summaryrefslogtreecommitdiff
path: root/arch/x86/include/asm/smp.h
AgeCommit message (Collapse)AuthorFilesLines
2023-06-27Merge tag 'x86-core-2023-06-26' of ↵Linus Torvalds1-0/+4
ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 core updates from Thomas Gleixner: "A set of fixes for kexec(), reboot and shutdown issues: - Ensure that the WBINVD in stop_this_cpu() has been completed before the control CPU proceedes. stop_this_cpu() is used for kexec(), reboot and shutdown to park the APs in a HLT loop. The control CPU sends an IPI to the APs and waits for their CPU online bits to be cleared. Once they all are marked "offline" it proceeds. But stop_this_cpu() clears the CPU online bit before issuing WBINVD, which means there is no guarantee that the AP has reached the HLT loop. This was reported to cause intermittent reboot/shutdown failures due to some dubious interaction with the firmware. This is not only a problem of WBINVD. The code to actually "stop" the CPU which runs between clearing the online bit and reaching the HLT loop can cause large enough delays on its own (think virtualization). That's especially dangerous for kexec() as kexec() expects that all APs are in a safe state and not executing code while the boot CPU jumps to the new kernel. There are more issues vs kexec() which are addressed separately. Cure this by implementing an explicit synchronization point right before the AP reaches HLT. This guarantees that the AP has completed the full stop proceedure. - Fix the condition for WBINVD in stop_this_cpu(). The WBINVD in stop_this_cpu() is required for ensuring that when switching to or from memory encryption no dirty data is left in the cache lines which might cause a write back in the wrong more later. This checks CPUID directly because the feature bit might have been cleared due to a command line option. But that CPUID check accesses leaf 0x8000001f::EAX unconditionally. Intel CPUs return the content of the highest supported leaf when a non-existing leaf is read, while AMD CPUs return all zeros for unsupported leafs. So the result of the test on Intel CPUs is lottery and on AMD its just correct by chance. While harmless it's incorrect and causes the conditional wbinvd() to be issued where not required, which caused the above issue to be unearthed. - Make kexec() robust against AP code execution Ashok observed triple faults when doing kexec() on a system which had been booted with "nosmt". It turned out that the SMT siblings which had been brought up partially are parked in mwait_play_dead() to enable power savings. mwait_play_dead() is monitoring the thread flags of the AP's idle task, which has been chosen as it's unlikely to be written to. But kexec() can overwrite the previous kernel text and data including page tables etc. When it overwrites the cache lines monitored by an AP that AP resumes execution after the MWAIT on eventually overwritten text, stack and page tables, which obviously might end up in a triple fault easily. Make this more robust in several steps: 1) Use an explicit per CPU cache line for monitoring. 2) Write a command to these cache lines to kick APs out of MWAIT before proceeding with kexec(), shutdown or reboot. The APs confirm the wakeup by writing status back and then enter a HLT loop. 3) If the system uses INIT/INIT/STARTUP for AP bringup, park the APs in INIT state. HLT is not a guarantee that an AP won't wake up and resume execution. HLT is woken up by NMI and SMI. SMI puts the CPU back into HLT (+/- firmware bugs), but NMI is delivered to the CPU which executes the NMI handler. Same issue as the MWAIT scenario described above. Sending an INIT/INIT sequence to the APs puts them into wait for STARTUP state, which is safe against NMI. There is still an issue remaining which can't be fixed: #MCE If the AP sits in HLT and receives a broadcast #MCE it will try to handle it with the obvious consequences. INIT/INIT clears CR4.MCE in the AP which will cause a broadcast #MCE to shut down the machine. So there is a choice between fire (HLT) and frying pan (INIT). Frying pan has been chosen as it's at least preventing the NMI issue. On systems which are not using INIT/INIT/STARTUP there is not much which can be done right now, but at least the obvious and easy to trigger MWAIT issue has been addressed" * tag 'x86-core-2023-06-26' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/smp: Put CPUs into INIT on shutdown if possible x86/smp: Split sending INIT IPI out into a helper function x86/smp: Cure kexec() vs. mwait_play_dead() breakage x86/smp: Use dedicated cache-line for mwait_play_dead() x86/smp: Remove pointless wmb()s from native_stop_other_cpus() x86/smp: Dont access non-existing CPUID leaf x86/smp: Make stop_other_cpus() more robust
2023-06-20x86/smp: Put CPUs into INIT on shutdown if possibleThomas Gleixner1-0/+2
Parking CPUs in a HLT loop is not completely safe vs. kexec() as HLT can resume execution due to NMI, SMI and MCE, which has the same issue as the MWAIT loop. Kicking the secondary CPUs into INIT makes this safe against NMI and SMI. A broadcast MCE will take the machine down, but a broadcast MCE which makes HLT resume and execute overwritten text, pagetables or data will end up in a disaster too. So chose the lesser of two evils and kick the secondary CPUs into INIT unless the system has installed special wakeup mechanisms which are not using INIT. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ashok Raj <ashok.raj@intel.com> Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de> Link: https://lore.kernel.org/r/20230615193330.608657211@linutronix.de
2023-06-20x86/smp: Cure kexec() vs. mwait_play_dead() breakageThomas Gleixner1-0/+2
TLDR: It's a mess. When kexec() is executed on a system with offline CPUs, which are parked in mwait_play_dead() it can end up in a triple fault during the bootup of the kexec kernel or cause hard to diagnose data corruption. The reason is that kexec() eventually overwrites the previous kernel's text, page tables, data and stack. If it writes to the cache line which is monitored by a previously offlined CPU, MWAIT resumes execution and ends up executing the wrong text, dereferencing overwritten page tables or corrupting the kexec kernels data. Cure this by bringing the offlined CPUs out of MWAIT into HLT. Write to the monitored cache line of each offline CPU, which makes MWAIT resume execution. The written control word tells the offlined CPUs to issue HLT, which does not have the MWAIT problem. That does not help, if a stray NMI, MCE or SMI hits the offlined CPUs as those make it come out of HLT. A follow up change will put them into INIT, which protects at least against NMI and SMI. Fixes: ea53069231f9 ("x86, hotplug: Use mwait to offline a processor, fix the legacy case") Reported-by: Ashok Raj <ashok.raj@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Ashok Raj <ashok.raj@intel.com> Reviewed-by: Ashok Raj <ashok.raj@intel.com> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20230615193330.492257119@linutronix.de
2023-05-15x86/smpboot: Support parallel startup of secondary CPUsDavid Woodhouse1-0/+6
In parallel startup mode the APs are kicked alive by the control CPU quickly after each other and run through the early startup code in parallel. The real-mode startup code is already serialized with a bit-spinlock to protect the real-mode stack. In parallel startup mode the smpboot_control variable obviously cannot contain the Linux CPU number so the APs have to determine their Linux CPU number on their own. This is required to find the CPUs per CPU offset in order to find the idle task stack and other per CPU data. To achieve this, export the cpuid_to_apicid[] array so that each AP can find its own CPU number by searching therein based on its APIC ID. Introduce a flag in the top bits of smpboot_control which indicates that the AP should find its CPU number by reading the APIC ID from the APIC. This is required because CPUID based APIC ID retrieval can only provide the initial APIC ID, which might have been overruled by the firmware. Some AMD APUs come up with APIC ID = initial APIC ID + 0x10, so the APIC ID to CPU number lookup would fail miserably if based on CPUID. Also virtualization can make its own APIC ID assignements. The only requirement is that the APIC IDs are consistent with the APCI/MADT table. For the boot CPU or in case parallel bringup is disabled the control bits are empty and the CPU number is directly available in bit 0-23 of smpboot_control. [ tglx: Initial proof of concept patch with bitlock and APIC ID lookup ] [ dwmw2: Rework and testing, commit message, CPUID 0x1 and CPU0 support ] [ seanc: Fix stray override of initial_gs in common_cpu_up() ] [ Oleksandr Natalenko: reported suspend/resume issue fixed in x86_acpi_suspend_lowlevel ] [ tglx: Make it read the APIC ID from the APIC instead of using CPUID, split the bitlock part out ] Co-developed-by: Thomas Gleixner <tglx@linutronix.de> Co-developed-by: Brian Gerst <brgerst@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Brian Gerst <brgerst@gmail.com> Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Michael Kelley <mikelley@microsoft.com> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Helge Deller <deller@gmx.de> # parisc Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck Link: https://lore.kernel.org/r/20230512205257.411554373@linutronix.de
2023-05-15x86/apic: Save the APIC virtual base addressThomas Gleixner1-0/+1
For parallel CPU brinugp it's required to read the APIC ID in the low level startup code. The virtual APIC base address is a constant because its a fix-mapped address. Exposing that constant which is composed via macros to assembly code is non-trivial due to header inclusion hell. Aside of that it's constant only because of the vsyscall ABI requirement. Once vsyscall is out of the picture the fixmap can be placed at runtime. Avoid header hell, stay flexible and store the address in a variable which can be exposed to the low level startup code. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Michael Kelley <mikelley@microsoft.com> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Helge Deller <deller@gmx.de> # parisc Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck Link: https://lore.kernel.org/r/20230512205257.299231005@linutronix.de
2023-05-15x86/smpboot: Enable split CPU startupThomas Gleixner1-7/+2
The x86 CPU bringup state currently does AP wake-up, wait for AP to respond and then release it for full bringup. It is safe to be split into a wake-up and and a separate wait+release state. Provide the required functions and enable the split CPU bringup, which prepares for parallel bringup, where the bringup of the non-boot CPUs takes two iterations: One to prepare and wake all APs and the second to wait and release them. Depending on timing this can eliminate the wait time completely. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Michael Kelley <mikelley@microsoft.com> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Helge Deller <deller@gmx.de> # parisc Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck Link: https://lore.kernel.org/r/20230512205257.133453992@linutronix.de
2023-05-15x86/smpboot: Switch to hotplug core state synchronizationThomas Gleixner1-3/+4
The new AP state tracking and synchronization mechanism in the CPU hotplug core code allows to remove quite some x86 specific code: 1) The AP alive synchronization based on cpumasks 2) The decision whether an AP can be brought up again Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Michael Kelley <mikelley@microsoft.com> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Helge Deller <deller@gmx.de> # parisc Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck Link: https://lore.kernel.org/r/20230512205256.529657366@linutronix.de
2023-05-15x86/smpboot: Remove the CPU0 hotplug kludgeThomas Gleixner1-1/+0
This was introduced with commit e1c467e69040 ("x86, hotplug: Wake up CPU0 via NMI instead of INIT, SIPI, SIPI") to eventually support physical hotplug of CPU0: "We'll change this code in the future to wake up hard offlined CPU0 if real platform and request are available." 11 years later this has not happened and physical hotplug is not officially supported. Remove the cruft. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Michael Kelley <mikelley@microsoft.com> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Helge Deller <deller@gmx.de> # parisc Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck Link: https://lore.kernel.org/r/20230512205255.768845190@linutronix.de
2023-04-29Merge tag 'smp-core-2023-04-27' of ↵Linus Torvalds1-1/+1
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull SMP cross-CPU function-call updates from Ingo Molnar: - Remove diagnostics and adjust config for CSD lock diagnostics - Add a generic IPI-sending tracepoint, as currently there's no easy way to instrument IPI origins: it's arch dependent and for some major architectures it's not even consistently available. * tag 'smp-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: trace,smp: Trace all smp_function_call*() invocations trace: Add trace_ipi_send_cpu() sched, smp: Trace smp callback causing an IPI smp: reword smp call IPI comment treewide: Trace IPIs sent via smp_send_reschedule() irq_work: Trace self-IPIs sent via arch_irq_work_raise() smp: Trace IPIs sent via arch_send_call_function_ipi_mask() sched, smp: Trace IPIs sent via send_call_function_single_ipi() trace: Add trace_ipi_send_cpumask() kernel/smp: Make csdlock_debug= resettable locking/csd_lock: Remove per-CPU data indirection from CSD lock debugging locking/csd_lock: Remove added data from CSD lock debugging locking/csd_lock: Add Kconfig option for csd_debug default
2023-04-29Merge tag 'objtool-core-2023-04-27' of ↵Linus Torvalds1-2/+3
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull objtool updates from Ingo Molnar: - Mark arch_cpu_idle_dead() __noreturn, make all architectures & drivers that did this inconsistently follow this new, common convention, and fix all the fallout that objtool can now detect statically - Fix/improve the ORC unwinder becoming unreliable due to UNWIND_HINT_EMPTY ambiguity, split it into UNWIND_HINT_END_OF_STACK and UNWIND_HINT_UNDEFINED to resolve it - Fix noinstr violations in the KCSAN code and the lkdtm/stackleak code - Generate ORC data for __pfx code - Add more __noreturn annotations to various kernel startup/shutdown and panic functions - Misc improvements & fixes * tag 'objtool-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (52 commits) x86/hyperv: Mark hv_ghcb_terminate() as noreturn scsi: message: fusion: Mark mpt_halt_firmware() __noreturn x86/cpu: Mark {hlt,resume}_play_dead() __noreturn btrfs: Mark btrfs_assertfail() __noreturn objtool: Include weak functions in global_noreturns check cpu: Mark nmi_panic_self_stop() __noreturn cpu: Mark panic_smp_self_stop() __noreturn arm64/cpu: Mark cpu_park_loop() and friends __noreturn x86/head: Mark *_start_kernel() __noreturn init: Mark start_kernel() __noreturn init: Mark [arch_call_]rest_init() __noreturn objtool: Generate ORC data for __pfx code x86/linkage: Fix padding for typed functions objtool: Separate prefix code from stack validation code objtool: Remove superfluous dead_end_function() check objtool: Add symbol iteration helpers objtool: Add WARN_INSN() scripts/objdump-func: Support multiple functions context_tracking: Fix KCSAN noinstr violation objtool: Add stackleak instrumentation to uaccess safe list ...
2023-04-14x86/cpu: Mark {hlt,resume}_play_dead() __noreturnJosh Poimboeuf1-1/+1
Fixes the following warning: vmlinux.o: warning: objtool: resume_play_dead+0x21: unreachable instruction Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/ce1407c4bf88b1334fe40413126343792a77ca50.1681342859.git.jpoimboe@kernel.org
2023-03-24treewide: Trace IPIs sent via smp_send_reschedule()Valentin Schneider1-1/+1
To be able to trace invocations of smp_send_reschedule(), rename the arch-specific definitions of it to arch_smp_send_reschedule() and wrap it into an smp_send_reschedule() that contains a tracepoint. Changes to include the declaration of the tracepoint were driven by the following coccinelle script: @func_use@ @@ smp_send_reschedule(...); @include@ @@ #include <trace/events/ipi.h> @no_include depends on func_use && !include@ @@ #include <...> + + #include <trace/events/ipi.h> [csky bits] [riscv bits] Signed-off-by: Valentin Schneider <vschneid@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Guo Ren <guoren@kernel.org> Acked-by: Palmer Dabbelt <palmer@rivosinc.com> Link: https://lore.kernel.org/r/20230307143558.294354-6-vschneid@redhat.com
2023-03-21x86/smpboot: Remove initial_stack on 64-bitBrian Gerst1-1/+4
In order to facilitate parallel startup, start to eliminate some of the global variables passing information to CPUs in the startup path. However, start by introducing one more: smpboot_control. For now this merely holds the CPU# of the CPU which is coming up. Each CPU can then find its own per-cpu data, and everything else it needs can be found from there, allowing the other global variables to be removed. First to be removed is initial_stack. Each CPU can load %rsp from its current_task->thread.sp instead. That is already set up with the correct idle thread for APs. Set up the .sp field in INIT_THREAD on x86 so that the BSP also finds a suitable stack pointer in the static per-cpu data when coming up on first boot. On resume from S3, the CPU needs a temporary stack because its idle task is already active. Instead of setting initial_stack, the sleep code can simply set its own current->thread.sp to point to the temporary stack. Nobody else cares about ->thread.sp for a thread which is currently on a CPU, because the true value is actually in the %rsp register. Which is restored with the rest of the CPU context in do_suspend_lowlevel(). Signed-off-by: Brian Gerst <brgerst@gmail.com> Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Usama Arif <usama.arif@bytedance.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Usama Arif <usama.arif@bytedance.com> Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> Reviewed-by: David Woodhouse <dwmw@amazon.co.uk> Link: https://lore.kernel.org/r/20230316222109.1940300-7-usama.arif@bytedance.com
2023-03-08x86/cpu: Mark play_dead() __noreturnJosh Poimboeuf1-1/+1
play_dead() doesn't return. Annotate it as such. By extension this also makes arch_cpu_idle_dead() noreturn. Link: https://lore.kernel.org/r/f3a069e6869c51ccfdda656b76882363bc9fcfa4.1676358308.git.jpoimboe@kernel.org Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
2023-03-08x86/cpu: Make sure play_dead() doesn't returnJosh Poimboeuf1-0/+1
After commit 076cbf5d2163 ("x86/xen: don't let xen_pv_play_dead() return"), play_dead() never returns. Make that more explicit with a BUG(). BUG() is preferable to unreachable() because BUG() is a more explicit failure mode and avoids undefined behavior like falling off the edge of the function into whatever code happens to be next. Link: https://lore.kernel.org/r/11e6ac1cf10f92967882926e3ac16287b50642f2.1676358308.git.jpoimboe@kernel.org Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
2022-10-17x86/percpu: Move cpu_number next to current_taskThomas Gleixner1-7/+5
Also add cpu_number to the pcpu_hot structure, it is often referenced and this cacheline is there. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20220915111145.387678283@infradead.org
2022-09-28x86/cacheinfo: Add a cpu_llc_shared_mask() UP variantBorislav Petkov1-10/+15
On a CONFIG_SMP=n kernel, the LLC shared mask is 0, which prevents __cache_amd_cpumap_setup() from doing the L3 masks setup, and more specifically from setting up the shared_cpu_map and shared_cpu_list files in sysfs, leading to lscpu from util-linux getting confused and segfaulting. Add a cpu_llc_shared_mask() UP variant which returns a mask with a single bit set, i.e., for CPU0. Fixes: 2b83809a5e6d ("x86/cpu/amd: Derive L3 shared_cpu_map from cpu_llc_shared_mask") Reported-by: Saurabh Sengar <ssengar@linux.microsoft.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: <stable@vger.kernel.org> Link: https://lore.kernel.org/r/1660148115-302-1-git-send-email-ssengar@linux.microsoft.com
2021-11-11x86/smp: Factor out parts of native_smp_prepare_cpus()Boris Ostrovsky1-0/+1
Commit 66558b730f25 ("sched: Add cluster scheduler level for x86") introduced cpu_l2c_shared_map mask which is expected to be initialized by smp_op.smp_prepare_cpus(). That commit only updated native_smp_prepare_cpus() version but not xen_pv_smp_prepare_cpus(). As result Xen PV guests crash in set_cpu_sibling_map(). While the new mask can be allocated in xen_pv_smp_prepare_cpus() one can see that both versions of smp_prepare_cpus ops share a number of common operations that can be factored out. So do that instead. Fixes: 66558b730f25 ("sched: Add cluster scheduler level for x86") Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Juergen Gross <jgross@suse.com> Link: https://lkml.kernel.org/r/1635896196-18961-1-git-send-email-boris.ostrovsky@oracle.com
2021-10-15sched: Add cluster scheduler level for x86Tim Chen1-0/+7
There are x86 CPU architectures (e.g. Jacobsville) where L2 cahce is shared among a cluster of cores instead of being exclusive to one single core. To prevent oversubscription of L2 cache, load should be balanced between such L2 clusters, especially for tasks with no shared data. On benchmark such as SPECrate mcf test, this change provides a boost to performance especially on medium load system on Jacobsville. on a Jacobsville that has 24 Atom cores, arranged into 6 clusters of 4 cores each, the benchmark number is as follow: Improvement over baseline kernel for mcf_r copies run time base rate 1 -0.1% -0.2% 6 25.1% 25.1% 12 18.8% 19.0% 24 0.3% 0.3% So this looks pretty good. In terms of the system's task distribution, some pretty bad clumping can be seen for the vanilla kernel without the L2 cluster domain for the 6 and 12 copies case. With the extra domain for cluster, the load does get evened out between the clusters. Note this patch isn't an universal win as spreading isn't necessarily a win, particually for those workload who can benefit from packing. Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Barry Song <song.bao.hua@hisilicon.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20210924085104.44806-4-21cnbao@gmail.com
2021-04-07ACPI: processor: Fix build when CONFIG_ACPI_PROCESSOR=mVitaly Kuznetsov1-1/+1
Commit 8cdddd182bd7 ("ACPI: processor: Fix CPU0 wakeup in acpi_idle_play_dead()") tried to fix CPU0 hotplug breakage by copying wakeup_cpu0() + start_cpu0() logic from hlt_play_dead()//mwait_play_dead() into acpi_idle_play_dead(). The problem is that these functions are not exported to modules so when CONFIG_ACPI_PROCESSOR=m build fails. The issue could've been fixed by exporting both wakeup_cpu0()/start_cpu0() (the later from assembly) but it seems putting the whole pattern into a new function and exporting it instead is better. Reported-by: kernel test robot <lkp@intel.com> Fixes: 8cdddd182bd7 ("CPI: processor: Fix CPU0 wakeup in acpi_idle_play_dead()") Cc: <stable@vger.kernel.org> # 5.10+ Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2021-04-01ACPI: processor: Fix CPU0 wakeup in acpi_idle_play_dead()Vitaly Kuznetsov1-0/+1
Commit 496121c02127 ("ACPI: processor: idle: Allow probing on platforms with one ACPI C-state") broke CPU0 hotplug on certain systems, e.g. I'm observing the following on AWS Nitro (e.g r5b.xlarge but other instance types are affected as well): # echo 0 > /sys/devices/system/cpu/cpu0/online # echo 1 > /sys/devices/system/cpu/cpu0/online <10 seconds delay> -bash: echo: write error: Input/output error In fact, the above mentioned commit only revealed the problem and did not introduce it. On x86, to wakeup CPU an NMI is being used and hlt_play_dead()/mwait_play_dead() loops are prepared to handle it: /* * If NMI wants to wake up CPU0, start CPU0. */ if (wakeup_cpu0()) start_cpu0(); cpuidle_play_dead() -> acpi_idle_play_dead() (which is now being called on systems where it wasn't called before the above mentioned commit) serves the same purpose but it doesn't have a path for CPU0. What happens now on wakeup is: - NMI is sent to CPU0 - wakeup_cpu0_nmi() works as expected - we get back to while (1) loop in acpi_idle_play_dead() - safe_halt() puts CPU0 to sleep again. The straightforward/minimal fix is add the special handling for CPU0 on x86 and that's what the patch is doing. Fixes: 496121c02127 ("ACPI: processor: idle: Allow probing on platforms with one ACPI C-state") Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: 5.10+ <stable@vger.kernel.org> # 5.10+ Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2020-08-06x86/headers: Remove APIC headers from <asm/smp.h>Ingo Molnar1-10/+0
The APIC headers are relatively complex and bring in additional header dependencies - while smp.h is a relatively simple header included from high level headers. Remove the dependency and add in the missing #include's in .c files where they gained it indirectly before. Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-07-25x86/smp: Move smp_function_call implementations into IPI codeThomas Gleixner1-0/+1
Move it where it belongs. That allows to keep all the shorthand logic in one place. No functional change. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20190722105220.677835995@linutronix.de
2019-07-09Merge branch 'x86-topology-for-linus' of ↵Linus Torvalds1-0/+1
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 topology updates from Ingo Molnar: "Implement multi-die topology support on Intel CPUs and expose the die topology to user-space tooling, by Len Brown, Kan Liang and Zhang Rui. These changes should have no effect on the kernel's existing understanding of topologies, i.e. there should be no behavioral impact on cache, NUMA, scheduler, perf and other topologies and overall system performance" * 'x86-topology-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: perf/x86/intel/rapl: Cosmetic rename internal variables in response to multi-die/pkg support perf/x86/intel/uncore: Cosmetic renames in response to multi-die/pkg support hwmon/coretemp: Cosmetic: Rename internal variables to zones from packages thermal/x86_pkg_temp_thermal: Cosmetic: Rename internal variables to zones from packages perf/x86/intel/cstate: Support multi-die/package perf/x86/intel/rapl: Support multi-die/package perf/x86/intel/uncore: Support multi-die/package topology: Create core_cpus and die_cpus sysfs attributes topology: Create package_cpus sysfs attribute hwmon/coretemp: Support multi-die/package powercap/intel_rapl: Update RAPL domain name and debug messages thermal/x86_pkg_temp_thermal: Support multi-die/package powercap/intel_rapl: Support multi-die/package powercap/intel_rapl: Simplify rapl_find_package() x86/topology: Define topology_logical_die_id() x86/topology: Define topology_die_id() cpu/topology: Export die_id x86/topology: Create topology_max_die_per_package() x86/topology: Add CPUID.1F multi-die/package support
2019-06-17x86/percpu: Relax smp_processor_id()Peter Zijlstra1-1/+2
Nadav reported that since this_cpu_read() became asm-volatile, many smp_processor_id() users generated worse code due to the extra constraints. However since smp_processor_id() is reading a stable value, we can use __this_cpu_read(). While this does reduce text size somewhat, this mostly results in code movement to .text.unlikely as a result of more/larger .cold. subfunctions. Less text on the hotpath is good for I$. $ ./compare.sh defconfig-build1 defconfig-build2 vmlinux.o setup_APIC_ibs 90 98 -12,+20 force_ibs_eilvt_setup 400 413 -57,+70 pci_serr_error 109 104 -54,+49 pci_serr_error 109 104 -54,+49 unknown_nmi_error 125 120 -76,+71 unknown_nmi_error 125 120 -76,+71 io_check_error 125 132 -97,+104 intel_thermal_interrupt 730 822 +92,+0 intel_init_thermal 951 945 -6,+0 generic_get_mtrr 301 294 -7,+0 generic_get_mtrr 301 294 -7,+0 generic_set_all 749 754 -44,+49 get_fixed_ranges 352 360 -41,+49 x86_acpi_suspend_lowlevel 369 363 -6,+0 check_tsc_sync_source 412 412 -71,+71 irq_migrate_all_off_this_cpu 662 674 -14,+26 clocksource_watchdog 748 748 -113,+113 __perf_event_account_interrupt 204 197 -7,+0 attempt_merge 1748 1741 -7,+0 intel_guc_send_ct 1424 1409 -15,+0 __fini_doorbell 235 231 -4,+0 bdw_set_cdclk 928 923 -5,+0 gen11_dsi_disable 1571 1556 -15,+0 gmbus_wait 493 488 -5,+0 md_make_request 376 369 -7,+0 __split_and_process_bio 543 536 -7,+0 delay_tsc 96 89 -7,+0 hsw_disable_pc8 696 691 -5,+0 tsc_verify_tsc_adjust 215 228 -22,+35 cpuidle_driver_unref 56 49 -7,+0 blk_account_io_completion 159 148 -11,+0 mtrr_wrmsr 95 99 -29,+33 __intel_wait_for_register_fw 401 419 +18,+0 cpuidle_driver_ref 43 36 -7,+0 cpuidle_get_driver 15 8 -7,+0 blk_account_io_done 535 528 -7,+0 irq_migrate_all_off_this_cpu 662 674 -14,+26 check_tsc_sync_source 412 412 -71,+71 irq_wait_for_poll 170 163 -7,+0 generic_end_io_acct 329 322 -7,+0 x86_acpi_suspend_lowlevel 369 363 -6,+0 nohz_balance_enter_idle 198 191 -7,+0 generic_start_io_acct 254 247 -7,+0 blk_account_io_start 341 334 -7,+0 perf_event_task_tick 682 675 -7,+0 intel_init_thermal 951 945 -6,+0 amd_e400_c1e_apic_setup 47 51 -28,+32 setup_APIC_eilvt 350 328 -22,+0 hsw_enable_pc8 1611 1605 -6,+0 total 12985947 12985892 -994,+939 Reported-by: Nadav Amit <nadav.amit@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-05-23topology: Create core_cpus and die_cpus sysfs attributesLen Brown1-0/+1
Create CPU topology sysfs attributes: "core_cpus" and "core_cpus_list" These attributes represent all of the logical CPUs that share the same core. These attriutes is synonymous with the existing "thread_siblings" and "thread_siblings_list" attribute, which will be deprecated. Create CPU topology sysfs attributes: "die_cpus" and "die_cpus_list". These attributes represent all of the logical CPUs that share the same die. Suggested-by: Brice Goglin <Brice.Goglin@inria.fr> Signed-off-by: Len Brown <len.brown@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/071c23a298cd27ede6ed0b6460cae190d193364f.1557769318.git.len.brown@intel.com
2019-04-17x86/irq/32: Handle irq stack allocation failure properThomas Gleixner1-1/+1
irq_ctx_init() crashes hard on page allocation failures. While that's ok during early boot, it's just wrong in the CPU hotplug bringup code. Check the page allocation failure and return -ENOMEM and handle it at the call sites. On early boot the only way out is to BUG(), but on CPU hotplug there is no reason to crash, so just abort the operation. Rename the function to something more sensible while at it. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Alison Schofield <alison.schofield@intel.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Nicolai Stange <nstange@suse.de> Cc: Pu Wen <puwen@hygon.cn> Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: Shaokun Zhang <zhangshaokun@hisilicon.com> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Cc: x86-ml <x86@kernel.org> Cc: xen-devel@lists.xenproject.org Cc: Yazen Ghannam <yazen.ghannam@amd.com> Cc: Yi Wang <wang.yi59@zte.com.cn> Cc: Zhenzhong Duan <zhenzhong.duan@oracle.com> Link: https://lkml.kernel.org/r/20190414160146.089060584@linutronix.de
2018-11-23x86/headers: Fix -Wmissing-prototypes warningYi Wang1-0/+6
When building the kernel with W=1 we get a lot of -Wmissing-prototypes warnings, which are trivial in nature and easy to fix - and which may mask some real future bugs if the prototypes get out of sync with the function definition. This patch fixes most of -Wmissing-prototypes warnings which are in the root directory of arch/x86/kernel, not including the subdirectories. These are the warnings fixed in this patch: arch/x86/kernel/signal.c:865:17: warning: no previous prototype for ‘sys32_x32_rt_sigreturn’ [-Wmissing-prototypes] arch/x86/kernel/signal_compat.c:164:6: warning: no previous prototype for ‘sigaction_compat_abi’ [-Wmissing-prototypes] arch/x86/kernel/traps.c:625:46: warning: no previous prototype for ‘sync_regs’ [-Wmissing-prototypes] arch/x86/kernel/traps.c:640:24: warning: no previous prototype for ‘fixup_bad_iret’ [-Wmissing-prototypes] arch/x86/kernel/traps.c:929:13: warning: no previous prototype for ‘trap_init’ [-Wmissing-prototypes] arch/x86/kernel/irq.c:270:28: warning: no previous prototype for ‘smp_x86_platform_ipi’ [-Wmissing-prototypes] arch/x86/kernel/irq.c:301:16: warning: no previous prototype for ‘smp_kvm_posted_intr_ipi’ [-Wmissing-prototypes] arch/x86/kernel/irq.c:314:16: warning: no previous prototype for ‘smp_kvm_posted_intr_wakeup_ipi’ [-Wmissing-prototypes] arch/x86/kernel/irq.c:328:16: warning: no previous prototype for ‘smp_kvm_posted_intr_nested_ipi’ [-Wmissing-prototypes] arch/x86/kernel/irq_work.c:16:28: warning: no previous prototype for ‘smp_irq_work_interrupt’ [-Wmissing-prototypes] arch/x86/kernel/irqinit.c:79:13: warning: no previous prototype for ‘init_IRQ’ [-Wmissing-prototypes] arch/x86/kernel/quirks.c:672:13: warning: no previous prototype for ‘early_platform_quirks’ [-Wmissing-prototypes] arch/x86/kernel/tsc.c:1499:15: warning: no previous prototype for ‘calibrate_delay_is_known’ [-Wmissing-prototypes] arch/x86/kernel/process.c:653:13: warning: no previous prototype for ‘arch_post_acpi_subsys_init’ [-Wmissing-prototypes] arch/x86/kernel/process.c:717:15: warning: no previous prototype for ‘arch_randomize_brk’ [-Wmissing-prototypes] arch/x86/kernel/process.c:784:6: warning: no previous prototype for ‘do_arch_prctl_common’ [-Wmissing-prototypes] arch/x86/kernel/reboot.c:869:6: warning: no previous prototype for ‘nmi_panic_self_stop’ [-Wmissing-prototypes] arch/x86/kernel/smp.c:176:27: warning: no previous prototype for ‘smp_reboot_interrupt’ [-Wmissing-prototypes] arch/x86/kernel/smp.c:260:28: warning: no previous prototype for ‘smp_reschedule_interrupt’ [-Wmissing-prototypes] arch/x86/kernel/smp.c:281:28: warning: no previous prototype for ‘smp_call_function_interrupt’ [-Wmissing-prototypes] arch/x86/kernel/smp.c:291:28: warning: no previous prototype for ‘smp_call_function_single_interrupt’ [-Wmissing-prototypes] arch/x86/kernel/ftrace.c:840:6: warning: no previous prototype for ‘arch_ftrace_update_trampoline’ [-Wmissing-prototypes] arch/x86/kernel/ftrace.c:934:7: warning: no previous prototype for ‘arch_ftrace_trampoline_func’ [-Wmissing-prototypes] arch/x86/kernel/ftrace.c:946:6: warning: no previous prototype for ‘arch_ftrace_trampoline_free’ [-Wmissing-prototypes] arch/x86/kernel/crash.c:114:6: warning: no previous prototype for ‘crash_smp_send_stop’ [-Wmissing-prototypes] arch/x86/kernel/crash.c:351:5: warning: no previous prototype for ‘crash_setup_memmap_entries’ [-Wmissing-prototypes] arch/x86/kernel/crash.c:424:5: warning: no previous prototype for ‘crash_load_segments’ [-Wmissing-prototypes] arch/x86/kernel/machine_kexec_64.c:372:7: warning: no previous prototype for ‘arch_kexec_kernel_image_load’ [-Wmissing-prototypes] arch/x86/kernel/paravirt-spinlocks.c:12:16: warning: no previous prototype for ‘__native_queued_spin_unlock’ [-Wmissing-prototypes] arch/x86/kernel/paravirt-spinlocks.c:18:6: warning: no previous prototype for ‘pv_is_native_spin_unlock’ [-Wmissing-prototypes] arch/x86/kernel/paravirt-spinlocks.c:24:16: warning: no previous prototype for ‘__native_vcpu_is_preempted’ [-Wmissing-prototypes] arch/x86/kernel/paravirt-spinlocks.c:30:6: warning: no previous prototype for ‘pv_is_native_vcpu_is_preempted’ [-Wmissing-prototypes] arch/x86/kernel/kvm.c:258:1: warning: no previous prototype for ‘do_async_page_fault’ [-Wmissing-prototypes] arch/x86/kernel/jailhouse.c:200:6: warning: no previous prototype for ‘jailhouse_paravirt’ [-Wmissing-prototypes] arch/x86/kernel/check.c:91:13: warning: no previous prototype for ‘setup_bios_corruption_check’ [-Wmissing-prototypes] arch/x86/kernel/check.c:139:6: warning: no previous prototype for ‘check_for_bios_corruption’ [-Wmissing-prototypes] arch/x86/kernel/devicetree.c:32:13: warning: no previous prototype for ‘early_init_dt_scan_chosen_arch’ [-Wmissing-prototypes] arch/x86/kernel/devicetree.c:42:13: warning: no previous prototype for ‘add_dtb’ [-Wmissing-prototypes] arch/x86/kernel/devicetree.c:108:6: warning: no previous prototype for ‘x86_of_pci_init’ [-Wmissing-prototypes] arch/x86/kernel/devicetree.c:314:13: warning: no previous prototype for ‘x86_dtb_init’ [-Wmissing-prototypes] arch/x86/kernel/tracepoint.c:16:5: warning: no previous prototype for ‘trace_pagefault_reg’ [-Wmissing-prototypes] arch/x86/kernel/tracepoint.c:22:6: warning: no previous prototype for ‘trace_pagefault_unreg’ [-Wmissing-prototypes] arch/x86/kernel/head64.c:113:22: warning: no previous prototype for ‘__startup_64’ [-Wmissing-prototypes] arch/x86/kernel/head64.c:262:15: warning: no previous prototype for ‘__startup_secondary_64’ [-Wmissing-prototypes] arch/x86/kernel/head64.c:350:12: warning: no previous prototype for ‘early_make_pgtable’ [-Wmissing-prototypes] [ mingo: rewrote the changelog, fixed build errors. ] Signed-off-by: Yi Wang <wang.yi59@zte.com.cn> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: akataria@vmware.com Cc: akpm@linux-foundation.org Cc: andy.shevchenko@gmail.com Cc: anton@enomsg.org Cc: ard.biesheuvel@linaro.org Cc: bhe@redhat.com Cc: bhelgaas@google.com Cc: bp@alien8.de Cc: ccross@android.com Cc: devicetree@vger.kernel.org Cc: douly.fnst@cn.fujitsu.com Cc: dwmw@amazon.co.uk Cc: dyoung@redhat.com Cc: ebiederm@xmission.com Cc: frank.rowand@sony.com Cc: frowand.list@gmail.com Cc: ivan.gorinov@intel.com Cc: jailhouse-dev@googlegroups.com Cc: jan.kiszka@siemens.com Cc: jgross@suse.com Cc: jroedel@suse.de Cc: keescook@chromium.org Cc: kexec@lists.infradead.org Cc: konrad.wilk@oracle.com Cc: kvm@vger.kernel.org Cc: linux-efi@vger.kernel.org Cc: linux-pci@vger.kernel.org Cc: luto@kernel.org Cc: m.mizuma@jp.fujitsu.com Cc: namit@vmware.com Cc: oleg@redhat.com Cc: pasha.tatashin@oracle.com Cc: pbonzini@redhat.com Cc: prarit@redhat.com Cc: pravin.shedge4linux@gmail.com Cc: rajvi.jingar@intel.com Cc: rkrcmar@redhat.com Cc: robh+dt@kernel.org Cc: robh@kernel.org Cc: rostedt@goodmis.org Cc: takahiro.akashi@linaro.org Cc: thomas.lendacky@amd.com Cc: tony.luck@intel.com Cc: up2wing@gmail.com Cc: virtualization@lists.linux-foundation.org Cc: zhe.he@windriver.com Cc: zhong.weidong@zte.com.cn Link: http://lkml.kernel.org/r/1542852249-19820-1-git-send-email-wang.yi59@zte.com.cn Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-05-06x86/CPU/AMD: Have smp_num_siblings and cpu_llc_id always be presentBorislav Petkov1-1/+0
Move smp_num_siblings and cpu_llc_id to cpu/common.c so that they're always present as symbols and not only in the CONFIG_SMP case. Then, other code using them doesn't need ugly ifdeffery anymore. Get rid of some ifdeffery. Signed-off-by: Borislav Petkov <bpetkov@suse.de> Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1524864877-111962-2-git-send-email-suravee.suthikulpanit@amd.com
2018-04-02Merge branch 'x86-apic-for-linus' of ↵Linus Torvalds1-10/+0
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 apic updates from Ingo Molnar: "The main x86 APIC/IOAPIC changes in this cycle were: - Robustify kexec support to more carefully restore IRQ hardware state before calling into kexec/kdump kernels. (Baoquan He) - Clean up the local APIC code a bit (Dou Liyang) - Remove unused callbacks (David Rientjes)" * 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/apic: Finish removing unused callbacks x86/apic: Drop logical_smp_processor_id() inline x86/apic: Modernize the pending interrupt code x86/apic: Move pending interrupt check code into it's own function x86/apic: Set up through-local-APIC mode on the boot CPU if 'noapic' specified x86/apic: Rename variables and functions related to x86_io_apic_ops x86/apic: Remove the (now) unused disable_IO_APIC() function x86/apic: Fix restoring boot IRQ mode in reboot and kexec/kdump x86/apic: Split disable_IO_APIC() into two functions to fix CONFIG_KEXEC_JUMP=y x86/apic: Split out restore_boot_irq_mode() from disable_IO_APIC() x86/apic: Make setup_local_APIC() static x86/apic: Simplify init_bsp_APIC() usage x86/x2apic: Mark set_x2apic_phys_mode() as __init
2018-03-01x86/apic: Drop logical_smp_processor_id() inlineDou Liyang1-10/+0
The logical_smp_processor_id() inline which is only called in setup_local_APIC() on x86_32 systems has no real value. Drop it and directly use GET_APIC_LOGICAL_ID() at the call site and use a more suitable variable name for readability Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: andy.shevchenko@gmail.com Cc: bhe@redhat.com Cc: ebiederm@xmission.com Link: https://lkml.kernel.org/r/20180301055930.2396-4-douly.fnst@cn.fujitsu.com
2018-02-17x86/xen: Calculate __max_logical_packages on PV domainsPrarit Bhargava1-0/+1
The kernel panics on PV domains because native_smp_cpus_done() is only called for HVM domains. Calculate __max_logical_packages for PV domains. Fixes: b4c0a7326f5d ("x86/smpboot: Fix __max_logical_packages estimate") Signed-off-by: Prarit Bhargava <prarit@redhat.com> Tested-and-reported-by: Simon Gaiser <simon@invisiblethingslab.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Juergen Gross <jgross@suse.com> Cc: Dou Liyang <douly.fnst@cn.fujitsu.com> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Andi Kleen <ak@linux.intel.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: xen-devel@lists.xenproject.org Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: Juergen Gross <jgross@suse.com>
2017-11-02License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman1-0/+1
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-04-14x86/smp: Remove the redundant #ifdef CONFIG_SMP directiveDou Liyang1-5/+1
The !CONFIG_X86_LOCAL_APIC section in smp.h wraps the define of hard_smp_processor_id() into #ifndef CONFIG_SMP. But Kconfig has: config X86_LOCAL_APIC def_bool y depends on X86_64 || SMP || X86_32_NON_STANDARD ... Therefore SMP can't be 'y' when X86_LOCAL_APIC == 'n'. Remove the redundant #ifndef CONFIG_SMP. [ tglx: Massaged changelog ] Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com> Cc: jaswinder@infradead.org Link: http://lkml.kernel.org/r/1491734806-15413-2-git-send-email-douly.fnst@cn.fujitsu.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-04-14x86/smp: Reduce code duplicationDou Liyang1-16/+13
The CONFIG_X86_32_SMP and CONFIG_X86_64_SMP sections in smp.h contain duplicate defines. Merge them and only put the difference into an #ifdeff'ed section. [ tglx: Massaged changelog ] Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com> Cc: jaswinder@infradead.org Link: http://lkml.kernel.org/r/1491734806-15413-1-git-send-email-douly.fnst@cn.fujitsu.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-10-12x86/panic: replace smp_send_stop() with kdump friendly version in panic pathHidehiro Kawai1-0/+1
Daniel Walker reported problems which happens when crash_kexec_post_notifiers kernel option is enabled (https://lkml.org/lkml/2015/6/24/44). In that case, smp_send_stop() is called before entering kdump routines which assume other CPUs are still online. As the result, for x86, kdump routines fail to save other CPUs' registers and disable virtualization extensions. To fix this problem, call a new kdump friendly function, crash_smp_send_stop(), instead of the smp_send_stop() when crash_kexec_post_notifiers is enabled. crash_smp_send_stop() is a weak function, and it just call smp_send_stop(). Architecture codes should override it so that kdump can work appropriately. This patch only provides x86-specific version. For Xen's PV kernel, just keep the current behavior. NOTES: - Right solution would be to place crash_smp_send_stop() before __crash_kexec() invocation in all cases and remove smp_send_stop(), but we can't do that until all architectures implement own crash_smp_send_stop() - crash_smp_send_stop()-like work is still needed by machine_crash_shutdown() because crash_kexec() can be called without entering panic() Fixes: f06e5153f4ae (kernel/panic.c: add "crash_kexec_post_notifiers" option) Link: http://lkml.kernel.org/r/20160810080948.11028.15344.stgit@sysi4-13.yrl.intra.hitachi.co.jp Signed-off-by: Hidehiro Kawai <hidehiro.kawai.ez@hitachi.com> Reported-by: Daniel Walker <dwalker@fifo99.com> Cc: Dave Young <dyoung@redhat.com> Cc: Baoquan He <bhe@redhat.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Daniel Walker <dwalker@fifo99.com> Cc: Xunlei Pang <xpang@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Borislav Petkov <bp@suse.de> Cc: David Vrabel <david.vrabel@citrix.com> Cc: Toshi Kani <toshi.kani@hpe.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: David Daney <david.daney@cavium.com> Cc: Aaro Koskinen <aaro.koskinen@iki.fi> Cc: "Steven J. Hill" <steven.hill@cavium.com> Cc: Corey Minyard <cminyard@mvista.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-18x86/asm/head: Rename 'stack_start' -> 'initial_stack'Josh Poimboeuf1-3/+0
The 'stack_start' variable is similar in usage to 'initial_code' and 'initial_gs': they're all stored in head_64.S and they're all updated by SMP and ACPI suspend before starting a CPU. Rename it to 'initial_stack' to be consistent with the others. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Byungchul Park <byungchul.park@lge.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Nilay Vaish <nilayvaish@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/87063d773a3212051b77e17b0ee427f6582a5050.1471535549.git.jpoimboe@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-07-27Merge tag 'for-linus-4.8-rc0-tag' of ↵Linus Torvalds1-0/+2
git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip Pull xen updates from David Vrabel: "Features and fixes for 4.8-rc0: - ACPI support for guests on ARM platforms. - Generic steal time support for arm and x86. - Support cases where kernel cpu is not Xen VCPU number (e.g., if in-guest kexec is used). - Use the system workqueue instead of a custom workqueue in various places" * tag 'for-linus-4.8-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip: (47 commits) xen: add static initialization of steal_clock op to xen_time_ops xen/pvhvm: run xen_vcpu_setup() for the boot CPU xen/evtchn: use xen_vcpu_id mapping xen/events: fifo: use xen_vcpu_id mapping xen/events: use xen_vcpu_id mapping in events_base x86/xen: use xen_vcpu_id mapping when pointing vcpu_info to shared_info x86/xen: use xen_vcpu_id mapping for HYPERVISOR_vcpu_op xen: introduce xen_vcpu_id mapping x86/acpi: store ACPI ids from MADT for future usage x86/xen: update cpuid.h from Xen-4.7 xen/evtchn: add IOCTL_EVTCHN_RESTRICT xen-blkback: really don't leak mode property xen-blkback: constify instance of "struct attribute_group" xen-blkfront: prefer xenbus_scanf() over xenbus_gather() xen-blkback: prefer xenbus_scanf() over xenbus_gather() xen: support runqueue steal time on xen arm/xen: add support for vm_assist hypercall xen: update xen headers xen-pciback: drop superfluous variables xen-pciback: short-circuit read path used for merging write values ...
2016-07-27Merge tag 'pm-4.8-rc1' of ↵Linus Torvalds1-0/+1
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm Pull power management updates from Rafael Wysocki: "Again, the majority of changes go into the cpufreq subsystem, but there are no big features this time. The cpufreq changes that stand out somewhat are the governor interface rework and improvements related to the handling of frequency tables. Apart from those, there are fixes and new device/CPU IDs in drivers, cleanups and an improvement of the new schedutil governor. Next, there are some changes in the hibernation core, including a fix for a nasty problem related to the MONITOR/MWAIT usage by CPU offline during resume from hibernation, a few core improvements related to memory management during resume, a couple of additional debug features and cleanups. Finally, we have some fixes and cleanups in the devfreq subsystem, generic power domains framework improvements related to system suspend/resume, support for some new chips in intel_idle and in the power capping RAPL driver, a new version of the AnalyzeSuspend utility and some assorted fixes and cleanups. Specifics: - Rework the cpufreq governor interface to make it more straightforward and modify the conservative governor to avoid using transition notifications (Rafael Wysocki). - Rework the handling of frequency tables by the cpufreq core to make it more efficient (Viresh Kumar). - Modify the schedutil governor to reduce the number of wakeups it causes to occur in cases when the CPU frequency doesn't need to be changed (Steve Muckle, Viresh Kumar). - Fix some minor issues and clean up code in the cpufreq core and governors (Rafael Wysocki, Viresh Kumar). - Add Intel Broxton support to the intel_pstate driver (Srinivas Pandruvada). - Fix problems related to the config TDP feature and to the validity of the MSR_HWP_INTERRUPT register in intel_pstate (Jan Kiszka, Srinivas Pandruvada). - Make intel_pstate update the cpu_frequency tracepoint even if the frequency doesn't change to avoid confusing powertop (Rafael Wysocki). - Clean up the usage of __init/__initdata in intel_pstate, mark some of its internal variables as __read_mostly and drop an unused structure element from it (Jisheng Zhang, Carsten Emde). - Clean up the usage of some duplicate MSR symbols in intel_pstate and turbostat (Srinivas Pandruvada). - Update/fix the powernv, s3c24xx and mvebu cpufreq drivers (Akshay Adiga, Viresh Kumar, Ben Dooks). - Fix a regression (introduced during the 4.5 cycle) in the pcc-cpufreq driver by reverting the problematic commit (Andreas Herrmann). - Add support for Intel Denverton to intel_idle, clean up Broxton support in it and make it explicitly non-modular (Jacob Pan, Jan Beulich, Paul Gortmaker). - Add support for Denverton and Ivy Bridge server to the Intel RAPL power capping driver and make it more careful about the handing of MSRs that may not be present (Jacob Pan, Xiaolong Wang). - Fix resume from hibernation on x86-64 by making the CPU offline during resume avoid using MONITOR/MWAIT in the "play dead" loop which may lead to an inadvertent "revival" of a "dead" CPU and a page fault leading to a kernel crash from it (Rafael Wysocki). - Make memory management during resume from hibernation more straightforward (Rafael Wysocki). - Add debug features that should help to detect problems related to hibernation and resume from it (Rafael Wysocki, Chen Yu). - Clean up hibernation core somewhat (Rafael Wysocki). - Prevent KASAN from instrumenting the hibernation core which leads to large numbers of false-positives from it (James Morse). - Prevent PM (hibernate and suspend) notifiers from being called during the cleanup phase if they have not been called during the corresponding preparation phase which is possible if one of the other notifiers returns an error at that time (Lianwei Wang). - Improve suspend-related debug printout in the tasks freezer and clean up suspend-related console handling (Roger Lu, Borislav Petkov). - Update the AnalyzeSuspend script in the kernel sources to version 4.2 (Todd Brandt). - Modify the generic power domains framework to make it handle system suspend/resume better (Ulf Hansson). - Make the runtime PM framework avoid resuming devices synchronously when user space changes the runtime PM settings for them and improve its error reporting (Rafael Wysocki, Linus Walleij). - Fix error paths in devfreq drivers (exynos, exynos-ppmu, exynos-bus) and in the core, make some devfreq code explicitly non-modular and change some of it into tristate (Bartlomiej Zolnierkiewicz, Peter Chen, Paul Gortmaker). - Add DT support to the generic PM clocks management code and make it export some more symbols (Jon Hunter, Paul Gortmaker). - Make the PCI PM core code slightly more robust against possible driver errors (Andy Shevchenko). - Make it possible to change DESTDIR and PREFIX in turbostat (Andy Shevchenko)" * tag 'pm-4.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (89 commits) Revert "cpufreq: pcc-cpufreq: update default value of cpuinfo_transition_latency" PM / hibernate: Introduce test_resume mode for hibernation cpufreq: export cpufreq_driver_resolve_freq() cpufreq: Disallow ->resolve_freq() for drivers providing ->target_index() PCI / PM: check all fields in pci_set_platform_pm() cpufreq: acpi-cpufreq: use cached frequency mapping when possible cpufreq: schedutil: map raw required frequency to driver frequency cpufreq: add cpufreq_driver_resolve_freq() cpufreq: intel_pstate: Check cpuid for MSR_HWP_INTERRUPT intel_pstate: Update cpu_frequency tracepoint every time cpufreq: intel_pstate: clean remnant struct element PM / tools: scripts: AnalyzeSuspend v4.2 x86 / hibernate: Use hlt_play_dead() when resuming from hibernation cpufreq: powernv: Replacing pstate_id with frequency table index intel_pstate: Fix MSR_CONFIG_TDP_x addressing in core_get_max_pstate() PM / hibernate: Image data protection during restoration PM / hibernate: Add missing braces in __register_nosave_region() PM / hibernate: Clean up comments in snapshot.c PM / hibernate: Clean up function headers in snapshot.c PM / hibernate: Add missing braces in hibernate_setup() ...
2016-07-25x86/acpi: store ACPI ids from MADT for future usageVitaly Kuznetsov1-0/+2
Currently we don't save ACPI ids (unlike LAPIC ids which go to x86_cpu_to_apicid) from MADT and we may need this information later. Particularly, ACPI ids is the only existent way for a PVHVM Xen guest to figure out Xen's idea of its vCPUs ids before these CPUs boot and in some cases these ids diverge from Linux's cpu ids. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: David Vrabel <david.vrabel@citrix.com>
2016-07-15x86 / hibernate: Use hlt_play_dead() when resuming from hibernationRafael J. Wysocki1-0/+1
On Intel hardware, native_play_dead() uses mwait_play_dead() by default and only falls back to the other methods if that fails. That also happens during resume from hibernation, when the restore (boot) kernel runs disable_nonboot_cpus() to take all of the CPUs except for the boot one offline. However, that is problematic, because the address passed to __monitor() in mwait_play_dead() is likely to be written to in the last phase of hibernate image restoration and that causes the "dead" CPU to start executing instructions again. Unfortunately, the page containing the address in that CPU's instruction pointer may not be valid any more at that point. First, that page may have been overwritten with image kernel memory contents already, so the instructions the CPU attempts to execute may simply be invalid. Second, the page tables previously used by that CPU may have been overwritten by image kernel memory contents, so the address in its instruction pointer is impossible to resolve then. A report from Varun Koyyalagunta and investigation carried out by Chen Yu show that the latter sometimes happens in practice. To prevent it from happening, temporarily change the smp_ops.play_dead pointer during resume from hibernation so that it points to a special "play dead" routine which uses hlt_play_dead() and avoids the inadvertent "revivals" of "dead" CPUs this way. A slightly unpleasant consequence of this change is that if the system is hibernated with one or more CPUs offline, it will generally draw more power after resume than it did before hibernation, because the physical state entered by CPUs via hlt_play_dead() is higher-power than the mwait_play_dead() one in the majority of cases. It is possible to work around this, but it is unclear how much of a problem that's going to be in practice, so the workaround will be implemented later if it turns out to be necessary. Link: https://bugzilla.kernel.org/show_bug.cgi?id=106371 Reported-by: Varun Koyyalagunta <cpudebug@centtech.com> Original-by: Chen Yu <yu.c.chen@intel.com> Tested-by: Chen Yu <yu.c.chen@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Ingo Molnar <mingo@kernel.org>
2016-07-15x86/smp: Remove stack_smp_processor_id()Andy Lutomirski1-6/+0
It serves no purpose -- raw_smp_processor_id() works fine. This change will be needed to move thread_info off the stack. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/a2bf4f07fbc30fb32f9f7f3f8f94ad3580823847.1468527351.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-03-29x86/topology: Fix AMD core countPeter Zijlstra1-0/+1
It turns out AMD gets x86_max_cores wrong when there are compute units. The issue is that Linux assumes: nr_logical_cpus = nr_cores * nr_siblings But AMD reports its CU unit as 2 cores, but then sets num_smp_siblings to 2 as well. Boris: fixup ras/mce_amd_inj.c too, to compute the Node Base Core properly, according to the new nomenclature. Fixes: 1f12e32f4cd5 ("x86/topology: Create logical package id") Reported-by: Xiong Zhou <jencce.kernel@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andreas Herrmann <aherrmann@suse.com> Cc: Andy Lutomirski <luto@kernel.org> Link: http://lkml.kernel.org/r/20160317095220.GO6344@twins.programming.kicks-ass.net Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-01-30x86/cpufeature: Carve out X86_FEATURE_*Borislav Petkov1-1/+0
Move them to a separate header and have the following dependency: x86/cpufeatures.h <- x86/processor.h <- x86/cpufeature.h This makes it easier to use the header in asm code and not include the whole cpufeature.h and add guards for asm. Suggested-by: H. Peter Anvin <hpa@zytor.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1453842730-28463-5-git-send-email-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-11-19x86/paravirt: Remove unused pv_apic_ops structureJuergen Gross1-3/+0
The only member of that structure is startup_ipi_hook which is always set to paravirt_nop. Signed-off-by: Juergen Gross <jgross@suse.com> Reviewed-by: David Vrabel <david.vrabel@citrix.com> Cc: jeremy@goop.org Cc: chrisw@sous-sol.org Cc: akataria@vmware.com Cc: rusty@rustcorp.com.au Cc: virtualization@lists.linux-foundation.org Cc: xen-devel@lists.xen.org Cc: konrad.wilk@oracle.com Cc: boris.ostrovsky@oracle.com Link: http://lkml.kernel.org/r/1447767872-16730-1-git-send-email-jgross@suse.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-11-17x86: Remove unused function cpu_has_ht_siblings()Juergen Gross1-9/+0
It is used nowhere. Signed-off-by: Juergen Gross <jgross@suse.com> Link: http://lkml.kernel.org/r/1447761943-770-1-git-send-email-jgross@suse.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-05-27x86: Remove cpu_sibling_mask() and cpu_core_mask()Bartosz Golaszewski1-10/+0
These functions are arch-specific and duplicate the functionality of macros defined in linux/include/topology.h. Remove them as all the callers in x86 have now switched to using the topology_**_cpumask() family. Signed-off-by: Bartosz Golaszewski <bgolaszewski@baylibre.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Benoit Cousson <bcousson@baylibre.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Jean Delvare <jdelvare@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Drokin <oleg.drokin@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rafael J. Wysocki <rjw@rjwysocki.net> Cc: Russell King <linux@arm.linux.org.uk> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: http://lkml.kernel.org/r/1432645896-12588-10-git-send-email-bgolaszewski@baylibre.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-04-14Merge branch 'core-rcu-for-linus' of ↵Linus Torvalds1-1/+1
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull RCU changes from Ingo Molnar: "The main changes in this cycle were: - changes permitting use of call_rcu() and friends very early in boot, for example, before rcu_init() is invoked. - add in-kernel API to enable and disable expediting of normal RCU grace periods. - improve RCU's handling of (hotplug-) outgoing CPUs. - NO_HZ_FULL_SYSIDLE fixes. - tiny-RCU updates to make it more tiny. - documentation updates. - miscellaneous fixes" * 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (58 commits) cpu: Provide smpboot_thread_init() on !CONFIG_SMP kernels as well cpu: Defer smpboot kthread unparking until CPU known to scheduler rcu: Associate quiescent-state reports with grace period rcu: Yet another fix for preemption and CPU hotplug rcu: Add diagnostics to grace-period cleanup rcutorture: Default to grace-period-initialization delays rcu: Handle outgoing CPUs on exit from idle loop cpu: Make CPU-offline idle-loop transition point more precise rcu: Eliminate ->onoff_mutex from rcu_node structure rcu: Process offlining and onlining only at grace-period start rcu: Move rcu_report_unblock_qs_rnp() to common code rcu: Rework preemptible expedited bitmask handling rcu: Remove event tracing from rcu_cpu_notify(), used by offline CPUs rcutorture: Enable slow grace-period initializations rcu: Provide diagnostic option to slow down grace-period initialization rcu: Detect stalls caused by failure to propagate up rcu_node tree rcu: Eliminate empty HOTPLUG_CPU ifdef rcu: Simplify sync_rcu_preempt_exp_init() rcu: Put all orphan-callback-related code under same comment rcu: Consolidate offline-CPU callback initialization ...
2015-04-02x86/cpu: Factor out common CPU initialization code, fix 32-bit Xen PV guestsBoris Ostrovsky1-0/+1
Some of x86 bare-metal and Xen CPU initialization code is common between the two and therefore can be factored out to avoid code duplication. As a side effect, doing so will also extend the fix provided by commit a7fcf28d431e ("x86/asm/entry: Replace this_cpu_sp0() with current_top_of_stack() to x86_32") to 32-bit Xen PV guests. Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Reviewed-by: David Vrabel <david.vrabel@citrix.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: konrad.wilk@oracle.com Cc: xen-devel@lists.xenproject.org Link: http://lkml.kernel.org/r/1427897534-5086-1-git-send-email-boris.ostrovsky@oracle.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-11x86: Use common outgoing-CPU-notification codePaul E. McKenney1-1/+1
This commit removes the open-coded CPU-offline notification with new common code. Among other things, this change avoids calling scheduler code using RCU from an offline CPU that RCU is ignoring. It also allows Xen to notice at online time that the CPU did not go offline correctly. Note that Xen has the surviving CPU carry out some cleanup operations, so if the surviving CPU times out, these cleanup operations might have been carried out while the outgoing CPU was still running. It might therefore be unwise to bring this CPU back online, and this commit avoids doing so. Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: <x86@kernel.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: David Vrabel <david.vrabel@citrix.com> Cc: <xen-devel@lists.xenproject.org>