes: 1567c3e3467c ("x86, sched: Add support for frequency invariance")
Signed-off-by: Giovanni Gherdovich <ggherdovich@suse.cz>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lkml.kernel.org/r/20200531182453.15254-2-ggherdovich@suse.cz
|
|
invariance
On some platforms such as the Dell XPS 13 laptop the firmware disables turbo
when the machine is disconnected from AC, and viceversa it enables it again
when it's reconnected. In these cases a _PPC ACPI notification is issued.
The scheduler needs to know freq_max for frequency-invariant calculations.
To account for turbo availability to come and go, record freq_max at boot as
if turbo was available and store it in a helper variable. Use a setter
function to swap between freq_base and freq_max every time turbo goes off or on.
Signed-off-by: Giovanni Gherdovich <ggherdovich@suse.cz>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lkml.kernel.org/r/20200122151617.531-7-ggherdovich@suse.cz
|
|
Implement arch_scale_freq_capacity() for 'modern' x86. This function
is used by the scheduler to correctly account usage in the face of
DVFS.
The present patch addresses Intel processors specifically and has positive
performance and performance-per-watt implications for the schedutil cpufreq
governor, bringing it closer to, if not on-par with, the powersave governor
from the intel_pstate driver/framework.
Large performance gains are obtained when the machine is lightly loaded and
no regression are observed at saturation. The benchmarks with the largest
gains are kernel compilation, tbench (the networking version of dbench) and
shell-intensive workloads.
1. FREQUENCY INVARIANCE: MOTIVATION
* Without it, a task looks larger if the CPU runs slower
2. PECULIARITIES OF X86
* freq invariance accounting requires knowing the ratio freq_curr/freq_max
2.1 CURRENT FREQUENCY
* Use delta_APERF / delta_MPERF * freq_base (a.k.a "BusyMHz")
2.2 MAX FREQUENCY
* It varies with time (turbo). As an approximation, we set it to a
constant, i.e. 4-cores turbo frequency.
3. EFFECTS ON THE SCHEDUTIL FREQUENCY GOVERNOR
* The invariant schedutil's formula has no feedback loop and reacts faster
to utilization changes
4. KNOWN LIMITATIONS
* In some cases tasks can't reach max util despite how hard they try
5. PERFORMANCE TESTING
5.1 MACHINES
* Skylake, Broadwell, Haswell
5.2 SETUP
* baseline Linux v5.2 w/ non-invariant schedutil. Tested freq_max = 1-2-3-4-8-12
active cores turbo w/ invariant schedutil, and intel_pstate/powersave
5.3 BENCHMARK RESULTS
5.3.1 NEUTRAL BENCHMARKS
* NAS Parallel Benchmark (HPC), hackbench
5.3.2 NON-NEUTRAL BENCHMARKS
* tbench (10-30% better), kernbench (10-15% better),
shell-intensive-scripts (30-50% better)
* no regressions
5.3.3 SELECTION OF DETAILED RESULTS
5.3.4 POWER CONSUMPTION, PERFORMANCE-PER-WATT
* dbench (5% worse on one machine), kernbench (3% worse),
tbench (5-10% better), shell-intensive-scripts (10-40% better)
6. MICROARCH'ES ADDRESSED HERE
* Xeon Core before Scalable Performance processors line (Xeon Gold/Platinum
etc have different MSRs semantic for querying turbo levels)
7. REFERENCES
* MMTests performance testing framework, github.com/gormanm/mmtests
+-------------------------------------------------------------------------+
| 1. FREQUENCY INVARIANCE: MOTIVATION
+-------------------------------------------------------------------------+
For example; suppose a CPU has two frequencies: 500 and 1000 Mhz. When
running a task that would consume 1/3rd of a CPU at 1000 MHz, it would
appear to consume 2/3rd (or 66.6%) when running at 500 MHz, giving the
false impression this CPU is almost at capacity, even though it can go
faster [*]. In a nutshell, without frequency scale-invariance tasks look
larger just because the CPU is running slower.
[*] (footnote: this assumes a linear frequency/performance relation; which
everybody knows to be false, but given realities its the best approximation
we can make.)
+-------------------------------------------------------------------------+
| 2. PECULIARITIES OF X86
+-------------------------------------------------------------------------+
Accounting for frequency changes in PELT signals requires the computation of
the ratio freq_curr / freq_max. On x86 neither of those terms is readily
available.
2.1 CURRENT FREQUENCY
====================
Since modern x86 has hardware control over the actual frequency we run
at (because amongst other things, Turbo-Mode), we cannot simply use
the frequency as requested through cpufreq.
Instead we use the APERF/MPERF MSRs to compute the effective frequency
over the recent past. Also, because reading MSRs is expensive, don't
do so every time we need the value, but amortize the cost by doing it
every tick.
2.2 MAX FREQUENCY
=================
Obtaining freq_max is also non-trivial because at any time the hardware can
provide a frequency boost to a selected subset of cores if the package has
enough power to spare (eg: Turbo Boost). This means that the maximum frequency
available to a given core changes with time.
The approach taken in this change is to arbitrarily set freq_max to a constant
value at boot. The value chosen is the "4-cores (4C) turbo frequency" on most
microarchitectures, after evaluating the following candidates:
* 1-core (1C) turbo frequency (the fastest turbo state available)
* around base frequency (a.k.a. max P-state)
* something in between, such as 4C turbo
To interpret these options, consider that this is the denominator in
freq_curr/freq_max, and that ratio will be used to scale PELT signals such as
util_avg and load_avg. A large denominator will undershoot (util_avg looks a
bit smaller than it really is), viceversa with a smaller denominator PELT
signals will tend to overshoot. Given that PELT drives frequency selection
in the schedutil governor, we will have:
freq_max set to | effect on DVFS
--------------------+------------------
1C turbo | power efficiency (lower freq choices)
base freq | performance (higher util_avg, higher freq requests)
4C turbo | a bit of both
4C turbo proves to be a good compromise in a number of benchmarks (see below).
+-------------------------------------------------------------------------+
| 3. EFFECTS ON THE SCHEDUTIL FREQUENCY GOVERNOR
+-------------------------------------------------------------------------+
Once an architecture implements a frequency scale-invariant utilization (the
PELT signal util_avg), schedutil switches its frequency selection formula from
freq_next = 1.25 * freq_curr * util [non-invariant util signal]
to
freq_next = 1.25 * freq_max * util [invariant util signal]
where, in the second formula, freq_max is set to the 1C turbo frequency (max
turbo). The advantage of the second formula, whose usage we unlock with this
patch, is that freq_next doesn't depend on the current frequency in an
iterative fashion, but can jump to any frequency in a single update. This
absence of feedback in the formula makes it quicker to react to utilization
changes and more robust against pathological instabilities.
Compare it to the update formula of intel_pstate/powersave:
freq_next = 1.25 * freq_max * Busy%
where again freq_max is 1C turbo and Busy% is the percentage of time not spent
idling (calculated with delta_MPERF / delta_TSC); essentially the same as
invariant schedutil, and largely responsible for intel_pstate/powersave good
reputation. The non-invariant schedutil formula is derived from the invariant
one by approximating util_inv with util_raw * freq_curr / freq_max, but this
has limitations.
Testing shows improved performances due to better frequency selections when
the machine is lightly loaded, and essentially no change in behaviour at
saturation / overutilization.
+-------------------------------------------------------------------------+
| 4. KNOWN LIMITATIONS
+-------------------------------------------------------------------------+
It's been shown that it is possible to create pathological scenarios where a
CPU-bound task cannot reach max utilization, if the normalizing factor
freq_max is fixed to a constant value (see [Lelli-2018]).
If freq_max is set to 4C turbo as we do here, one needs to peg at least 5
cores in a package doing some busywork, and observe that none of those task
will ever reach max util (1024) because they're all running at less than the
4C turbo frequency.
While this concern still applies, we believe the performance benefit of
frequency scale-invariant PELT signals outweights the cost of this limitation.
[Lelli-2018]
https://lore.kernel.org/lkml/20180517150418.GF22493@localhost.localdomain/
+-------------------------------------------------------------------------+
| 5. PERFORMANCE TESTING
+-------------------------------------------------------------------------+
5.1 MACHINES
============
We tested the patch on three machines, with Skylake, Broadwell and Haswell
CPUs. The details are below, together with the available turbo ratios as
reported by the appropriate MSRs.
* 8x-SKYLAKE-UMA:
Single socket E3-1240 v5, Skylake 4 cores/8 threads
Max EFFiciency, BASE frequency and available turbo levels (MHz):
EFFIC 800 |********
BASE 3500 |***********************************
4C 3700 |*************************************
3C 3800 |**************************************
2C 3900 |***************************************
1C 3900 |***************************************
* 80x-BROADWELL-NUMA:
Two sockets E5-2698 v4, 2x Broadwell 20 cores/40 threads
Max EFFiciency, BASE frequency and available turbo levels (MHz):
EFFIC 1200 |************
BASE 2200 |**********************
8C 2900 |*****************************
7C 3000 |******************************
6C 3100 |*******************************
5C 3200 |********************************
4C 3300 |*********************************
3C 3400 |**********************************
2C 3600 |************************************
1C 3600 |************************************
* 48x-HASWELL-NUMA
Two sockets E5-2670 v3, 2x Haswell 12 cores/24 threads
Max EFFiciency, BASE frequency and available turbo levels (MHz):
EFFIC 1200 |************
BASE 2300 |***********************
12C 2600 |**************************
11C 2600 |**************************
10C 2600 |**************************
9C 2600 |**************************
8C 2600 |**************************
7C 2600 |**************************
6C 2600 |**************************
5C 2700 |***************************
4C 2800 |****************************
3C 2900 |*****************************
2C 3100 |*******************************
1C 3100 |*******************************
5.2 SETUP
=========
* The baseline is Linux v5.2 with schedutil (non-invariant) and the intel_pstate
driver in passive mode.
* The rationale for choosing the various freq_max values to test have been to
try all the 1-2-3-4C turbo levels (note that 1C and 2C turbo are identical
on all machines), plus one more value closer to base_freq but still in the
turbo range (8C turbo for both 80x-BROADWELL-NUMA and 48x-HASWELL-NUMA).
* In addition we've run all tests with intel_pstate/powersave for comparison.
* The filesystem is always XFS, the userspace is openSUSE Leap 15.1.
* 8x-SKYLAKE-UMA is capable of HWP (Hardware-Managed P-States), so the runs
with active intel_pstate on this machine use that.
This gives, in terms of combinations tested on each machine:
* 8x-SKYLAKE-UMA
* Baseline: Linux v5.2, non-invariant schedutil, intel_pstate passive
* intel_pstate active + powersave + HWP
* invariant schedutil, freq_max = 1C turbo
* invariant schedutil, freq_max = 3C turbo
* invariant schedutil, freq_max = 4C turbo
* both 80x-BROADWELL-NUMA and 48x-HASWELL-NUMA
* [same as 8x-SKYLAKE-UMA, but no HWP capable]
* invariant schedutil, freq_max = 8C turbo
(which on 48x-HASWELL-NUMA is the same as 12C turbo, or "all cores turbo")
5.3 BENCHMARK RESULTS
=====================
5.3.1 NEUTRAL BENCHMARKS
------------------------
Tests that didn't show any measurable difference in performance on any of the
test machines between non-invariant schedutil and our patch are:
* NAS Parallel Benchmarks (NPB) using either MPI or openMP for IPC, any
computational kernel
* flexible I/O (FIO)
* hackbench (using threads or processes, and using pipes or sockets)
5.3.2 NON-NEUTRAL BENCHMARKS
----------------------------
What follow are summary tables where each benchmark result is given a score.
* A tilde (~) means a neutral result, i.e. no difference from baseline.
* Scores are computed with the ratio result_new / result_baseline, so a tilde
means a score of 1.00.
* The results in the score ratio are the geometric means of results running
the benchmark with different parameters (eg: for kernbench: using 1, 2, 4,
... number of processes; for pgbench: varying the number of clients, and so
on).
* The first three tables show higher-is-better kind of tests (i.e. measured in
operations/second), the subsequent three show lower-is-better kind of tests
(i.e. the workload is fixed and we measure elapsed time, think kernbench).
* "gitsource" is a name we made up for the test consisting in running the
entire unit tests suite of the Git SCM and measuring how long it takes. We
take it as a typical example of shell-intensive serialized workload.
* In the "I_PSTATE" column we have the results for intel_pstate/powersave. Other
columns show invariant schedutil for different values of freq_max. 4C turbo
is circled as it's the value we've chosen for the final implementation.
80x-BROADWELL-NUMA (comparison ratio; higher is better)
+------+
I_PSTATE 1C 3C | 4C | 8C
pgbench-ro 1.14 ~ ~ | 1.11 | 1.14
pgbench-rw ~ ~ ~ | ~ | ~
netperf-udp 1.06 ~ 1.06 | 1.05 | 1.07
netperf-tcp ~ 1.03 ~ | 1.01 | 1.02
tbench4 1.57 1.18 1.22 | 1.30 | 1.56
+------+
8x-SKYLAKE-UMA (comparison ratio; higher is better)
+------+
I_PSTATE/HWP 1C 3C | 4C |
pgbench-ro ~ ~ ~ | ~ |
pgbench-rw ~ ~ ~ | ~ |
netperf-udp ~ ~ ~ | ~ |
netperf-tcp ~ ~ ~ | ~ |
tbench4 1.30 1.14 1.14 | 1.16 |
+------+
48x-HASWELL-NUMA (comparison ratio; higher is better)
+------+
I_PSTATE 1C 3C | 4C | 12C
pgbench-ro 1.15 ~ ~ | 1.06 | 1.16
pgbench-rw ~ ~ ~ | ~ | ~
netperf-udp 1.05 0.97 1.04 | 1.04 | 1.02
netperf-tcp 0.96 1.01 1.01 | 1.01 | 1.01
tbench4 1.50 1.05 1.13 | 1.13 | 1.25
+------+
In the table above we see that active intel_pstate is slightly better than our
4C-turbo patch (both in reference to the baseline non-invariant schedutil) on
read-only pgbench and much better on tbench. Both cases are notable in which
it shows that lowering our freq_max (to 8C-turbo and 12C-turbo on
80x-BROADWELL-NUMA and 48x-HASWELL-NUMA respectively) helps invariant
schedutil to get closer.
If we ignore active intel_pstate and focus on the comparison with baseline
alone, there are several instances of double-digit performance improvement.
80x-BROADWELL-NUMA (comparison ratio; lower is better)
+------+
I_PSTATE 1C 3C | 4C | 8C
dbench4 1.23 0.95 0.95 | 0.95 | 0.95
kernbench 0.93 0.83 0.83 | 0.83 | 0.82
gitsource 0.98 0.49 0.49 | 0.49 | 0.48
+------+
8x-SKYLAKE-UMA (comparison ratio; lower is better)
+------+
I_PSTATE/HWP 1C 3C | 4C |
dbench4 ~ ~ ~ | ~ |
kernbench ~ ~ ~ | ~ |
gitsource 0.92 0.55 0.55 | 0.55 |
+------+
48x-HASWELL-NUMA (comparison ratio; lower is better)
+------+
I_PSTATE 1C 3C | 4C | 8C
dbench4 ~ ~ ~ | ~ | ~
kernbench 0.94 0.90 0.89 | 0.90 | 0.90
gitsource 0.97 0.69 0.69 | 0.69 | 0.69
+------+
dbench is not very remarkable here, unless we notice how poorly active
intel_pstate is performing on 80x-BROADWELL-NUMA: 23% regression versus
non-invariant schedutil. We repeated that run getting consistent results. Out
of scope for the patch at hand, but deserving future investigation. Other than
that, we previously ran this campaign with Linux v5.0 and saw the patch doing
better on dbench a the time. We haven't checked closely and can only speculate
at this point.
On the NUMA boxes kernbench gets 10-15% improvements on average; we'll see in
the detailed tables that the gains concentrate on low process counts (lightly
loaded machines).
The test we call "gitsource" (running the git unit test suite, a long-running
single-threaded shell script) appears rather spectacular in this table (gains
of 30-50% depending on the machine). It is to be noted, however, that
gitsource has no adjustable parameters (such as the number of jobs in
kernbench, which we average over in order to get a single-number summary
score) and is exactly the kind of low-parallelism workload that benefits the
most from this patch. When looking at the detailed tables of kernbench or
tbench4, at low process or client counts one can see similar numbers.
5.3.3 SELECTION OF DETAILED RESULTS
-----------------------------------
Machine : 48x-HASWELL-NUMA
Benchmark : tbench4 (i.e. dbench4 over the network, actually loopback)
Varying parameter : number of clients
Unit : MB/sec (higher is better)
5.2.0 vanilla (BASELINE) 5.2.0 intel_pstate 5.2.0 1C-turbo
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Hmean 1 126.73 +- 0.31% ( ) 315.91 +- 0.66% ( 149.28%) 125.03 +- 0.76% ( -1.34%)
Hmean 2 258.04 +- 0.62% ( ) 614.16 +- 0.51% ( 138.01%) 269.58 +- 1.45% ( 4.47%)
Hmean 4 514.30 +- 0.67% ( ) 1146.58 +- 0.54% ( 122.94%) 533.84 +- 1.99% ( 3.80%)
Hmean 8 1111.38 +- 2.52% ( ) 2159.78 +- 0.38% ( 94.33%) 1359.92 +- 1.56% ( 22.36%)
Hmean 16 2286.47 +- 1.36% ( ) 3338.29 +- 0.21% ( 46.00%) 2720.20 +- 0.52% ( 18.97%)
Hmean 32 4704.84 +- 0.35% ( ) 4759.03 +- 0.43% ( 1.15%) 4774.48 +- 0.30% ( 1.48%)
Hmean 64 7578.04 +- 0.27% ( ) 7533.70 +- 0.43% ( -0.59%) 7462.17 +- 0.65% ( -1.53%)
Hmean 128 6998.52 +- 0.16% ( ) 6987.59 +- 0.12% ( -0.16%) 6909.17 +- 0.14% ( -1.28%)
Hmean 192 6901.35 +- 0.25% ( ) 6913.16 +- 0.10% ( 0.17%) 6855.47 +- 0.21% ( -0.66%)
5.2.0 3C-turbo 5.2.0 4C-turbo 5.2.0 12C-turbo
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Hmean 1 128.43 +- 0.28% ( 1.34%) 130.64 +- 3.81% ( 3.09%) 153.71 +- 5.89% ( 21.30%)
Hmean 2 311.70 +- 6.15% ( 20.79%) 281.66 +- 3.40% ( 9.15%) 305.08 +- 5.70% ( 18.23%)
Hmean 4 641.98 +- 2.32% ( 24.83%) 623.88 +- 5.28% ( 21.31%) 906.84 +- 4.65% ( 76.32%)
Hmean 8 1633.31 +- 1.56% ( 46.96%) 1714.16 +- 0.93% ( 54.24%) 2095.74 +- 0.47% ( 88.57%)
Hmean 16 3047.24 +- 0.42% ( 33.27%) 3155.02 +- 0.30% ( 37.99%) 3634.58 +- 0.15% ( 58.96%)
Hmean 32 4734.31 +- 0.60% ( 0.63%) 4804.38 +- 0.23% ( 2.12%) 4674.62 +- 0.27% ( -0.64%)
Hmean 64 7699.74 +- 0.35% ( 1.61%) 7499.72 +- 0.34% ( -1.03%) 7659.03 +- 0.25% ( 1.07%)
Hmean 128 6935.18 +- 0.15% ( -0.91%) 6942.54 +- 0.10% ( -0.80%) 7004.85 +- 0.12% ( 0.09%)
Hmean 192 6901.62 +- 0.12% ( 0.00%) 6856.93 +- 0.10% ( -0.64%) 6978.74 +- 0.10% ( 1.12%)
This is one of the cases where the patch still can't surpass active
intel_pstate, not even when freq_max is as low as 12C-turbo. Otherwise, gains are
visible up to 16 clients and the saturated scenario is the same as baseline.
The scores in the summary table from the previous sections are ratios of
geometric means of the results over different clients, as seen in this table.
Machine : 80x-BROADWELL-NUMA
Benchmark : kernbench (kernel compilation)
Varying parameter : number of jobs
Unit : seconds (lower is better)
5.2.0 vanilla (BASELINE) 5.2.0 intel_pstate 5.2.0 1C-turbo
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Amean 2 379.68 +- 0.06% ( ) 330.20 +- 0.43% ( 13.03%) 285.93 +- 0.07% ( 24.69%)
Amean 4 200.15 +- 0.24% ( ) 175.89 +- 0.22% ( 12.12%) 153.78 +- 0.25% ( 23.17%)
Amean 8 106.20 +- 0.31% ( ) 95.54 +- 0.23% ( 10.03%) 86.74 +- 0.10% ( 18.32%)
Amean 16 56.96 +- 1.31% ( ) 53.25 +- 1.22% ( 6.50%) 48.34 +- 1.73% ( 15.13%)
Amean 32 34.80 +- 2.46% ( ) 33.81 +- 0.77% ( 2.83%) 30.28 +- 1.59% ( 12.99%)
Amean 64 26.11 +- 1.63% ( ) 25.04 +- 1.07% ( 4.10%) 22.41 +- 2.37% ( 14.16%)
Amean 128 24.80 +- 1.36% ( ) 23.57 +- 1.23% ( 4.93%) 21.44 +- 1.37% ( 13.55%)
Amean 160 24.85 +- 0.56% ( ) 23.85 +- 1.17% ( 4.06%) 21.25 +- 1.12% ( 14.49%)
5.2.0 3C-turbo 5.2.0 4C-turbo 5.2.0 8C-turbo
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Amean 2 284.08 +- 0.13% ( 25.18%) 283.96 +- 0.51% ( 25.21%) 285.05 +- 0.21% ( 24.92%)
Amean 4 153.18 +- 0.22% ( 23.47%) 154.70 +- 1.64% ( 22.71%) 153.64 +- 0.30% ( 23.24%)
Amean 8 87.06 +- 0.28% ( 18.02%) 86.77 +- 0.46% ( 18.29%) 86.78 +- 0.22% ( 18.28%)
Amean 16 48.03 +- 0.93% ( 15.68%) 47.75 +- 1.99% ( 16.17%) 47.52 +- 1.61% ( 16.57%)
Amean 32 30.23 +- 1.20% ( 13.14%) 30.08 +- 1.67% ( 13.57%) 30.07 +- 1.67% ( 13.60%)
Amean 64 22.59 +- 2.02% ( 13.50%) 22.63 +- 0.81% ( 13.32%) 22.42 +- 0.76% ( 14.12%)
Amean 128 21.37 +- 0.67% ( 13.82%) 21.31 +- 1.15% ( 14.07%) 21.17 +- 1.93% ( 14.63%)
Amean 160 21.68 +- 0.57% ( 12.76%) 21.18 +- 1.74% ( 14.77%) 21.22 +- 1.00% ( 14.61%)
The patch outperform active intel_pstate (and baseline) by a considerable
margin; the summary table from the previous section says 4C turbo and active
intel_pstate are 0.83 and 0.93 against baseline respectively, so 4C turbo is
0.83/0.93=0.89 against intel_pstate (~10% better on average). There is no
noticeable difference with regard to the value of freq_max.
Machine : 8x-SKYLAKE-UMA
Benchmark : gitsource (time to run the git unit test suite)
Varying parameter : none
Unit : seconds (lower is better)
5.2.0 vanilla 5.2.0 intel_pstate/hwp 5.2.0 1C-turbo
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Amean 858.85 +- 1.16% ( ) 791.94 +- 0.21% ( 7.79%) 474.95 ( 44.70%)
5.2.0 3C-turbo 5.2.0 4C-turbo
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Amean 475.26 +- 0.20% ( 44.66%) 474.34 +- 0.13% ( 44.77%)
In this test, which is of interest as representing shell-intensive
(i.e. fork-intensive) serialized workloads, invariant schedutil outperforms
intel_pstate/powersave by a whopping 40% margin.
5.3.4 POWER CONSUMPTION, PERFORMANCE-PER-WATT
---------------------------------------------
The following table shows average power consumption in watt for each
benchmark. Data comes from turbostat (package average), which in turn is read
from the RAPL interface on CPUs. We know the patch affects CPU frequencies so
it's reasonable to ignore other power consumers (such as memory or I/O). Also,
we don't have a power meter available in the lab so RAPL is the best we have.
turbostat sampled average power every 10 seconds for the entire duration of
each benchmark. We took all those values and averaged them (i.e. with don't
have detail on a per-parameter granularity, only on whole benchmarks).
80x-BROADWELL-NUMA (power consumption, watts)
+--------+
BASELINE I_PSTATE 1C 3C | 4C | 8C
pgbench-ro 130.01 142.77 131.11 132.45 | 134.65 | 136.84
pgbench-rw 68.30 60.83 71.45 71.70 | 71.65 | 72.54
dbench4 90.25 59.06 101.43 99.89 | 101.10 | 102.94
netperf-udp 65.70 69.81 66.02 68.03 | 68.27 | 68.95
netperf-tcp 88.08 87.96 88.97 88.89 | 88.85 | 88.20
tbench4 142.32 176.73 153.02 163.91 | 165.58 | 176.07
kernbench 92.94 101.95 114.91 115.47 | 115.52 | 115.10
gitsource 40.92 41.87 75.14 75.20 | 75.40 | 75.70
+--------+
8x-SKYLAKE-UMA (power consumption, watts)
+--------+
BASELINE I_PSTATE/HWP 1C 3C | 4C |
pgbench-ro 46.49 46.68 46.56 46.59 | 46.52 |
pgbench-rw 29.34 31.38 30.98 31.00 | 31.00 |
dbench4 27.28 27.37 27.49 27.41 | 27.38 |
netperf-udp 22.33 22.41 22.36 22.35 | 22.36 |
netperf-tcp 27.29 27.29 27.30 27.31 | 27.33 |
tbench4 41.13 45.61 43.10 43.33 | 43.56 |
kernbench 42.56 42.63 43.01 43.01 | 43.01 |
gitsource 13.32 13.69 17.33 17.30 | 17.35 |
+--------+
48x-HASWELL-NUMA (power consumption, watts)
+--------+
BASELINE I_PSTATE 1C 3C | 4C | 12C
pgbench-ro 128.84 136.04 129.87 132.43 | 132.30 | 134.86
pgbench-rw 37.68 37.92 37.17 37.74 | 37.73 | 37.31
dbench4 28.56 28.73 28.60 28.73 | 28.70 | 28.79
netperf-udp 56.70 60.44 56.79 57.42 | 57.54 | 57.52
netperf-tcp 75.49 75.27 75.87 76.02 | 76.01 | 75.95
tbench4 115.44 139.51 119.53 123.07 | 123.97 | 130.22
kernbench 83.23 91.55 95.58 95.69 | 95.72 | 96.04
gitsource 36.79 36.99 39.99 40.34 | 40.35 | 40.23
+--------+
A lower power consumption isn't necessarily better, it depends on what is done
with that energy. Here are tables with the ratio of performance-per-watt on
each machine and benchmark. Higher is always better; a tilde (~) means a
neutral ratio (i.e. 1.00).
80x-BROADWELL-NUMA (performance-per-watt ratios; higher is better)
+------+
I_PSTATE 1C 3C | 4C | 8C
pgbench-ro 1.04 1.06 0.94 | 1.07 | 1.08
pgbench-rw 1.10 0.97 0.96 | 0.96 | 0.97
dbench4 1.24 0.94 0.95 | 0.94 | 0.92
netperf-udp ~ 1.02 1.02 | ~ | 1.02
netperf-tcp ~ 1.02 ~ | ~ | 1.02
tbench4 1.26 1.10 1.06 | 1.12 | 1.26
kernbench 0.98 0.97 0.97 | 0.97 | 0.98
gitsource ~ 1.11 1.11 | 1.11 | 1.13
+------+
8x-SKYLAKE-UMA (performance-per-watt ratios; higher is better)
+------+
I_PSTATE/HWP 1C 3C | 4C |
pgbench-ro ~ ~ ~ | ~ |
pgbench-rw 0.95 0.97 0.96 | 0.96 |
dbench4 ~ ~ ~ | ~ |
netperf-udp ~ ~ ~ | ~ |
netperf-tcp ~ ~ ~ | ~ |
tbench4 1.17 1.09 1.08 | 1.10 |
kernbench ~ ~ ~ | ~ |
gitsource 1.06 1.40 1.40 | 1.40 |
+------+
48x-HASWELL-NUMA (performance-per-watt ratios; higher is better)
+------+
I_PSTATE 1C 3C | 4C | 12C
pgbench-ro 1.09 ~ 1.09 | 1.03 | 1.11
pgbench-rw ~ 0.86 ~ | ~ | 0.86
dbench4 ~ 1.02 1.02 | 1.02 | ~
netperf-udp ~ 0.97 1.03 | 1.02 | ~
netperf-tcp 0.96 ~ ~ | ~ | ~
tbench4 1.24 ~ 1.06 | 1.05 | 1.11
kernbench 0.97 0.97 0.98 | 0.97 | 0.96
gitsource 1.03 1.33 1.32 | 1.32 | 1.33
+------+
These results are overall pleasing: in plenty of cases we observe
performance-per-watt improvements. The few regressions (read/write pgbench and
dbench on the Broadwell machine) are of small magnitude. kernbench loses a few
percentage points (it has a 10-15% performance improvement, but apparently the
increase in power consumption is larger than that). tbench4 and gitsource, which
benefit the most from the patch, keep a positive score in this table which is
a welcome surprise; that suggests that in those particular workloads the
non-invariant schedutil (and active intel_pstate, too) makes some rather
suboptimal frequency selections.
+-------------------------------------------------------------------------+
| 6. MICROARCH'ES ADDRESSED HERE
+-------------------------------------------------------------------------+
The patch addresses Xeon Core processors that use MSR_PLATFORM_INFO and
MSR_TURBO_RATIO_LIMIT to advertise their base frequency and turbo frequencies
respectively. This excludes the recent Xeon Scalable Performance processors
line (Xeon Gold, Platinum etc) whose MSRs have to be parsed differently.
Subsequent patches will address:
* Xeon Scalable Performance processors and Atom Goldmont/Goldmont Plus
* Xeon Phi (Knights Landing, Knights Mill)
* Atom Silvermont
+-------------------------------------------------------------------------+
| 7. REFERENCES
+-------------------------------------------------------------------------+
Tests have been run with the help of the MMTests performance testing
framework, see github.com/gormanm/mmtests. The configuration file names for
the benchmark used are:
db-pgbench-timed-ro-small-xfs
db-pgbench-timed-rw-small-xfs
io-dbench4-async-xfs
network-netperf-unbound
network-tbench
scheduler-unbound
workload-kerndevel-xfs
workload-shellscripts-xfs
hpc-nas-c-class-mpi-full-xfs
hpc-nas-c-class-omp-full
All those benchmarks are generally available on the web:
pgbench: https://www.postgresql.org/docs/10/pgbench.html
netperf: https://hewlettpackard.github.io/netperf/
dbench/tbench: https://dbench.samba.org/
gitsource: git unit test suite, github.com/git/git
NAS Parallel Benchmarks: https://www.nas.nasa.gov/publications/npb.html
hackbench: https://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Giovanni Gherdovich <ggherdovich@suse.cz>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Doug Smythies <dsmythies@telus.net>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lkml.kernel.org/r/20200122151617.531-2-ggherdovich@suse.cz
|
|
Create CPU topology sysfs attributes: "core_cpus" and "core_cpus_list"
These attributes represent all of the logical CPUs that share the
same core.
These attriutes is synonymous with the existing "thread_siblings" and
"thread_siblings_list" attribute, which will be deprecated.
Create CPU topology sysfs attributes: "die_cpus" and "die_cpus_list".
These attributes represent all of the logical CPUs that share the
same die.
Suggested-by: Brice Goglin <Brice.Goglin@inria.fr>
Signed-off-by: Len Brown <len.brown@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/071c23a298cd27ede6ed0b6460cae190d193364f.1557769318.git.len.brown@intel.com
|
|
Define topology_logical_die_id() ala existing topology_logical_package_id()
Signed-off-by: Len Brown <len.brown@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/2f3526e25ae14fbeff26fb26e877d159df8946d9.1557769318.git.len.brown@intel.com
|
|
topology_die_id(cpu) is a simple macro for use inside the kernel to get the
die_id associated with the given cpu.
Signed-off-by: Len Brown <len.brown@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/6463bc422b1b05445a502dc505c1d7c6756bda6a.1557769318.git.len.brown@intel.com
|
|
topology_max_packages() is available to size resources to cover all
packages in the system.
But now multi-die/package systems are coming up, and some resources are
per-die.
Create topology_max_die_per_package(), for detecting multi-die/package
systems, and sizing any per-die resources.
Signed-off-by: Len Brown <len.brown@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/e6eaf384571ae52ac7d0ca41510b7fb7d2fda0e4.1557769318.git.len.brown@intel.com
|
|
Provide information whether SMT is supoorted by the CPUs. Preparatory patch
for SMT control mechanism.
Suggested-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
|
|
If the CPU is supporting SMT then the primary thread can be found by
checking the lower APIC ID bits for zero. smp_num_siblings is used to build
the mask for the APIC ID bits which need to be taken into account.
This uses the MPTABLE or ACPI/MADT supplied APIC ID, which can be different
than the initial APIC ID in CPUID. But according to AMD the lower bits have
to be consistent. Intel gave a tentative confirmation as well.
Preparatory patch to support disabling SMT at boot/runtime.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
|
|
Commit:
a7be6e5a7f8d ("mm: drop useless local parameters of __register_one_node()")
... removed the last user of parent_node(), so remove the macro.
Reported-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1501076076-1974-11-git-send-email-douly.fnst@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Rename CONFIG_SCHED_ITMT for Intel Turbo Boost Max Technology 3.0
to CONFIG_SCHED_MC_PRIO. This makes the configuration extensible
in future to other architectures that wish to similarly establish
CPU core priorities support in the scheduler.
The description in Kconfig is updated to reflect this change with
added details for better clarity. The configuration is explicitly
default-y, to enable the feature on CPUs that have this feature.
It has no effect on non-TBM3 CPUs.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bp@suse.de
Cc: jolsa@redhat.com
Cc: linux-acpi@vger.kernel.org
Cc: linux-pm@vger.kernel.org
Cc: rjw@rjwysocki.net
Link: http://lkml.kernel.org/r/2b2ee29d93e3f162922d72d0165a1405864fbb23.1480444902.git.tim.c.chen@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Intel Turbo Boost Max Technology 3.0 (ITMT) feature
allows some cores to be boosted to higher turbo
frequency than others.
Add /proc/sys/kernel/sched_itmt_enabled so operator
can enable/disable scheduling of tasks that favor cores
with higher turbo boost frequency potential.
By default, system that is ITMT capable and single
socket has this feature turned on. It is more likely
to be lightly loaded and operates in Turbo range.
When there is a change in the ITMT scheduling operation
desired, a rebuild of the sched domain is initiated
so the scheduler can set up sched domains with appropriate
flag to enable/disable ITMT scheduling operations.
Co-developed-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Co-developed-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Cc: linux-pm@vger.kernel.org
Cc: peterz@infradead.org
Cc: jolsa@redhat.com
Cc: rjw@rjwysocki.net
Cc: linux-acpi@vger.kernel.org
Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: bp@suse.de
Link: http://lkml.kernel.org/r/07cc62426a28bad57b01ab16bb903a9c84fa5421.1479844244.git.tim.c.chen@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
On platforms supporting Intel Turbo Boost Max Technology 3.0, the maximum
turbo frequencies of some cores in a CPU package may be higher than for
the other cores in the same package. In that case, better performance
(and possibly lower energy consumption as well) can be achieved by
making the scheduler prefer to run tasks on the CPUs with higher max
turbo frequencies.
To that end, set up a core priority metric to abstract the core
preferences based on the maximum turbo frequency. In that metric,
the cores with higher maximum turbo frequencies are higher-priority
than the other cores in the same package and that causes the scheduler
to favor them when making load-balancing decisions using the asymmertic
packing approach. At the same time, the priority of SMT threads with a
higher CPU number is reduced so as to avoid scheduling tasks on all of
the threads that belong to a favored core before all of the other cores
have been given a task to run.
The priority metric will be initialized by the P-state driver with the
help of the sched_set_itmt_core_prio() function. The P-state driver
will also determine whether or not ITMT is supported by the platform
and will call sched_set_itmt_support() to indicate that.
Co-developed-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Co-developed-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Cc: linux-pm@vger.kernel.org
Cc: peterz@infradead.org
Cc: jolsa@redhat.com
Cc: rjw@rjwysocki.net
Cc: linux-acpi@vger.kernel.org
Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: bp@suse.de
Link: http://lkml.kernel.org/r/cd401ccdff88f88c8349314febdc25d51f7c48f7.1479844244.git.tim.c.chen@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
The scheduler calls arch_update_cpu_topology() to check whether the
scheduler domains have to be rebuilt.
So far x86 has no requirement for this, but the upcoming ITMT support
makes this necessary.
Request the rebuild when the x86 internal update flag is set.
Suggested-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Cc: linux-pm@vger.kernel.org
Cc: peterz@infradead.org
Cc: jolsa@redhat.com
Cc: rjw@rjwysocki.net
Cc: linux-acpi@vger.kernel.org
Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: bp@suse.de
Link: http://lkml.kernel.org/r/bfbf5591276ec60b2af2da798adc1060df1e2a5f.1479844244.git.tim.c.chen@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 header cleanups from Ingo Molnar:
"This tree is a cleanup of the x86 tree reducing spurious uses of
module.h - which should improve build performance a bit"
* 'x86-headers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86, crypto: Restore MODULE_LICENSE() to glue_helper.c so it loads
x86/apic: Remove duplicated include from probe_64.c
x86/ce4100: Remove duplicated include from ce4100.c
x86/headers: Include spinlock_types.h in x8664_ksyms_64.c for missing spinlock_t
x86/platform: Delete extraneous MODULE_* tags fromm ts5500
x86: Audit and remove any remaining unnecessary uses of module.h
x86/kvm: Audit and remove any unnecessary uses of module.h
x86/xen: Audit and remove any unnecessary uses of module.h
x86/platform: Audit and remove any unnecessary uses of module.h
x86/lib: Audit and remove any unnecessary uses of module.h
x86/kernel: Audit and remove any unnecessary uses of module.h
x86/mm: Audit and remove any unnecessary uses of module.h
x86: Don't use module.h just for AUTHOR / LICENSE tags
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 platform updates from Ingo Molnar:
"The main changes in this cycle were:
- Intel-SoC enhancements (Andy Shevchenko)
- Intel CPU symbolic model definition rework (Dave Hansen)
- ... other misc changes"
* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (25 commits)
x86/sfi: Enable enumeration of SD devices
x86/pci: Use MRFLD abbreviation for Merrifield
x86/platform/intel-mid: Make vertical indentation consistent
x86/platform/intel-mid: Mark regulators explicitly defined
x86/platform/intel-mid: Rename mrfl.c to mrfld.c
x86/platform/intel-mid: Enable spidev on Intel Edison boards
x86/platform/intel-mid: Extend PWRMU to support Penwell
x86/pci, x86/platform/intel_mid_pci: Remove duplicate power off code
x86/platform/intel-mid: Add pinctrl for Intel Merrifield
x86/platform/intel-mid: Enable GPIO expanders on Edison
x86/platform/intel-mid: Add Power Management Unit driver
x86/platform/atom/punit: Enable support for Merrifield
x86/platform/intel_mid_pci: Rework IRQ0 workaround
x86, thermal: Clean up and fix CPU model detection for intel_soc_dts_thermal
x86, mmc: Use Intel family name macros for mmc driver
x86/intel_telemetry: Use Intel family name macros for telemetry driver
x86/acpi/lss: Use Intel family name macros for the acpi_lpss driver
x86/cpufreq: Use Intel family name macros for the intel_pstate cpufreq driver
x86/platform: Use new Intel model number macros
x86/intel_idle: Use Intel family macros for intel_idle
...
|
|
Historically a lot of these existed because we did not have
a distinction between what was modular code and what was providing
support to modules via EXPORT_SYMBOL and friends. That changed
when we forked out support for the latter into the export.h file.
This means we should be able to reduce the usage of module.h
in code that is obj-y Makefile or bool Kconfig. The advantage
in doing so is that module.h itself sources about 15 other headers;
adding significantly to what we feed cpp, and it can obscure what
headers we are effectively using.
Since module.h was the source for init.h (for __init) and for
export.h (for EXPORT_SYMBOL) we consider each obj-y/bool instance
for the presence of either and replace as needed. Build testing
revealed some implicit header usage that was fixed up accordingly.
Note that some bool/obj-y instances remain since module.h is
the header for some exception table entry stuff, and for things
like __init_or_module (code that is tossed when MODULES=n).
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160714001901.31603-4-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
For SMT specific workarounds it is useful to know if SMT is active
on any online CPU in the system. This currently requires a loop
over all online CPUs.
Add a global variable that is updated with the maximum number
of smt threads on any CPU on online/offline, and use it for
topology_max_smt_threads()
The single call is easier to use than a loop.
Not exported to user space because user space already can use
the existing sibling interfaces to find this out.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: acme@kernel.org
Cc: jolsa@kernel.org
Link: http://lkml.kernel.org/r/1463703002-19686-2-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Commit c8e56d20f2d1 ("x86: Kill CONFIG_X86_HT") removed CONFIG_X86_HT
and defined ENABLE_TOPO_DEFINES always if CONFIG_SMP, which makes
ENABLE_TOPO_DEFINES redundant.
This patch removes the redundant ENABLE_TOPO_DEFINES and instead uses
CONFIG_SMP directly
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Acked-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1462380659-5968-1-git-send-email-sudeep.holla@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
For per package oriented services we must be able to rely on the number of CPU
packages to be within bounds. Create a tracking facility, which
- calculates the number of possible packages depending on nr_cpu_ids after boot
- makes sure that the package id is within the number of possible packages. If
the apic id is outside we map it to a logical package id if there is enough
space available.
Provide interfaces for drivers to query the mapping and do translations from
physcial to logical ids.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Harish Chegondi <harish.chegondi@intel.com>
Cc: Jacob Pan <jacob.jun.pan@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis R. Rodriguez <mcgrof@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20160222221011.541071755@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 core updates from Ingo Molnar:
"There were so many changes in the x86/asm, x86/apic and x86/mm topics
in this cycle that the topical separation of -tip broke down somewhat -
so the result is a more traditional architecture pull request,
collected into the 'x86/core' topic.
The topics were still maintained separately as far as possible, so
bisectability and conceptual separation should still be pretty good -
but there were a handful of merge points to avoid excessive
dependencies (and conflicts) that would have been poorly tested in the
end.
The next cycle will hopefully be much more quiet (or at least will
have fewer dependencies).
The main changes in this cycle were:
* x86/apic changes, with related IRQ core changes: (Jiang Liu, Thomas
Gleixner)
- This is the second and most intrusive part of changes to the x86
interrupt handling - full conversion to hierarchical interrupt
domains:
[IOAPIC domain] -----
|
[MSI domain] --------[Remapping domain] ----- [ Vector domain ]
| (optional) |
[HPET MSI domain] ----- |
|
[DMAR domain] -----------------------------
|
[Legacy domain] -----------------------------
This now reflects the actual hardware and allowed us to distangle
the domain specific code from the underlying parent domain, which
can be optional in the case of interrupt remapping. It's a clear
separation of functionality and removes quite some duct tape
constructs which plugged the remap code between ioapic/msi/hpet
and the vector management.
- Intel IOMMU IRQ remapping enhancements, to allow direct interrupt
injection into guests (Feng Wu)
* x86/asm changes:
- Tons of cleanups and small speedups, micro-optimizations. This
is in preparation to move a good chunk of the low level entry
code from assembly to C code (Denys Vlasenko, Andy Lutomirski,
Brian Gerst)
- Moved all system entry related code to a new home under
arch/x86/entry/ (Ingo Molnar)
- Removal of the fragile and ugly CFI dwarf debuginfo annotations.
Conversion to C will reintroduce many of them - but meanwhile
they are only getting in the way, and the upstream kernel does
not rely on them (Ingo Molnar)
- NOP handling refinements. (Borislav Petkov)
* x86/mm changes:
- Big PAT and MTRR rework: making the code more robust and
preparing to phase out exposing direct MTRR interfaces to drivers -
in favor of using PAT driven interfaces (Toshi Kani, Luis R
Rodriguez, Borislav Petkov)
- New ioremap_wt()/set_memory_wt() interfaces to support
Write-Through cached memory mappings. This is especially
important for good performance on NVDIMM hardware (Toshi Kani)
* x86/ras changes:
- Add support for deferred errors on AMD (Aravind Gopalakrishnan)
This is an important RAS feature which adds hardware support for
poisoned data. That means roughly that the hardware marks data
which it has detected as corrupted but wasn't able to correct, as
poisoned data and raises an APIC interrupt to signal that in the
form of a deferred error. It is the OS's responsibility then to
take proper recovery action and thus prolonge system lifetime as
far as possible.
- Add support for Intel "Local MCE"s: upcoming CPUs will support
CPU-local MCE interrupts, as opposed to the traditional system-
wide broadcasted MCE interrupts (Ashok Raj)
- Misc cleanups (Borislav Petkov)
* x86/platform changes:
- Intel Atom SoC updates
... and lots of other cleanups, fixlets and other changes - see the
shortlog and the Git log for details"
* 'x86-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (222 commits)
x86/hpet: Use proper hpet device number for MSI allocation
x86/hpet: Check for irq==0 when allocating hpet MSI interrupts
x86/mm/pat, drivers/infiniband/ipath: Use arch_phys_wc_add() and require PAT disabled
x86/mm/pat, drivers/media/ivtv: Use arch_phys_wc_add() and require PAT disabled
x86/platform/intel/baytrail: Add comments about why we disabled HPET on Baytrail
genirq: Prevent crash in irq_move_irq()
genirq: Enhance irq_data_to_desc() to support hierarchy irqdomain
iommu, x86: Properly handle posted interrupts for IOMMU hotplug
iommu, x86: Provide irq_remapping_cap() interface
iommu, x86: Setup Posted-Interrupts capability for Intel iommu
iommu, x86: Add cap_pi_support() to detect VT-d PI capability
iommu, x86: Avoid migrating VT-d posted interrupts
iommu, x86: Save the mode (posted or remapped) of an IRTE
iommu, x86: Implement irq_set_vcpu_affinity for intel_ir_chip
iommu: dmar: Provide helper to copy shared irte fields
iommu: dmar: Extend struct irte for VT-d Posted-Interrupts
iommu: Add new member capability to struct irq_remap_ops
x86/asm/entry/64: Disentangle error_entry/exit gsbase/ebx/usermode code
x86/asm/entry/32: Shorten __audit_syscall_entry() args preparation
x86/asm/entry/32: Explain reloading of registers after __audit_syscall_entry()
...
|
|
In talking to Aravind recently about making certain AMD topology
attributes available to the MCE injection module, it seemed like
that CONFIG_X86_HT thing is more or less superfluous. It is
def_bool y, depends on SMP and gets enabled in the majority of
.configs - distro and otherwise - out there.
So let's kill it and make code behind it depend directly on SMP.
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aravind Gopalakrishnan <Aravind.Gopalakrishnan@amd.com>
Cc: Bartosz Golaszewski <bgolaszewski@baylibre.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Daniel Walter <dwalter@google.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jacob Shin <jacob.w.shin@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1433436928-31903-18-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Rename topology_thread_cpumask() to topology_sibling_cpumask()
for more consistency with scheduler code.
Signed-off-by: Bartosz Golaszewski <bgolaszewski@baylibre.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Benoit Cousson <bcousson@baylibre.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Jean Delvare <jdelvare@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Drokin <oleg.drokin@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Link: http://lkml.kernel.org/r/1432645896-12588-2-git-send-email-bgolaszewski@baylibre.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
Pull PCI changes from Bjorn Helgaas:
"Enumeration
- Increment max correctly in pci_scan_bridge() (Andreas Noever)
- Clarify the "scan anyway" comment in pci_scan_bridge() (Andreas Noever)
- Assign CardBus bus number only during the second pass (Andreas Noever)
- Use request_resource_conflict() instead of insert_ for bus numbers (Andreas Noever)
- Make sure bus number resources stay within their parents bounds (Andreas Noever)
- Remove pci_fixup_parent_subordinate_busnr() (Andreas Noever)
- Check for child busses which use more bus numbers than allocated (Andreas Noever)
- Don't scan random busses in pci_scan_bridge() (Andreas Noever)
- x86: Drop pcibios_scan_root() check for bus already scanned (Bjorn Helgaas)
- x86: Use pcibios_scan_root() instead of pci_scan_bus_with_sysdata() (Bjorn Helgaas)
- x86: Use pcibios_scan_root() instead of pci_scan_bus_on_node() (Bjorn Helgaas)
- x86: Merge pci_scan_bus_on_node() into pcibios_scan_root() (Bjorn Helgaas)
- x86: Drop return value of pcibios_scan_root() (Bjorn Helgaas)
NUMA
- x86: Add x86_pci_root_bus_node() to look up NUMA node from PCI bus (Bjorn Helgaas)
- x86: Use x86_pci_root_bus_node() instead of get_mp_bus_to_node() (Bjorn Helgaas)
- x86: Remove mp_bus_to_node[], set_mp_bus_to_node(), get_mp_bus_to_node() (Bjorn Helgaas)
- x86: Use NUMA_NO_NODE, not -1, for unknown node (Bjorn Helgaas)
- x86: Remove acpi_get_pxm() usage (Bjorn Helgaas)
- ia64: Use NUMA_NO_NODE, not MAX_NUMNODES, for unknown node (Bjorn Helgaas)
- ia64: Remove acpi_get_pxm() usage (Bjorn Helgaas)
- ACPI: Fix acpi_get_node() prototype (Bjorn Helgaas)
Resource management
- i2o: Fix and refactor PCI space allocation (Bjorn Helgaas)
- Add resource_contains() (Bjorn Helgaas)
- Add %pR support for IORESOURCE_UNSET (Bjorn Helgaas)
- Mark resources as IORESOURCE_UNSET if we can't assign them (Bjorn Helgaas)
- Don't clear IORESOURCE_UNSET when updating BAR (Bjorn Helgaas)
- Check IORESOURCE_UNSET before updating BAR (Bjorn Helgaas)
- Don't try to claim IORESOURCE_UNSET resources (Bjorn Helgaas)
- Mark 64-bit resource as IORESOURCE_UNSET if we only support 32-bit (Bjorn Helgaas)
- Don't enable decoding if BAR hasn't been assigned an address (Bjorn Helgaas)
- Add "weak" generic pcibios_enable_device() implementation (Bjorn Helgaas)
- alpha, microblaze, sh, sparc, tile: Use default pcibios_enable_device() (Bjorn Helgaas)
- s390: Use generic pci_enable_resources() (Bjorn Helgaas)
- Don't check resource_size() in pci_bus_alloc_resource() (Bjorn Helgaas)
- Set type in __request_region() (Bjorn Helgaas)
- Check all IORESOURCE_TYPE_BITS in pci_bus_alloc_from_region() (Bjorn Helgaas)
- Change pci_bus_alloc_resource() type_mask to unsigned long (Bjorn Helgaas)
- Log IDE resource quirk in dmesg (Bjorn Helgaas)
- Revert "[PATCH] Insert GART region into resource map" (Bjorn Helgaas)
PCI device hotplug
- Make check_link_active() non-static (Rajat Jain)
- Use link change notifications for hot-plug and removal (Rajat Jain)
- Enable link state change notifications (Rajat Jain)
- Don't disable the link permanently during removal (Rajat Jain)
- Don't check adapter or latch status while disabling (Rajat Jain)
- Disable link notification across slot reset (Rajat Jain)
- Ensure very fast hotplug events are also processed (Rajat Jain)
- Add hotplug_lock to serialize hotplug events (Rajat Jain)
- Remove a non-existent card, regardless of "surprise" capability (Rajat Jain)
- Don't turn slot off when hot-added device already exists (Yijing Wang)
MSI
- Keep pci_enable_msi() documentation (Alexander Gordeev)
- ahci: Fix broken single MSI fallback (Alexander Gordeev)
- ahci, vfio: Use pci_enable_msi_range() (Alexander Gordeev)
- Check kmalloc() return value, fix leak of name (Greg Kroah-Hartman)
- Fix leak of msi_attrs (Greg Kroah-Hartman)
- Fix pci_msix_vec_count() htmldocs failure (Masanari Iida)
Virtualization
- Device-specific ACS support (Alex Williamson)
Freescale i.MX6
- Wait for retraining (Marek Vasut)
Marvell MVEBU
- Use Device ID and revision from underlying endpoint (Andrew Lunn)
- Fix incorrect size for PCI aperture resources (Jason Gunthorpe)
- Call request_resource() on the apertures (Jason Gunthorpe)
- Fix potential issue in range parsing (Jean-Jacques Hiblot)
Renesas R-Car
- Check platform_get_irq() return code (Ben Dooks)
- Add error interrupt handling (Ben Dooks)
- Fix bridge logic configuration accesses (Ben Dooks)
- Register each instance independently (Magnus Damm)
- Break out window size handling (Magnus Damm)
- Make the Kconfig dependencies more generic (Magnus Damm)
Synopsys DesignWare
- Fix RC BAR to be single 64-bit non-prefetchable memory (Mohit Kumar)
Miscellaneous
- Remove unused SR-IOV VF Migration support (Bjorn Helgaas)
- Enable INTx if BIOS left them disabled (Bjorn Helgaas)
- Fix hex vs decimal typo in cpqhpc_probe() (Dan Carpenter)
- Clean up par-arch object file list (Liviu Dudau)
- Set IORESOURCE_ROM_SHADOW only for the default VGA device (Sander Eikelenboom)
- ACPI, ARM, drm, powerpc, pcmcia, PCI: Use list_for_each_entry() for bus traversal (Yijing Wang)
- Fix pci_bus_b() build failure (Paul Gortmaker)"
* tag 'pci-v3.15-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci: (108 commits)
Revert "[PATCH] Insert GART region into resource map"
PCI: Log IDE resource quirk in dmesg
PCI: Change pci_bus_alloc_resource() type_mask to unsigned long
PCI: Check all IORESOURCE_TYPE_BITS in pci_bus_alloc_from_region()
resources: Set type in __request_region()
PCI: Don't check resource_size() in pci_bus_alloc_resource()
s390/PCI: Use generic pci_enable_resources()
tile PCI RC: Use default pcibios_enable_device()
sparc/PCI: Use default pcibios_enable_device() (Leon only)
sh/PCI: Use default pcibios_enable_device()
microblaze/PCI: Use default pcibios_enable_device()
alpha/PCI: Use default pcibios_enable_device()
PCI: Add "weak" generic pcibios_enable_device() implementation
PCI: Don't enable decoding if BAR hasn't been assigned an address
PCI: Enable INTx in pci_reenable_device() only when MSI/MSI-X not enabled
PCI: Mark 64-bit resource as IORESOURCE_UNSET if we only support 32-bit
PCI: Don't try to claim IORESOURCE_UNSET resources
PCI: Check IORESOURCE_UNSET before updating BAR
PCI: Don't clear IORESOURCE_UNSET when updating BAR
PCI: Mark resources as IORESOURCE_UNSET if we can't assign them
...
Conflicts:
arch/x86/include/asm/topology.h
drivers/ata/ahci.c
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler changes from Ingo Molnar:
"Bigger changes:
- sched/idle restructuring: they are WIP preparation for deeper
integration between the scheduler and idle state selection, by
Nicolas Pitre.
- add NUMA scheduling pseudo-interleaving, by Rik van Riel.
- optimize cgroup context switches, by Peter Zijlstra.
- RT scheduling enhancements, by Thomas Gleixner.
The rest is smaller changes, non-urgnt fixes and cleanups"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (68 commits)
sched: Clean up the task_hot() function
sched: Remove double calculation in fix_small_imbalance()
sched: Fix broken setscheduler()
sparc64, sched: Remove unused sparc64_multi_core
sched: Remove unused mc_capable() and smt_capable()
sched/numa: Move task_numa_free() to __put_task_struct()
sched/fair: Fix endless loop in idle_balance()
sched/core: Fix endless loop in pick_next_task()
sched/fair: Push down check for high priority class task into idle_balance()
sched/rt: Fix picking RT and DL tasks from empty queue
trace: Replace hardcoding of 19 with MAX_NICE
sched: Guarantee task priority in pick_next_task()
sched/idle: Remove stale old file
sched: Put rq's sched_avg under CONFIG_FAIR_GROUP_SCHED
cpuidle/arm64: Remove redundant cpuidle_idle_call()
cpuidle/powernv: Remove redundant cpuidle_idle_call()
sched, nohz: Exclude isolated cores from load balancing
sched: Fix select_task_rq_fair() description comments
workqueue: Replace hardcoding of -20 and 19 with MIN_NICE and MAX_NICE
sys: Replace hardcoding of -20 and 19 with MIN_NICE and MAX_NICE
...
|
|
On x86 uniprocessor systems topology_physical_package_id() returns -1
which causes rapl_cpu_prepare() to leave rapl_pmu variable uninitialized
which leads to GPF in rapl_pmu_init().
See arch/x86/kernel/cpu/perf_event_intel_rapl.c.
It turns out that physical_package_id and core_id can actually be
retreived for uniprocessor systems too. Enabling them also fixes
rapl_pmu code.
Signed-off-by: Artem Fetishev <artem_fetishev@epam.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Remove mc_capable() and smt_capable(). Neither is used.
Both were added by 5c45bf279d37 ("sched: mc/smt power savings sched
policy"). Uses of both were removed by 8e7fbcbc22c1 ("sched: Remove stale
power aware scheduling remnants and dysfunctional knobs").
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Link: http://lkml.kernel.org/r/20140304210737.16893.54289.stgit@bhelgaas-glaptop.roam.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
There are no callers of get_mp_bus_to_node(), so we no longer need
mp_bus_to_node[], get_mp_bus_to_node(), or set_mp_bus_to_node().
This removes them.
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
The AMD early_fill_mp_bus_info() already allocates a struct pci_root_info
for each PCI host bridge it finds, and that structure contains the NUMA
node number. We don't need to keep the same information in the
mp_bus_to_node[] table.
This adds x86_pci_root_bus_node(), which returns the NUMA node number, or
NUMA_NO_NODE if the node is unknown.
Note that unlike get_mp_bus_to_node(), x86_pci_root_bus_node() only works
for root buses. For example, if amd_bus.c finds a host bridge on node 1 to
[bus 00-0f], get_mp_bus_to_node() returns 1 for any bus between 00 and 0f,
but x86_pci_root_bus_node() returns 1 for bus 00 and NUMA_NO_NODE for buses
01-0f.
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|
Macro arch_provides_topology_pointers is pointless now, remove it.
Signed-off-by: Hanjun Guo <hanjun.guo@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
The current code groups up to 16 nodes in a level and then puts an
ALLNODES domain spanning the entire tree on top of that. This doesn't
reflect the numa topology and esp for the smaller not-fully-connected
machines out there today this might make a difference.
Therefore, build a proper numa topology based on node_distance().
Since there's no fixed numa layers anymore, the static SD_NODE_INIT
and SD_ALLNODES_INIT aren't usable anymore, the new code tries to
construct something similar and scales some values either on the
number of cpus in the domain and/or the node_distance() ratio.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Anton Blanchard <anton@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: David Howells <dhowells@redhat.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: linux-alpha@vger.kernel.org
Cc: linux-ia64@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mips@linux-mips.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: linux-sh@vger.kernel.org
Cc: Matt Turner <mattst88@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: sparclinux@vger.kernel.org
Cc: Tony Luck <tony.luck@intel.com>
Cc: x86@kernel.org
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: Greg Pearson <greg.pearson@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: bob.picco@oracle.com
Cc: chris.mason@oracle.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/n/tip-r74n3n8hhuc2ynbrnp3vt954@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/jbarnes/pci
* 'linux-next' of git://git.kernel.org/pub/scm/linux/kernel/git/jbarnes/pci: (80 commits)
x86/PCI: Expand the x86_msi_ops to have a restore MSIs.
PCI: Increase resource array mask bit size in pcim_iomap_regions()
PCI: DEVICE_COUNT_RESOURCE should be equal to PCI_NUM_RESOURCES
PCI: pci_ids: add device ids for STA2X11 device (aka ConneXT)
PNP: work around Dell 1536/1546 BIOS MMCONFIG bug that breaks USB
x86/PCI: amd: factor out MMCONFIG discovery
PCI: Enable ATS at the device state restore
PCI: msi: fix imbalanced refcount of msi irq sysfs objects
PCI: kconfig: English typo in pci/pcie/Kconfig
PCI/PM/Runtime: make PCI traces quieter
PCI: remove pci_create_bus()
xtensa/PCI: convert to pci_scan_root_bus() for correct root bus resources
x86/PCI: convert to pci_create_root_bus() and pci_scan_root_bus()
x86/PCI: use pci_scan_bus() instead of pci_scan_bus_parented()
x86/PCI: read Broadcom CNB20LE host bridge info before PCI scan
sparc32, leon/PCI: convert to pci_scan_root_bus() for correct root bus resources
sparc/PCI: convert to pci_create_root_bus()
sh/PCI: convert to pci_scan_root_bus() for correct root bus resources
powerpc/PCI: convert to pci_create_root_bus()
powerpc/PCI: split PHB part out of pcibios_map_io_space()
...
Fix up conflicts in drivers/pci/msi.c and include/linux/pci_regs.h due
to the same patches being applied in other branches.
|
|
x86 has two kinds of PCI root bus scanning:
(1) ACPI-based, using _CRS resources. This used pci_create_bus(), not
pci_scan_bus(), because ACPI hotplug needed to split the
pci_bus_add_devices() into a separate host bridge .start() method.
This patch parses the _CRS resources earlier, so we can build a list of
resources and pass it to pci_create_root_bus().
Note that as before, we parse the _CRS even if we aren't going to use
it so we can print it for debugging purposes.
(2) All other, which used either default resources (ioport_resource and
iomem_resource) or information read from the hardware via amd_bus.c or
similar. This used pci_scan_bus().
This patch converts x86_pci_root_bus_res_quirks() (previously called
from pcibios_fixup_bus()) to x86_pci_root_bus_resources(), which builds
a list of resources before we call pci_scan_root_bus().
We also use x86_pci_root_bus_resources() if we have ACPI but are
ignoring _CRS.
CC: Yinghai Lu <yinghai.lu@oracle.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
|
|
The node_distance function is not x86 64-bit specific. Having
the #ifdef around the extern function declaration and the
#define causes the default node_distance macro to be used in
asm-generic/topology.h. This also causes a sparse warning in
arch/x86/mm/numa.c when CONFIG_X86_64 is not set:
warning: symbol '__node_distance' was not declared. Should it be
static?
Remove the #ifdef to fix both issues.
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Link: http://lkml.kernel.org/r/alpine.DEB.2.00.1112061220310.28251@chino.kir.corp.google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
With both _numa_init() methods converted and the rest of init code
adjusted, numa_32.c now can switch from the 32bit only init code to
the common one in numa.c.
* Shim get_memcfg_*()'s are dropped and initmem_init() calls
x86_numa_init(), which is updated to handle NUMAQ.
* All boilerplate operations including node range limiting, pgdat
alloc/init are handled by numa_init(). 32bit only implementation is
removed.
* 32bit numa_add_memblk(), numa_set_distance() and
memory_add_physaddr_to_nid() removed and common versions in
numa_32.c enabled for 32bit.
This change causes the following behavior changes.
* NODE_DATA()->node_start_pfn/node_spanned_pages properly initialized
for 32bit too.
* Much more sanity checks and configuration cleanups.
* Proper handling of node distances.
* The same NUMA init messages as 64bit.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
|
|
Only pgdat and memmap use remap area and there isn't much benefit in
allowing per-node override. In addition, the use of node_remap_size[]
is confusing in that it contains number of bytes before remap
initialization and then number of pages afterwards.
Move remap size calculation for memap from specific NUMA config
implementations to init_alloc_remap() and make node_remap_size[]
static.
The only behavior difference is that, before this patch, numaq_32
didn't consider max_pfn when calculating the memmap size but it's
enforced after this patch, which is the right thing to do.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/1301955840-7246-8-git-send-email-tj@kernel.org
Acked-by: Yinghai Lu <yinghai@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
|