summaryrefslogtreecommitdiff
path: root/arch/x86/include/asm/processor.h
AgeCommit message (Collapse)AuthorFilesLines
2019-11-26Merge branches 'x86-cpu-for-linus' and 'x86-fpu-for-linus' of ↵Linus Torvalds1-1/+9
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 cpu and fpu updates from Ingo Molnar: - math-emu fixes - CPUID updates - sanity-check RDRAND output to see whether the CPU at least pretends to produce random data - various unaligned-access across cachelines fixes in preparation of hardware level split-lock detection - fix MAXSMP constraints to not allow !CPUMASK_OFFSTACK kernels with larger than 512 NR_CPUS - misc FPU related cleanups * 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/cpu: Align the x86_capability array to size of unsigned long x86/cpu: Align cpu_caps_cleared and cpu_caps_set to unsigned long x86/umip: Make the comments vendor-agnostic x86/Kconfig: Rename UMIP config parameter x86/Kconfig: Enforce limit of 512 CPUs with MAXSMP and no CPUMASK_OFFSTACK x86/cpufeatures: Add feature bit RDPRU on AMD x86/math-emu: Limit MATH_EMULATION to 486SX compatibles x86/math-emu: Check __copy_from_user() result x86/rdrand: Sanity-check RDRAND output * 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/fpu: Use XFEATURE_FP/SSE enum values instead of hardcoded numbers x86/fpu: Shrink space allocated for xstate_comp_offsets x86/fpu: Update stale variable name in comment
2019-11-16x86/ioperm: Extend IOPL config to control ioperm() as wellThomas Gleixner1-1/+8
If iopl() is disabled, then providing ioperm() does not make much sense. Rename the config option and disable/enable both syscalls with it. Guard the code with #ifdefs where appropriate. Suggested-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2019-11-16x86/iopl: Remove legacy IOPL optionThomas Gleixner1-23/+3
The IOPL emulation via the I/O bitmap is sufficient. Remove the legacy cruft dealing with the (e)flags based IOPL mechanism. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Juergen Gross <jgross@suse.com> (Paravirt and Xen parts) Acked-by: Andy Lutomirski <luto@kernel.org>
2019-11-16x86/iopl: Restrict iopl() permission scopeThomas Gleixner1-7/+21
The access to the full I/O port range can be also provided by the TSS I/O bitmap, but that would require to copy 8k of data on scheduling in the task. As shown with the sched out optimization TSS.io_bitmap_base can be used to switch the incoming task to a preallocated I/O bitmap which has all bits zero, i.e. allows access to all I/O ports. Implementing this allows to provide an iopl() emulation mode which restricts the IOPL level 3 permissions to I/O port access but removes the STI/CLI permission which is coming with the hardware IOPL mechansim. Provide a config option to switch IOPL to emulation mode, make it the default and while at it also provide an option to disable IOPL completely. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Andy Lutomirski <luto@kernel.org>
2019-11-16x86/ioperm: Add bitmap sequence numberThomas Gleixner1-0/+3
Add a globally unique sequence number which is incremented when ioperm() is changing the I/O bitmap of a task. Store the new sequence number in the io_bitmap structure and compare it with the sequence number of the I/O bitmap which was last loaded on a CPU. Only update the bitmap if the sequence is different. That should further reduce the overhead of I/O bitmap scheduling when there are only a few I/O bitmap users on the system. The 64bit sequence counter is sufficient. A wraparound of the sequence counter assuming an ioperm() call every nanosecond would require about 584 years of uptime. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2019-11-16x86/ioperm: Move iobitmap data into a structThomas Gleixner1-4/+2
No point in having all the data in thread_struct, especially as upcoming changes add more. Make the bitmap in the new struct accessible as array of longs and as array of characters via a union, so both the bitmap functions and the update logic can avoid type casts. Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2019-11-16x86/tss: Move I/O bitmap data into a seperate structThomas Gleixner1-14/+21
Move the non hardware portion of I/O bitmap data into a seperate struct for readability sake. Originally-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2019-11-16x86/io: Speedup schedule out of I/O bitmap userThomas Gleixner1-12/+26
There is no requirement to update the TSS I/O bitmap when a thread using it is scheduled out and the incoming thread does not use it. For the permission check based on the TSS I/O bitmap the CPU calculates the memory location of the I/O bitmap by the address of the TSS and the io_bitmap_base member of the tss_struct. The easiest way to invalidate the I/O bitmap is to switch the offset to an address outside of the TSS limit. If an I/O instruction is issued from user space the TSS limit causes #GP to be raised in the same was as valid I/O bitmap with all bits set to 1 would do. This removes the extra work when an I/O bitmap using task is scheduled out and puts the burden on the rare I/O bitmap users when they are scheduled in. Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2019-11-15x86/cpu: Align the x86_capability array to size of unsigned longFenghua Yu1-1/+9
The x86_capability array in cpuinfo_x86 is of type u32 and thus is naturally aligned to 4 bytes. But, set_bit() and clear_bit() require the array to be aligned to size of unsigned long (i.e. 8 bytes on 64-bit systems). The array pointer is handed into atomic bit operations. If the access is not aligned to unsigned long then the atomic bit operations can end up crossing a cache line boundary, which causes the CPU to do a full bus lock as it can't lock both cache lines at once. The bus lock operation is heavy weight and can cause severe performance degradation. The upcoming #AC split lock detection mechanism will issue warnings for this kind of access. Force the alignment of the array to unsigned long. This avoids the massive code changes which would be required when converting the array data type to unsigned long. [ tglx: Rewrote changelog so it contains information WHY this is required ] Suggested-by: David Laight <David.Laight@aculab.com> Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Fenghua Yu <fenghua.yu@intel.com> Signed-off-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190916223958.27048-4-tony.luck@intel.com
2019-11-04x86/mm: Report which part of kernel image is freedKees Cook1-1/+1
The memory freeing report wasn't very useful for figuring out which parts of the kernel image were being freed. Add the details for clearer reporting in dmesg. Before: Freeing unused kernel image memory: 1348K Write protecting the kernel read-only data: 20480k Freeing unused kernel image memory: 2040K Freeing unused kernel image memory: 172K After: Freeing unused kernel image (initmem) memory: 1348K Write protecting the kernel read-only data: 20480k Freeing unused kernel image (text/rodata gap) memory: 2040K Freeing unused kernel image (rodata/data gap) memory: 172K Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: linux-alpha@vger.kernel.org Cc: linux-arch@vger.kernel.org Cc: linux-arm-kernel@lists.infradead.org Cc: linux-c6x-dev@linux-c6x.org Cc: linux-ia64@vger.kernel.org Cc: linuxppc-dev@lists.ozlabs.org Cc: linux-s390@vger.kernel.org Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rick Edgecombe <rick.p.edgecombe@intel.com> Cc: Segher Boessenkool <segher@kernel.crashing.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Cc: x86-ml <x86@kernel.org> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Link: https://lkml.kernel.org/r/20191029211351.13243-28-keescook@chromium.org
2019-10-28x86/speculation/taa: Add mitigation for TSX Async AbortPawan Gupta1-0/+7
TSX Async Abort (TAA) is a side channel vulnerability to the internal buffers in some Intel processors similar to Microachitectural Data Sampling (MDS). In this case, certain loads may speculatively pass invalid data to dependent operations when an asynchronous abort condition is pending in a TSX transaction. This includes loads with no fault or assist condition. Such loads may speculatively expose stale data from the uarch data structures as in MDS. Scope of exposure is within the same-thread and cross-thread. This issue affects all current processors that support TSX, but do not have ARCH_CAP_TAA_NO (bit 8) set in MSR_IA32_ARCH_CAPABILITIES. On CPUs which have their IA32_ARCH_CAPABILITIES MSR bit MDS_NO=0, CPUID.MD_CLEAR=1 and the MDS mitigation is clearing the CPU buffers using VERW or L1D_FLUSH, there is no additional mitigation needed for TAA. On affected CPUs with MDS_NO=1 this issue can be mitigated by disabling the Transactional Synchronization Extensions (TSX) feature. A new MSR IA32_TSX_CTRL in future and current processors after a microcode update can be used to control the TSX feature. There are two bits in that MSR: * TSX_CTRL_RTM_DISABLE disables the TSX sub-feature Restricted Transactional Memory (RTM). * TSX_CTRL_CPUID_CLEAR clears the RTM enumeration in CPUID. The other TSX sub-feature, Hardware Lock Elision (HLE), is unconditionally disabled with updated microcode but still enumerated as present by CPUID(EAX=7).EBX{bit4}. The second mitigation approach is similar to MDS which is clearing the affected CPU buffers on return to user space and when entering a guest. Relevant microcode update is required for the mitigation to work. More details on this approach can be found here: https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html The TSX feature can be controlled by the "tsx" command line parameter. If it is force-enabled then "Clear CPU buffers" (MDS mitigation) is deployed. The effective mitigation state can be read from sysfs. [ bp: - massage + comments cleanup - s/TAA_MITIGATION_TSX_DISABLE/TAA_MITIGATION_TSX_DISABLED/g - Josh. - remove partial TAA mitigation in update_mds_branch_idle() - Josh. - s/tsx_async_abort_cmdline/tsx_async_abort_parse_cmdline/g ] Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
2019-07-10x86/asm: Move native_write_cr0/4() out of lineThomas Gleixner1-0/+1
The pinning of sensitive CR0 and CR4 bits caused a boot crash when loading the kvm_intel module on a kernel compiled with CONFIG_PARAVIRT=n. The reason is that the static key which controls the pinning is marked RO after init. The kvm_intel module contains a CR4 write which requires to update the static key entry list. That obviously does not work when the key is in a RO section. With CONFIG_PARAVIRT enabled this does not happen because the CR4 write uses the paravirt indirection and the actual write function is built in. As the key is intended to be immutable after init, move native_write_cr0/4() out of line. While at it consolidate the update of the cr4 shadow variable and store the value right away when the pinning is initialized on a booting CPU. No point in reading it back 20 instructions later. This allows to confine the static key and the pinning variable to cpu/common and allows to mark them static. Fixes: 8dbec27a242c ("x86/asm: Pin sensitive CR0 bits") Fixes: 873d50d58f67 ("x86/asm: Pin sensitive CR4 bits") Reported-by: Linus Torvalds <torvalds@linux-foundation.org> Reported-by: Xi Ruoyao <xry111@mengyan1223.wang> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Xi Ruoyao <xry111@mengyan1223.wang> Acked-by: Kees Cook <keescook@chromium.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1907102140340.1758@nanos.tec.linutronix.de
2019-07-09Merge branch 'x86-topology-for-linus' of ↵Linus Torvalds1-1/+3
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 topology updates from Ingo Molnar: "Implement multi-die topology support on Intel CPUs and expose the die topology to user-space tooling, by Len Brown, Kan Liang and Zhang Rui. These changes should have no effect on the kernel's existing understanding of topologies, i.e. there should be no behavioral impact on cache, NUMA, scheduler, perf and other topologies and overall system performance" * 'x86-topology-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: perf/x86/intel/rapl: Cosmetic rename internal variables in response to multi-die/pkg support perf/x86/intel/uncore: Cosmetic renames in response to multi-die/pkg support hwmon/coretemp: Cosmetic: Rename internal variables to zones from packages thermal/x86_pkg_temp_thermal: Cosmetic: Rename internal variables to zones from packages perf/x86/intel/cstate: Support multi-die/package perf/x86/intel/rapl: Support multi-die/package perf/x86/intel/uncore: Support multi-die/package topology: Create core_cpus and die_cpus sysfs attributes topology: Create package_cpus sysfs attribute hwmon/coretemp: Support multi-die/package powercap/intel_rapl: Update RAPL domain name and debug messages thermal/x86_pkg_temp_thermal: Support multi-die/package powercap/intel_rapl: Support multi-die/package powercap/intel_rapl: Simplify rapl_find_package() x86/topology: Define topology_logical_die_id() x86/topology: Define topology_die_id() cpu/topology: Export die_id x86/topology: Create topology_max_die_per_package() x86/topology: Add CPUID.1F multi-die/package support
2019-06-22x86/cpu: Create Zhaoxin processors architecture support fileTony W Wang-oc1-1/+2
Add x86 architecture support for new Zhaoxin processors. Carve out initialization code needed by Zhaoxin processors into a separate compilation unit. To identify Zhaoxin CPU, add a new vendor type X86_VENDOR_ZHAOXIN for system recognition. Signed-off-by: Tony W Wang-oc <TonyWWang-oc@zhaoxin.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: "hpa@zytor.com" <hpa@zytor.com> Cc: "gregkh@linuxfoundation.org" <gregkh@linuxfoundation.org> Cc: "rjw@rjwysocki.net" <rjw@rjwysocki.net> Cc: "lenb@kernel.org" <lenb@kernel.org> Cc: David Wang <DavidWang@zhaoxin.com> Cc: "Cooper Yan(BJ-RD)" <CooperYan@zhaoxin.com> Cc: "Qiyuan Wang(BJ-RD)" <QiyuanWang@zhaoxin.com> Cc: "Herry Yang(BJ-RD)" <HerryYang@zhaoxin.com> Link: https://lkml.kernel.org/r/01042674b2f741b2aed1f797359bdffb@zhaoxin.com
2019-05-23x86/topology: Define topology_logical_die_id()Len Brown1-0/+1
Define topology_logical_die_id() ala existing topology_logical_package_id() Signed-off-by: Len Brown <len.brown@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Zhang Rui <rui.zhang@intel.com> Reviewed-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/2f3526e25ae14fbeff26fb26e877d159df8946d9.1557769318.git.len.brown@intel.com
2019-05-23x86/topology: Create topology_max_die_per_package()Len Brown1-1/+0
topology_max_packages() is available to size resources to cover all packages in the system. But now multi-die/package systems are coming up, and some resources are per-die. Create topology_max_die_per_package(), for detecting multi-die/package systems, and sizing any per-die resources. Signed-off-by: Len Brown <len.brown@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/e6eaf384571ae52ac7d0ca41510b7fb7d2fda0e4.1557769318.git.len.brown@intel.com
2019-05-23x86/topology: Add CPUID.1F multi-die/package supportLen Brown1-1/+3
Some new systems have multiple software-visible die within each package. Update Linux parsing of the Intel CPUID "Extended Topology Leaf" to handle either CPUID.B, or the new CPUID.1F. Add cpuinfo_x86.die_id and cpuinfo_x86.max_dies to store the result. die_id will be non-zero only for multi-die/package systems. Signed-off-by: Len Brown <len.brown@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: linux-doc@vger.kernel.org Link: https://lkml.kernel.org/r/7b23d2d26d717b8e14ba137c94b70943f1ae4b5c.1557769318.git.len.brown@intel.com
2019-05-14Merge branch 'x86-mds-for-linus' of ↵Linus Torvalds1-0/+6
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 MDS mitigations from Thomas Gleixner: "Microarchitectural Data Sampling (MDS) is a hardware vulnerability which allows unprivileged speculative access to data which is available in various CPU internal buffers. This new set of misfeatures has the following CVEs assigned: CVE-2018-12126 MSBDS Microarchitectural Store Buffer Data Sampling CVE-2018-12130 MFBDS Microarchitectural Fill Buffer Data Sampling CVE-2018-12127 MLPDS Microarchitectural Load Port Data Sampling CVE-2019-11091 MDSUM Microarchitectural Data Sampling Uncacheable Memory MDS attacks target microarchitectural buffers which speculatively forward data under certain conditions. Disclosure gadgets can expose this data via cache side channels. Contrary to other speculation based vulnerabilities the MDS vulnerability does not allow the attacker to control the memory target address. As a consequence the attacks are purely sampling based, but as demonstrated with the TLBleed attack samples can be postprocessed successfully. The mitigation is to flush the microarchitectural buffers on return to user space and before entering a VM. It's bolted on the VERW instruction and requires a microcode update. As some of the attacks exploit data structures shared between hyperthreads, full protection requires to disable hyperthreading. The kernel does not do that by default to avoid breaking unattended updates. The mitigation set comes with documentation for administrators and a deeper technical view" * 'x86-mds-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits) x86/speculation/mds: Fix documentation typo Documentation: Correct the possible MDS sysfs values x86/mds: Add MDSUM variant to the MDS documentation x86/speculation/mds: Add 'mitigations=' support for MDS x86/speculation/mds: Print SMT vulnerable on MSBDS with mitigations off x86/speculation/mds: Fix comment x86/speculation/mds: Add SMT warning message x86/speculation: Move arch_smt_update() call to after mitigation decisions x86/speculation/mds: Add mds=full,nosmt cmdline option Documentation: Add MDS vulnerability documentation Documentation: Move L1TF to separate directory x86/speculation/mds: Add mitigation mode VMWERV x86/speculation/mds: Add sysfs reporting for MDS x86/speculation/mds: Add mitigation control for MDS x86/speculation/mds: Conditionally clear CPU buffers on idle entry x86/kvm/vmx: Add MDS protection when L1D Flush is not active x86/speculation/mds: Clear CPU buffers on exit to user x86/speculation/mds: Add mds_clear_cpu_buffers() x86/kvm: Expose X86_FEATURE_MD_CLEAR to guests x86/speculation/mds: Add BUG_MSBDS_ONLY ...
2019-04-17x86/irq/64: Split the IRQ stack into its own pagesAndy Lutomirski1-18/+14
Currently, the IRQ stack is hardcoded as the first page of the percpu area, and the stack canary lives on the IRQ stack. The former gets in the way of adding an IRQ stack guard page, and the latter is a potential weakness in the stack canary mechanism. Split the IRQ stack into its own private percpu pages. [ tglx: Make 64 and 32 bit share struct irq_stack ] Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: "Chang S. Bae" <chang.seok.bae@intel.com> Cc: Dominik Brodowski <linux@dominikbrodowski.net> Cc: Feng Tang <feng.tang@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jan Beulich <JBeulich@suse.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jordan Borgner <mail@jordan-borgner.de> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Maran Wilson <maran.wilson@oracle.com> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Nicolai Stange <nstange@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Pu Wen <puwen@hygon.cn> Cc: "Rafael Ávila de Espíndola" <rafael@espindo.la> Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: x86-ml <x86@kernel.org> Cc: xen-devel@lists.xenproject.org Link: https://lkml.kernel.org/r/20190414160146.267376656@linutronix.de
2019-04-17x86/irq/64: Rename irq_stack_ptr to hardirq_stack_ptrThomas Gleixner1-1/+1
Preparatory patch to share code with 32bit. No functional changes. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: "Chang S. Bae" <chang.seok.bae@intel.com> Cc: Dominik Brodowski <linux@dominikbrodowski.net> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Nicolai Stange <nstange@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Pingfan Liu <kernelfans@gmail.com> Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190414160145.912584074@linutronix.de
2019-04-17x86/irq/32: Rename hard/softirq_stack to hard/softirq_stack_ptrThomas Gleixner1-2/+2
The percpu storage holds a pointer to the stack not the stack itself. Rename it before sharing struct irq_stack with 64-bit. No functional changes. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Nicolai Stange <nstange@suse.de> Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190414160145.824805922@linutronix.de
2019-04-17x86/irq/32: Make irq stack a character arrayThomas Gleixner1-1/+1
There is no reason to have an u32 array in struct irq_stack. The only purpose of the array is to size the struct properly. Preparatory change for sharing struct irq_stack with 64-bit. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Pingfan Liu <kernelfans@gmail.com> Cc: Pu Wen <puwen@hygon.cn> Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190414160145.736241969@linutronix.de
2019-04-17x86/irq/32: Define IRQ_STACK_SIZEThomas Gleixner1-2/+2
On 32-bit IRQ_STACK_SIZE is the same as THREAD_SIZE. To allow sharing struct irq_stack with 32-bit, define IRQ_STACK_SIZE for 32-bit and use it for struct irq_stack. No functional change. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190414160145.632513987@linutronix.de
2019-04-17x86/cpu: Remove orig_ist arrayThomas Gleixner1-9/+0
All users gone. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: "Chang S. Bae" <chang.seok.bae@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dominik Brodowski <linux@dominikbrodowski.net> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Pingfan Liu <kernelfans@gmail.com> Cc: Pu Wen <puwen@hygon.cn> Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190414160145.151435667@linutronix.de
2019-03-06x86/speculation/mds: Add mitigation mode VMWERVThomas Gleixner1-0/+1
In virtualized environments it can happen that the host has the microcode update which utilizes the VERW instruction to clear CPU buffers, but the hypervisor is not yet updated to expose the X86_FEATURE_MD_CLEAR CPUID bit to guests. Introduce an internal mitigation mode VMWERV which enables the invocation of the CPU buffer clearing even if X86_FEATURE_MD_CLEAR is not set. If the system has no updated microcode this results in a pointless execution of the VERW instruction wasting a few CPU cycles. If the microcode is updated, but not exposed to a guest then the CPU buffers will be cleared. That said: Virtual Machines Will Eventually Receive Vaccine Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com>
2019-03-06x86/speculation/mds: Add mitigation control for MDSThomas Gleixner1-0/+5
Now that the mitigations are in place, add a command line parameter to control the mitigation, a mitigation selector function and a SMT update mechanism. This is the minimal straight forward initial implementation which just provides an always on/off mode. The command line parameter is: mds=[full|off] This is consistent with the existing mitigations for other speculative hardware vulnerabilities. The idle invocation is dynamically updated according to the SMT state of the system similar to the dynamic update of the STIBP mitigation. The idle mitigation is limited to CPUs which are only affected by MSBDS and not any other variant, because the other variants cannot be mitigated on SMT enabled systems. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com>
2019-01-30x86/trap: Remove useless declarationPingfan Liu1-1/+0
There is no early_trap_pf_init() implementation, hence remove this useless declaration. Signed-off-by: Pingfan Liu <kernelfans@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Link: https://lkml.kernel.org/r/1546591579-23502-1-git-send-email-kernelfans@gmail.com
2018-12-28mm: make free_reserved_area() return "const char *"Alexey Dobriyan1-1/+1
and propagate through down the call stack. Link: http://lkml.kernel.org/r/20181124091411.GC10969@avx2 Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31treewide: remove current_text_addrNick Desaulniers1-12/+0
Prefer _THIS_IP_ defined in linux/kernel.h. Most definitions of current_text_addr were the same as _THIS_IP_, but a few archs had inline assembly instead. This patch removes the final call site of current_text_addr, making all of the definitions dead code. [akpm@linux-foundation.org: fix arch/csky/include/asm/processor.h] Link: http://lkml.kernel.org/r/20180911182413.180715-1-ndesaulniers@google.com Signed-off-by: Nick Desaulniers <ndesaulniers@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-23Merge branch 'x86-pti-for-linus' of ↵Linus Torvalds1-0/+6
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 pti updates from Ingo Molnar: "The main changes: - Make the IBPB barrier more strict and add STIBP support (Jiri Kosina) - Micro-optimize and clean up the entry code (Andy Lutomirski) - ... plus misc other fixes" * 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/speculation: Propagate information about RSB filling mitigation to sysfs x86/speculation: Enable cross-hyperthread spectre v2 STIBP mitigation x86/speculation: Apply IBPB more strictly to avoid cross-process data leak x86/speculation: Add RETPOLINE_AMD support to the inline asm CALL_NOSPEC variant x86/CPU: Fix unused variable warning when !CONFIG_IA32_EMULATION x86/pti/64: Remove the SYSCALL64 entry trampoline x86/entry/64: Use the TSS sp2 slot for SYSCALL/SYSRET scratch space x86/entry/64: Document idtentry
2018-10-23Merge branch 'x86-paravirt-for-linus' of ↵Linus Torvalds1-2/+2
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 paravirt updates from Ingo Molnar: "Two main changes: - Remove no longer used parts of the paravirt infrastructure and put large quantities of paravirt ops under a new config option PARAVIRT_XXL=y, which is selected by XEN_PV only. (Joergen Gross) - Enable PV spinlocks on Hyperv (Yi Sun)" * 'x86-paravirt-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/hyperv: Enable PV qspinlock for Hyper-V x86/hyperv: Add GUEST_IDLE_MSR support x86/paravirt: Clean up native_patch() x86/paravirt: Prevent redefinition of SAVE_FLAGS macro x86/xen: Make xen_reservation_lock static x86/paravirt: Remove unneeded mmu related paravirt ops bits x86/paravirt: Move the Xen-only pv_mmu_ops under the PARAVIRT_XXL umbrella x86/paravirt: Move the pv_irq_ops under the PARAVIRT_XXL umbrella x86/paravirt: Move the Xen-only pv_cpu_ops under the PARAVIRT_XXL umbrella x86/paravirt: Move items in pv_info under PARAVIRT_XXL umbrella x86/paravirt: Introduce new config option PARAVIRT_XXL x86/paravirt: Remove unused paravirt bits x86/paravirt: Use a single ops structure x86/paravirt: Remove clobbers from struct paravirt_patch_site x86/paravirt: Remove clobbers parameter from paravirt patch functions x86/paravirt: Make paravirt_patch_call() and paravirt_patch_jmp() static x86/xen: Add SPDX identifier in arch/x86/xen files x86/xen: Link platform-pci-unplug.o only if CONFIG_XEN_PVHVM x86/xen: Move pv specific parts of arch/x86/xen/mmu.c to mmu_pv.c x86/xen: Move pv irq related functions under CONFIG_XEN_PV umbrella
2018-09-27x86/cpu: Create Hygon Dhyana architecture support filePu Wen1-1/+2
Add x86 architecture support for a new processor: Hygon Dhyana Family 18h. Carve out initialization code needed by Dhyana into a separate compilation unit. To identify Hygon Dhyana CPU, add a new vendor type X86_VENDOR_HYGON. Since Dhyana uses AMD functionality to a large degree, select CPU_SUP_AMD which provides that functionality. [ bp: drop explicit license statement as it has an SPDX tag already. ] Signed-off-by: Pu Wen <puwen@hygon.cn> Reviewed-by: Borislav Petkov <bp@suse.de> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: tglx@linutronix.de Cc: mingo@redhat.com Cc: hpa@zytor.com Cc: x86@kernel.org Cc: thomas.lendacky@amd.com Link: https://lkml.kernel.org/r/1a882065223bacbde5726f3beaa70cebd8dcd814.1537533369.git.puwen@hygon.cn
2018-09-08x86/entry/64: Use the TSS sp2 slot for SYSCALL/SYSRET scratch spaceAndy Lutomirski1-0/+6
In the non-trampoline SYSCALL64 path, a percpu variable is used to temporarily store the user RSP value. Instead of a separate variable, use the otherwise unused sp2 slot in the TSS. This will improve cache locality, as the sp1 slot is already used in the same code to find the kernel stack. It will also simplify a future change to make the non-trampoline path work in PTI mode. Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Joerg Roedel <joro@8bytes.org> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: https://lkml.kernel.org/r/08e769a0023dbad4bac6f34f3631dbaf8ad59f4f.1536015544.git.luto@kernel.org
2018-09-03x86/paravirt: Move the Xen-only pv_cpu_ops under the PARAVIRT_XXL umbrellaJuergen Gross1-2/+2
Most of the paravirt ops defined in pv_cpu_ops are for Xen PV guests only. Define them only if CONFIG_PARAVIRT_XXL is set. Signed-off-by: Juergen Gross <jgross@suse.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: xen-devel@lists.xenproject.org Cc: virtualization@lists.linux-foundation.org Cc: akataria@vmware.com Cc: rusty@rustcorp.com.au Cc: boris.ostrovsky@oracle.com Cc: hpa@zytor.com Link: https://lkml.kernel.org/r/20180828074026.820-13-jgross@suse.com
2018-08-27x86/speculation/l1tf: Increase l1tf memory limit for Nehalem+Andi Kleen1-1/+3
On Nehalem and newer core CPUs the CPU cache internally uses 44 bits physical address space. The L1TF workaround is limited by this internal cache address width, and needs to have one bit free there for the mitigation to work. Older client systems report only 36bit physical address space so the range check decides that L1TF is not mitigated for a 36bit phys/32GB system with some memory holes. But since these actually have the larger internal cache width this warning is bogus because it would only really be needed if the system had more than 43bits of memory. Add a new internal x86_cache_bits field. Normally it is the same as the physical bits field reported by CPUID, but for Nehalem and newerforce it to be at least 44bits. Change the L1TF memory size warning to use the new cache_bits field to avoid bogus warnings and remove the bogus comment about memory size. Fixes: 17dbca119312 ("x86/speculation/l1tf: Add sysfs reporting for l1tf") Reported-by: George Anchev <studio@anchev.net> Reported-by: Christopher Snowhill <kode54@gmail.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: x86@kernel.org Cc: linux-kernel@vger.kernel.org Cc: Michael Hocko <mhocko@suse.com> Cc: vbabka@suse.cz Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20180824170351.34874-1-andi@firstfloor.org
2018-08-24x86/speculation/l1tf: Fix off-by-one error when warning that system has too ↵Vlastimil Babka1-1/+1
much RAM Two users have reported [1] that they have an "extremely unlikely" system with more than MAX_PA/2 memory and L1TF mitigation is not effective. In fact it's a CPU with 36bits phys limit (64GB) and 32GB memory, but due to holes in the e820 map, the main region is almost 500MB over the 32GB limit: [ 0.000000] BIOS-e820: [mem 0x0000000100000000-0x000000081effffff] usable Suggestions to use 'mem=32G' to enable the L1TF mitigation while losing the 500MB revealed, that there's an off-by-one error in the check in l1tf_select_mitigation(). l1tf_pfn_limit() returns the last usable pfn (inclusive) and the range check in the mitigation path does not take this into account. Instead of amending the range check, make l1tf_pfn_limit() return the first PFN which is over the limit which is less error prone. Adjust the other users accordingly. [1] https://bugzilla.suse.com/show_bug.cgi?id=1105536 Fixes: 17dbca119312 ("x86/speculation/l1tf: Add sysfs reporting for l1tf") Reported-by: George Anchev <studio@anchev.net> Reported-by: Christopher Snowhill <kode54@gmail.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: "H . Peter Anvin" <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20180823134418.17008-1-vbabka@suse.cz
2018-08-20x86/speculation/l1tf: Fix overflow in l1tf_pfn_limit() on 32bitVlastimil Babka1-2/+2
On 32bit PAE kernels on 64bit hardware with enough physical bits, l1tf_pfn_limit() will overflow unsigned long. This in turn affects max_swapfile_size() and can lead to swapon returning -EINVAL. This has been observed in a 32bit guest with 42 bits physical address size, where max_swapfile_size() overflows exactly to 1 << 32, thus zero, and produces the following warning to dmesg: [ 6.396845] Truncating oversized swap area, only using 0k out of 2047996k Fix this by using unsigned long long instead. Fixes: 17dbca119312 ("x86/speculation/l1tf: Add sysfs reporting for l1tf") Fixes: 377eeaa8e11f ("x86/speculation/l1tf: Limit swap file size to MAX_PA/2") Reported-by: Dominique Leuenberger <dimstar@suse.de> Reported-by: Adrian Schroeter <adrian@suse.de> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Andi Kleen <ak@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: "H . Peter Anvin" <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20180820095835.5298-1-vbabka@suse.cz
2018-08-14Merge branch 'l1tf-final' of ↵Linus Torvalds1-0/+17
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Merge L1 Terminal Fault fixes from Thomas Gleixner: "L1TF, aka L1 Terminal Fault, is yet another speculative hardware engineering trainwreck. It's a hardware vulnerability which allows unprivileged speculative access to data which is available in the Level 1 Data Cache when the page table entry controlling the virtual address, which is used for the access, has the Present bit cleared or other reserved bits set. If an instruction accesses a virtual address for which the relevant page table entry (PTE) has the Present bit cleared or other reserved bits set, then speculative execution ignores the invalid PTE and loads the referenced data if it is present in the Level 1 Data Cache, as if the page referenced by the address bits in the PTE was still present and accessible. While this is a purely speculative mechanism and the instruction will raise a page fault when it is retired eventually, the pure act of loading the data and making it available to other speculative instructions opens up the opportunity for side channel attacks to unprivileged malicious code, similar to the Meltdown attack. While Meltdown breaks the user space to kernel space protection, L1TF allows to attack any physical memory address in the system and the attack works across all protection domains. It allows an attack of SGX and also works from inside virtual machines because the speculation bypasses the extended page table (EPT) protection mechanism. The assoicated CVEs are: CVE-2018-3615, CVE-2018-3620, CVE-2018-3646 The mitigations provided by this pull request include: - Host side protection by inverting the upper address bits of a non present page table entry so the entry points to uncacheable memory. - Hypervisor protection by flushing L1 Data Cache on VMENTER. - SMT (HyperThreading) control knobs, which allow to 'turn off' SMT by offlining the sibling CPU threads. The knobs are available on the kernel command line and at runtime via sysfs - Control knobs for the hypervisor mitigation, related to L1D flush and SMT control. The knobs are available on the kernel command line and at runtime via sysfs - Extensive documentation about L1TF including various degrees of mitigations. Thanks to all people who have contributed to this in various ways - patches, review, testing, backporting - and the fruitful, sometimes heated, but at the end constructive discussions. There is work in progress to provide other forms of mitigations, which might be less horrible performance wise for a particular kind of workloads, but this is not yet ready for consumption due to their complexity and limitations" * 'l1tf-final' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (75 commits) x86/microcode: Allow late microcode loading with SMT disabled tools headers: Synchronise x86 cpufeatures.h for L1TF additions x86/mm/kmmio: Make the tracer robust against L1TF x86/mm/pat: Make set_memory_np() L1TF safe x86/speculation/l1tf: Make pmd/pud_mknotpresent() invert x86/speculation/l1tf: Invert all not present mappings cpu/hotplug: Fix SMT supported evaluation KVM: VMX: Tell the nested hypervisor to skip L1D flush on vmentry x86/speculation: Use ARCH_CAPABILITIES to skip L1D flush on vmentry x86/speculation: Simplify sysfs report of VMX L1TF vulnerability Documentation/l1tf: Remove Yonah processors from not vulnerable list x86/KVM/VMX: Don't set l1tf_flush_l1d from vmx_handle_external_intr() x86/irq: Let interrupt handlers set kvm_cpu_l1tf_flush_l1d x86: Don't include linux/irq.h from asm/hardirq.h x86/KVM/VMX: Introduce per-host-cpu analogue of l1tf_flush_l1d x86/irq: Demote irq_cpustat_t::__softirq_pending to u16 x86/KVM/VMX: Move the l1tf_flush_l1d test to vmx_l1d_flush() x86/KVM/VMX: Replace 'vmx_l1d_flush_always' with 'vmx_l1d_flush_cond' x86/KVM/VMX: Don't set l1tf_flush_l1d to true from vmx_l1d_flush() cpu/hotplug: detect SMT disabled by BIOS ...
2018-08-05x86/mm/init: Add helper for freeing kernel image pagesDave Hansen1-0/+1
When chunks of the kernel image are freed, free_init_pages() is used directly. Consolidate the three sites that do this. Also update the string to give an incrementally better description of that memory versus what was there before. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: keescook@google.com Cc: aarcange@redhat.com Cc: jgross@suse.com Cc: jpoimboe@redhat.com Cc: gregkh@linuxfoundation.org Cc: peterz@infradead.org Cc: hughd@google.com Cc: torvalds@linux-foundation.org Cc: bp@alien8.de Cc: luto@kernel.org Cc: ak@linux.intel.com Cc: Kees Cook <keescook@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Andi Kleen <ak@linux.intel.com> Link: https://lkml.kernel.org/r/20180802225829.FE0E32EA@viggo.jf.intel.com
2018-07-13x86/bugs, kvm: Introduce boot-time control of L1TF mitigationsJiri Kosina1-0/+12
Introduce the 'l1tf=' kernel command line option to allow for boot-time switching of mitigation that is used on processors affected by L1TF. The possible values are: full Provides all available mitigations for the L1TF vulnerability. Disables SMT and enables all mitigations in the hypervisors. SMT control via /sys/devices/system/cpu/smt/control is still possible after boot. Hypervisors will issue a warning when the first VM is started in a potentially insecure configuration, i.e. SMT enabled or L1D flush disabled. full,force Same as 'full', but disables SMT control. Implies the 'nosmt=force' command line option. sysfs control of SMT and the hypervisor flush control is disabled. flush Leaves SMT enabled and enables the conditional hypervisor mitigation. Hypervisors will issue a warning when the first VM is started in a potentially insecure configuration, i.e. SMT enabled or L1D flush disabled. flush,nosmt Disables SMT and enables the conditional hypervisor mitigation. SMT control via /sys/devices/system/cpu/smt/control is still possible after boot. If SMT is reenabled or flushing disabled at runtime hypervisors will issue a warning. flush,nowarn Same as 'flush', but hypervisors will not warn when a VM is started in a potentially insecure configuration. off Disables hypervisor mitigations and doesn't emit any warnings. Default is 'flush'. Let KVM adhere to these semantics, which means: - 'lt1f=full,force' : Performe L1D flushes. No runtime control possible. - 'l1tf=full' - 'l1tf-flush' - 'l1tf=flush,nosmt' : Perform L1D flushes and warn on VM start if SMT has been runtime enabled or L1D flushing has been run-time enabled - 'l1tf=flush,nowarn' : Perform L1D flushes and no warnings are emitted. - 'l1tf=off' : L1D flushes are not performed and no warnings are emitted. KVM can always override the L1D flushing behavior using its 'vmentry_l1d_flush' module parameter except when lt1f=full,force is set. This makes KVM's private 'nosmt' option redundant, and as it is a bit non-systematic anyway (this is something to control globally, not on hypervisor level), remove that option. Add the missing Documentation entry for the l1tf vulnerability sysfs file while at it. Signed-off-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Jiri Kosina <jkosina@suse.cz> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lkml.kernel.org/r/20180713142323.202758176@linutronix.de
2018-06-20x86/speculation/l1tf: Add sysfs reporting for l1tfAndi Kleen1-0/+5
L1TF core kernel workarounds are cheap and normally always enabled, However they still should be reported in sysfs if the system is vulnerable or mitigated. Add the necessary CPU feature/bug bits. - Extend the existing checks for Meltdowns to determine if the system is vulnerable. All CPUs which are not vulnerable to Meltdown are also not vulnerable to L1TF - Check for 32bit non PAE and emit a warning as there is no practical way for mitigation due to the limited physical address bits - If the system has more than MAX_PA/2 physical memory the invert page workarounds don't protect the system against the L1TF attack anymore, because an inverted physical address will also point to valid memory. Print a warning in this case and report that the system is vulnerable. Add a function which returns the PFN limit for the L1TF mitigation, which will be used in follow up patches for sanity and range checks. [ tglx: Renamed the CPU feature bit to L1TF_PTEINV ] Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Dave Hansen <dave.hansen@intel.com>
2018-06-14Kbuild: rename CC_STACKPROTECTOR[_STRONG] config variablesLinus Torvalds1-1/+1
The changes to automatically test for working stack protector compiler support in the Kconfig files removed the special STACKPROTECTOR_AUTO option that picked the strongest stack protector that the compiler supported. That was all a nice cleanup - it makes no sense to have the AUTO case now that the Kconfig phase can just determine the compiler support directly. HOWEVER. It also meant that doing "make oldconfig" would now _disable_ the strong stackprotector if you had AUTO enabled, because in a legacy config file, the sane stack protector configuration would look like CONFIG_HAVE_CC_STACKPROTECTOR=y # CONFIG_CC_STACKPROTECTOR_NONE is not set # CONFIG_CC_STACKPROTECTOR_REGULAR is not set # CONFIG_CC_STACKPROTECTOR_STRONG is not set CONFIG_CC_STACKPROTECTOR_AUTO=y and when you ran this through "make oldconfig" with the Kbuild changes, it would ask you about the regular CONFIG_CC_STACKPROTECTOR (that had been renamed from CONFIG_CC_STACKPROTECTOR_REGULAR to just CONFIG_CC_STACKPROTECTOR), but it would think that the STRONG version used to be disabled (because it was really enabled by AUTO), and would disable it in the new config, resulting in: CONFIG_HAVE_CC_STACKPROTECTOR=y CONFIG_CC_HAS_STACKPROTECTOR_NONE=y CONFIG_CC_STACKPROTECTOR=y # CONFIG_CC_STACKPROTECTOR_STRONG is not set CONFIG_CC_HAS_SANE_STACKPROTECTOR=y That's dangerously subtle - people could suddenly find themselves with the weaker stack protector setup without even realizing. The solution here is to just rename not just the old RECULAR stack protector option, but also the strong one. This does that by just removing the CC_ prefix entirely for the user choices, because it really is not about the compiler support (the compiler support now instead automatially impacts _visibility_ of the options to users). This results in "make oldconfig" actually asking the user for their choice, so that we don't have any silent subtle security model changes. The end result would generally look like this: CONFIG_HAVE_CC_STACKPROTECTOR=y CONFIG_CC_HAS_STACKPROTECTOR_NONE=y CONFIG_STACKPROTECTOR=y CONFIG_STACKPROTECTOR_STRONG=y CONFIG_CC_HAS_SANE_STACKPROTECTOR=y where the "CC_" versions really are about internal compiler infrastructure, not the user selections. Acked-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-05-19Merge branches 'x86/urgent' and 'core/urgent' into x86/boot, to pick up ↵Ingo Molnar1-2/+0
fixes and avoid conflicts Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-05-13x86/CPU: Move cpu local function declarations to local headerThomas Gleixner1-9/+0
No point in exposing all these functions globaly as they are strict local to the cpu management code. Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2018-05-06x86/CPU: Modify detect_extended_topology() to return resultSuravee Suthikulpanit1-1/+1
Current implementation does not communicate whether it can successfully detect CPUID function 0xB information. Therefore, modify the function to return success or error codes. This will be used by subsequent patches. Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Link: http://lkml.kernel.org/r/1524865681-112110-2-git-send-email-suravee.suthikulpanit@amd.com
2018-04-17x86/processor: Remove two unused function declarationsDou Liyang1-2/+0
early_trap_init() and cpu_set_gdt() have been removed, so remove the stale declarations as well. Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: keescook@chromium.org Cc: luto@kernel.org Cc: hpa@zytor.com Cc: bp@suse.de Cc: kirill.shutemov@linux.intel.com Link: https://lkml.kernel.org/r/20180404064527.10562-1-douly.fnst@cn.fujitsu.com
2018-03-17x86/kvm/vmx: avoid expensive rdmsr for MSR_GS_BASEVitaly Kuznetsov1-0/+5
vmx_save_host_state() is only called from kvm_arch_vcpu_ioctl_run() so the context is pretty well defined and as we're past 'swapgs' MSR_GS_BASE should contain kernel's GS base which we point to irq_stack_union. Add new kernelmode_gs_base() API, irq_stack_union needs to be exported as KVM can be build as module. Acked-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-03-17x86/kvm/vmx: read MSR_{FS,KERNEL_GS}_BASE from current->threadVitaly Kuznetsov1-0/+5
vmx_save_host_state() is only called from kvm_arch_vcpu_ioctl_run() so the context is pretty well defined. Read MSR_{FS,KERNEL_GS}_BASE from current->thread after calling save_fsgs() which takes care of X86_BUG_NULL_SEG case now and will do RD[FG,GS]BASE when FSGSBASE extensions are exposed to userspace (currently they are not). Acked-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-02-17x86/CPU: Add a microcode loader callbackBorislav Petkov1-0/+1
Add a callback function which the microcode loader calls when microcode has been updated to a newer revision. Do the callback only when no error was encountered during loading. Tested-by: Ashok Raj <ashok.raj@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Ashok Raj <ashok.raj@intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Woodhouse <dwmw2@infradead.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180216112640.11554-3-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-02-15Merge branch 'x86-pti-for-linus' of ↵Linus Torvalds1-5/+2
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 PTI and Spectre related fixes and updates from Ingo Molnar: "Here's the latest set of Spectre and PTI related fixes and updates: Spectre: - Add entry code register clearing to reduce the Spectre attack surface - Update the Spectre microcode blacklist - Inline the KVM Spectre helpers to get close to v4.14 performance again. - Fix indirect_branch_prediction_barrier() - Fix/improve Spectre related kernel messages - Fix array_index_nospec_mask() asm constraint - KVM: fix two MSR handling bugs PTI: - Fix a paranoid entry PTI CR3 handling bug - Fix comments objtool: - Fix paranoid_entry() frame pointer warning - Annotate WARN()-related UD2 as reachable - Various fixes - Add Add Peter Zijlstra as objtool co-maintainer Misc: - Various x86 entry code self-test fixes - Improve/simplify entry code stack frame generation and handling after recent heavy-handed PTI and Spectre changes. (There's two more WIP improvements expected here.) - Type fix for cache entries There's also some low risk non-fix changes I've included in this branch to reduce backporting conflicts: - rename a confusing x86_cpu field name - de-obfuscate the naming of single-TLB flushing primitives" * 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (41 commits) x86/entry/64: Fix CR3 restore in paranoid_exit() x86/cpu: Change type of x86_cache_size variable to unsigned int x86/spectre: Fix an error message x86/cpu: Rename cpu_data.x86_mask to cpu_data.x86_stepping selftests/x86/mpx: Fix incorrect bounds with old _sigfault x86/mm: Rename flush_tlb_single() and flush_tlb_one() to __flush_tlb_one_[user|kernel]() x86/speculation: Add <asm/msr-index.h> dependency nospec: Move array_index_nospec() parameter checking into separate macro x86/speculation: Fix up array_index_nospec_mask() asm constraint x86/debug: Use UD2 for WARN() x86/debug, objtool: Annotate WARN()-related UD2 as reachable objtool: Fix segfault in ignore_unreachable_insn() selftests/x86: Disable tests requiring 32-bit support on pure 64-bit systems selftests/x86: Do not rely on "int $0x80" in single_step_syscall.c selftests/x86: Do not rely on "int $0x80" in test_mremap_vdso.c selftests/x86: Fix build bug caused by the 5lvl test which has been moved to the VM directory selftests/x86/pkeys: Remove unused functions selftests/x86: Clean up and document sscanf() usage selftests/x86: Fix vDSO selftest segfault for vsyscall=none x86/entry/64: Remove the unused 'icebp' macro ...