Age | Commit message (Collapse) | Author | Files | Lines |
|
commit 7fef099702527c3b2c5234a2ea6a24411485a13a upstream.
The implementation of 'current' on x86 is very intentionally special: it
is a very common thing to look up, and it uses 'this_cpu_read_stable()'
to get the current thread pointer efficiently from per-cpu storage.
And the keyword in there is 'stable': the current thread pointer never
changes as far as a single thread is concerned. Even if when a thread
is preempted, or moved to another CPU, or even across an explicit call
'schedule()' that thread will still have the same value for 'current'.
It is, after all, the kernel base pointer to thread-local storage.
That's why it's stable to begin with, but it's also why it's important
enough that we have that special 'this_cpu_read_stable()' access for it.
So this is all done very intentionally to allow the compiler to treat
'current' as a value that never visibly changes, so that the compiler
can do CSE and combine multiple different 'current' accesses into one.
However, there is obviously one very special situation when the
currently running thread does actually change: inside the scheduler
itself.
So the scheduler code paths are special, and do not have a 'current'
thread at all. Instead there are _two_ threads: the previous and the
next thread - typically called 'prev' and 'next' (or prev_p/next_p)
internally.
So this is all actually quite straightforward and simple, and not all
that complicated.
Except for when you then have special code that is run in scheduler
context, that code then has to be aware that 'current' isn't really a
valid thing. Did you mean 'prev'? Did you mean 'next'?
In fact, even if then look at the code, and you use 'current' after the
new value has been assigned to the percpu variable, we have explicitly
told the compiler that 'current' is magical and always stable. So the
compiler is quite free to use an older (or newer) value of 'current',
and the actual assignment to the percpu storage is not relevant even if
it might look that way.
Which is exactly what happened in the resctl code, that blithely used
'current' in '__resctrl_sched_in()' when it really wanted the new
process state (as implied by the name: we're scheduling 'into' that new
resctl state). And clang would end up just using the old thread pointer
value at least in some configurations.
This could have happened with gcc too, and purely depends on random
compiler details. Clang just seems to have been more aggressive about
moving the read of the per-cpu current_task pointer around.
The fix is trivial: just make the resctl code adhere to the scheduler
rules of using the prev/next thread pointer explicitly, instead of using
'current' in a situation where it just wasn't valid.
That same code is then also used outside of the scheduler context (when
a thread resctl state is explicitly changed), and then we will just pass
in 'current' as that pointer, of course. There is no ambiguity in that
case.
The fix may be trivial, but noticing and figuring out what went wrong
was not. The credit for that goes to Stephane Eranian.
Reported-by: Stephane Eranian <eranian@google.com>
Link: https://lore.kernel.org/lkml/20230303231133.1486085-1-eranian@google.com/
Link: https://lore.kernel.org/lkml/alpine.LFD.2.01.0908011214330.3304@localhost.localdomain/
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Tony Luck <tony.luck@intel.com>
Tested-by: Stephane Eranian <eranian@google.com>
Tested-by: Babu Moger <babu.moger@amd.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
msr-index.h should contain all MSRs for easier grepping for MSR numbers
when dealing with unchecked MSR access warnings, for example.
Move the resctrl ones. Prefix IA32_PQR_ASSOC with "MSR_" while at it.
No functional changes.
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20221106212923.20699-1-bp@alien8.de
|
|
resctrl_cqm_threshold is stored in a hardware specific chunk size,
but exposed to user-space as bytes.
This means the filesystem parts of resctrl need to know how the hardware
counts, to convert the user provided byte value to chunks. The interface
between the architecture's resctrl code and the filesystem ought to
treat everything as bytes.
Change the unit of resctrl_cqm_threshold to bytes. resctrl_arch_rmid_read()
still returns its value in chunks, so this needs converting to bytes.
As all the users have been touched, rename the variable to
resctrl_rmid_realloc_threshold, which describes what the value is for.
Neither r->num_rmid nor hw_res->mon_scale are guaranteed to be a power
of 2, so the existing code introduces a rounding error from resctrl's
theoretical fraction of the cache usage. This behaviour is kept as it
ensures the user visible value matches the value read from hardware
when the rmid will be reallocated.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jamie Iles <quic_jiles@quicinc.com>
Reviewed-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Tested-by: Xin Hao <xhao@linux.alibaba.com>
Tested-by: Shaopeng Tan <tan.shaopeng@fujitsu.com>
Tested-by: Cristian Marussi <cristian.marussi@arm.com>
Link: https://lore.kernel.org/r/20220902154829.30399-20-james.morse@arm.com
|
|
A CPU's current task can have its {closid, rmid} fields read locally
while they are being concurrently written to from another CPU.
This can happen anytime __resctrl_sched_in() races with either
__rdtgroup_move_task() or rdt_move_group_tasks().
Prevent load / store tearing for those accesses by giving them the
READ_ONCE() / WRITE_ONCE() treatment.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/9921fda88ad81afb9885b517fbe864a2bc7c35a9.1608243147.git.reinette.chatre@intel.com
|
|
The function determining a platform's support and properties of cache
occupancy and memory bandwidth monitoring (properties of
X86_FEATURE_CQM_LLC) can be found among the common CPU code. After
the feature's properties is populated in the per-CPU data the resctrl
subsystem is the only consumer (via boot_cpu_data).
Move the function that obtains the CPU information used by resctrl to
the resctrl subsystem and rename it from init_cqm() to
resctrl_cpu_detect(). The function continues to be called from the
common CPU code. This move is done in preparation of the addition of some
vendor specific code.
No functional change.
Suggested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/38433b99f9d16c8f4ee796f8cc42b871531fa203.1588715690.git.reinette.chatre@intel.com
|
|
asm/resctrl_sched.h is dedicated to the code used for configuration
of the CPU resource control state when a task is scheduled.
Rename resctrl_sched.h to resctrl.h in preparation of additions that
will no longer make this file dedicated to work done during scheduling.
No functional change.
Suggested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/6914e0ef880b539a82a6d889f9423496d471ad1d.1588715690.git.reinette.chatre@intel.com
|