Age | Commit message (Collapse) | Author | Files | Lines |
|
[ Upstream commit 99bcd91fabada0dbb1d5f0de44532d8008db93c6 ]
Currently, using PEBS-via-PT with a sample frequency instead of a sample
period, causes a segfault. For example:
BUG: kernel NULL pointer dereference, address: 0000000000000195
<NMI>
? __die_body.cold+0x19/0x27
? page_fault_oops+0xca/0x290
? exc_page_fault+0x7e/0x1b0
? asm_exc_page_fault+0x26/0x30
? intel_pmu_pebs_event_update_no_drain+0x40/0x60
? intel_pmu_pebs_event_update_no_drain+0x32/0x60
intel_pmu_drain_pebs_icl+0x333/0x350
handle_pmi_common+0x272/0x3c0
intel_pmu_handle_irq+0x10a/0x2e0
perf_event_nmi_handler+0x2a/0x50
That happens because intel_pmu_pebs_event_update_no_drain() assumes all the
pebs_enabled bits represent counter indexes, which is not always the case.
In this particular case, bits 60 and 61 are set for PEBS-via-PT purposes.
The behaviour of PEBS-via-PT with sample frequency is questionable because
although a PMI is generated (PEBS_PMI_AFTER_EACH_RECORD), the period is not
adjusted anyway.
Putting that aside, fix intel_pmu_pebs_event_update_no_drain() by passing
the mask of counter bits instead of 'size'. Note, prior to the Fixes
commit, 'size' would be limited to the maximum counter index, so the issue
was not hit.
Fixes: 722e42e45c2f1 ("perf/x86: Support counter mask")
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Ian Rogers <irogers@google.com>
Cc: linux-perf-users@vger.kernel.org
Link: https://lore.kernel.org/r/20250508134452.73960-1-adrian.hunter@intel.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 71dcc11c2cd9e434c34a63154ecadca21c135ddd upstream.
Currently when a user samples user space GPRs (--user-regs option) with
PEBS, the user space GPRs actually always come from software PMI
instead of from PEBS hardware. This leads to the sampled GPRs to
possibly be inaccurate for single PEBS record case because of the
skid between counter overflow and GPRs sampling on PMI.
For the large PEBS case, it is even worse. If user sets the
exclude_kernel attribute, large PEBS would be used to sample user space
GPRs, but since PEBS GPRs group is not really enabled, it leads to all
samples in the large PEBS record to share the same piece of user space
GPRs, like this reproducer shows:
$ perf record -e branches:pu --user-regs=ip,ax -c 100000 ./foo
$ perf report -D | grep "AX"
.... AX 0x000000003a0d4ead
.... AX 0x000000003a0d4ead
.... AX 0x000000003a0d4ead
.... AX 0x000000003a0d4ead
.... AX 0x000000003a0d4ead
.... AX 0x000000003a0d4ead
.... AX 0x000000003a0d4ead
.... AX 0x000000003a0d4ead
.... AX 0x000000003a0d4ead
.... AX 0x000000003a0d4ead
.... AX 0x000000003a0d4ead
So enable GPRs group for user space GPRs sampling and prioritize reading
GPRs from PEBS. If the PEBS sampled GPRs is not user space GPRs (single
PEBS record case), perf_sample_regs_user() modifies them to user space
GPRs.
[ mingo: Clarified the changelog. ]
Fixes: c22497f5838c ("perf/x86/intel: Support adaptive PEBS v4")
Signed-off-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20250415104135.318169-2-dapeng1.mi@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f9bdf1f953392c9edd69a7f884f78c0390127029 upstream.
The WARN_ON(this_cpu_read(cpu_hw_events.enabled)) in the
intel_pmu_save_and_restart_reload() is triggered, when sampling read
topdown events.
In a NMI handler, the cpu_hw_events.enabled is set and used to indicate
the status of core PMU. The generic pmu->pmu_disable_count, updated in
the perf_pmu_disable/enable pair, is not touched.
However, the perf_pmu_disable/enable pair is invoked when sampling read
in a NMI handler. The cpuc->enabled is mistakenly set by the
perf_pmu_enable().
Avoid disabling PMU if the core PMU is already disabled.
Merge the logic together.
Fixes: 7b2c05a15d29 ("perf/x86/intel: Generic support for hardware TopDown metrics")
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20250121152303.3128733-2-kan.liang@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 314dfe10576912e1d786b13c5d4eee8c51b63caa upstream.
The x86_pmu_drain_pebs static call was introduced in commit 7c9903c9bf71
("x86/perf, static_call: Optimize x86_pmu methods"), but it's not really
used to replace the old method.
Apply the static call for drain_pebs.
Fixes: 7c9903c9bf71 ("x86/perf, static_call: Optimize x86_pmu methods")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20250121152303.3128733-1-kan.liang@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 782cffeec9ad96daa64ffb2d527b2a052fb02552 upstream.
According to the latest event list, update the event constraint tables
for Lion Cove core.
The general rule (the event codes < 0x90 are restricted to counters
0-3.) has been removed. There is no restriction for most of the
performance monitoring events.
Fixes: a932aa0e868f ("perf/x86: Add Lunar Lake and Arrow Lake support")
Reported-by: Amiri Khalil <amiri.khalil@intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20250219141005.2446823-1-kan.liang@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 0a5561501397e2bbd0fb0e300eb489f72a90597a ]
The PEBS-via-PT feature is exposed for the e-core of some hybrid
platforms, e.g., ADL and MTL. But it never works.
$ dmesg | grep PEBS
[ 1.793888] core: cpu_atom PMU driver: PEBS-via-PT
$ perf record -c 1000 -e '{intel_pt/branch=0/,
cpu_atom/cpu-cycles,aux-output/pp}' -C8
Error:
The sys_perf_event_open() syscall returned with 22 (Invalid argument)
for event (cpu_atom/cpu-cycles,aux-output/pp).
"dmesg | grep -i perf" may provide additional information.
The "PEBS-via-PT" is printed if the corresponding bit of per-PMU
capabilities is set. Since the feature is supported by the e-core HW,
perf sets the bit for e-core. However, for Intel PT, if a feature is not
supported on all CPUs, it is not supported at all. The PEBS-via-PT event
cannot be created successfully.
The PEBS-via-PT is no longer enumerated on the latest hybrid platform. It
will be deprecated on future platforms with Arch PEBS. Let's remove it
from the existing hybrid platforms.
Fixes: d9977c43bff8 ("perf/x86: Register hybrid PMUs")
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20250129154820.3755948-2-kan.liang@linux.intel.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit b8c3a2502a205321fe66c356f4b70cabd8e1a5fc upstream.
The only difference between 5 and 6 is the new counters snapshotting
group, without the following counters snapshotting enabling patches,
it's impossible to utilize the feature in a PEBS record. It's safe to
share the same code path with format 5.
Add format 6, so the end user can at least utilize the legacy PEBS
features.
Fixes: a932aa0e868f ("perf/x86: Add Lunar Lake and Arrow Lake support")
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20241216204505.748363-1-kan.liang@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 9f3de72a0c37005f897d69e4bdd59c25b8898447 upstream.
The PEBS kernel warnings can still be observed with the below case.
when the below commands are running in parallel for a while.
while true;
do
perf record --no-buildid -a --intr-regs=AX \
-e cpu/event=0xd0,umask=0x81/pp \
-c 10003 -o /dev/null ./triad;
done &
while true;
do
perf record -e 'cpu/mem-loads,ldlat=3/uP' -W -d -- ./dtlb
done
The commit b752ea0c28e3 ("perf/x86/intel/ds: Flush PEBS DS when changing
PEBS_DATA_CFG") intends to flush the entire PEBS buffer before the
hardware is reprogrammed. However, it fails in the above case.
The first perf command utilizes the large PEBS, while the second perf
command only utilizes a single PEBS. When the second perf event is
added, only the n_pebs++. The intel_pmu_pebs_enable() is invoked after
intel_pmu_pebs_add(). So the cpuc->n_pebs == cpuc->n_large_pebs check in
the intel_pmu_drain_large_pebs() fails. The PEBS DS is not flushed.
The new PEBS event should not be taken into account when flushing the
existing PEBS DS.
The check is unnecessary here. Before the hardware is reprogrammed, all
the stale records must be drained unconditionally.
For single PEBS or PEBS-vi-pt, the DS must be empty. The drain_pebs()
can handle the empty case. There is no harm to unconditionally drain the
PEBS DS.
Fixes: b752ea0c28e3 ("perf/x86/intel/ds: Flush PEBS DS when changing PEBS_DATA_CFG")
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20241119135504.1463839-2-kan.liang@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
A non-0 retire latency can be observed on a Raptorlake which doesn't
support the retire latency feature.
By design, the retire latency shares the PERF_SAMPLE_WEIGHT_STRUCT
sample type with other types of latency. That could avoid adding too
many different sample types to support all kinds of latency. For the
machine which doesn't support some kind of latency, 0 should be
returned.
Perf doesn’t clear/init all the fields of a sample data for the sake
of performance. It expects the later perf_{prepare,output}_sample() to
update the uninitialized field. However, the current implementation
doesn't touch the field of the retire latency if the feature is not
supported. The memory garbage is dumped into the perf data.
Clear the retire latency if the feature is not supported.
Fixes: c87a31093c70 ("perf/x86: Support Retire Latency")
Reported-by: "Bayduraev, Alexey V" <alexey.v.bayduraev@intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: "Bayduraev, Alexey V" <alexey.v.bayduraev@intel.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20240708193336.1192217-4-kan.liang@linux.intel.com
|
|
A new PEBS data source format is introduced for the p-core of Lunar
Lake. The data source field is extended to 8 bits with new encodings.
A new layout is introduced into the union intel_x86_pebs_dse.
Introduce the lnl_latency_data() to parse the new format.
Enlarge the pebs_data_source[] accordingly to include new encodings.
Only the mem load and the mem store events can generate the data source.
Introduce INTEL_HYBRID_LDLAT_CONSTRAINT and
INTEL_HYBRID_STLAT_CONSTRAINT to mark them.
Add two new bits for the new cache-related data src, L2_MHB and MSC.
The L2_MHB is short for L2 Miss Handling Buffer, which is similar to
LFB (Line Fill Buffer), but to track the L2 Cache misses.
The MSC stands for the memory-side cache.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Ian Rogers <irogers@google.com>
Link: https://lkml.kernel.org/r/20240626143545.480761-6-kan.liang@linux.intel.com
|
|
The model-specific pebs_latency_data functions of ADL and MTL use the
"small" as a postfix to indicate the e-core. The postfix is too generic
for a model-specific function. It cannot provide useful information that
can directly map it to a specific uarch, which can facilitate the
development and maintenance.
Use the abbr of the uarch to rename the model-specific functions.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ian Rogers <irogers@google.com>
Link: https://lkml.kernel.org/r/20240626143545.480761-5-kan.liang@linux.intel.com
|
|
From PMU's perspective, Lunar Lake and Arrow Lake are similar to the
previous generation Meteor Lake. Both are hybrid platforms, with e-core
and p-core.
The key differences include:
- The e-core supports 3 new fixed counters
- The p-core supports an updated PEBS Data Source format
- More GP counters (Updated event constraint table)
- New Architectural performance monitoring V6
(New Perfmon MSRs aliasing, umask2, eq).
- New PEBS format V6 (Counters Snapshotting group)
- New RDPMC metrics clear mode
The legacy features, the 3 new fixed counters and updated event
constraint table are enabled in this patch.
The new PEBS data source format, the architectural performance
monitoring V6, the PEBS format V6, and the new RDPMC metrics clear mode
are supported in the following patches.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Ian Rogers <irogers@google.com>
Link: https://lkml.kernel.org/r/20240626143545.480761-4-kan.liang@linux.intel.com
|
|
The current perf assumes that both GP and fixed counters are contiguous.
But it's not guaranteed on newer Intel platforms or in a virtualization
environment.
Use the counter mask to replace the number of counters for both GP and
the fixed counters. For the other ARCHs or old platforms which don't
support a counter mask, using GENMASK_ULL(num_counter - 1, 0) to
replace. There is no functional change for them.
The interface to KVM is not changed. The number of counters still be
passed to KVM. It can be updated later separately.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Ian Rogers <irogers@google.com>
Link: https://lkml.kernel.org/r/20240626143545.480761-3-kan.liang@linux.intel.com
|
|
The current perf assumes that the counters that support PEBS are
contiguous. But it's not guaranteed with the new leaf 0x23 introduced.
The counters are enumerated with a counter mask. There may be holes in
the counter mask for future platforms or in a virtualization
environment.
Store the PEBS event mask rather than the maximum number of PEBS
counters in the x86 PMU structures.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Ian Rogers <irogers@google.com>
Link: https://lkml.kernel.org/r/20240626143545.480761-2-kan.liang@linux.intel.com
|
|
The MSR_PEBS_DATA_CFG MSR register is used to configure which data groups
should be generated into a PEBS record, and it's shared among all counters.
If there are different configurations among counters, perf combines all the
configurations.
The first perf command as below requires a complete PEBS record
(including memory info, GPRs, XMMs, and LBRs). The second perf command
only requires a basic group. However, after the second perf command is
running, the MSR_PEBS_DATA_CFG register is cleared. Only a basic group is
generated in a PEBS record, which is wrong. The required information
for the first perf command is missed.
$ perf record --intr-regs=AX,SP,XMM0 -a -C 8 -b -W -d -c 100000003 -o /dev/null -e cpu/event=0xd0,umask=0x81/upp &
$ sleep 5
$ perf record --per-thread -c 1 -e cycles:pp --no-timestamp --no-tid taskset -c 8 ./noploop 1000
The first PEBS event is a system-wide PEBS event. The second PEBS event
is a per-thread event. When the thread is scheduled out, the
intel_pmu_pebs_del() function is invoked to update the PEBS state.
Since the system-wide event is still available, the cpuc->n_pebs is 1.
The cpuc->pebs_data_cfg is cleared. The data configuration for the
system-wide PEBS event is lost.
The (cpuc->n_pebs == 1) check was introduced in commit:
b6a32f023fcc ("perf/x86: Fix PEBS threshold initialization")
At that time, it indeed didn't hurt whether the state was updated
during the removal, because only the threshold is updated.
The calculation of the threshold takes the last PEBS event into
account.
However, since commit:
b752ea0c28e3 ("perf/x86/intel/ds: Flush PEBS DS when changing PEBS_DATA_CFG")
we delay the threshold update, and clear the PEBS data config, which triggers
the bug.
The PEBS data config update scope should not be shrunk during removal.
[ mingo: Improved the changelog & comments. ]
Fixes: b752ea0c28e3 ("perf/x86/intel/ds: Flush PEBS DS when changing PEBS_DATA_CFG")
Reported-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240401133320.703971-1-kan.liang@linux.intel.com
|
|
To clean up the per CPU insanity of UP which causes sparse to be rightfully
unhappy and prevents the usage of the generic per CPU accessors on cpu_info
it is necessary to include <linux/percpu.h> into <asm/msr.h>.
Including <linux/percpu.h> into <asm/msr.h> is impossible because it ends
up in header dependency hell. The problem is that <asm/processor.h>
includes <asm/msr.h>. The inclusion of <linux/percpu.h> results in a
compile fail where the compiler cannot longer handle an include in
<asm/cpufeature.h> which references boot_cpu_data which is
defined in <asm/processor.h>.
The only reason why <asm/msr.h> is included in <asm/processor.h> are the
set/get_debugctlmsr() inlines. They are defined there because <asm/processor.h>
is such a nice dump ground for everything. In fact they belong obviously
into <asm/debugreg.h>.
Move them to <asm/debugreg.h> and fix up the resulting damage which is just
exposing the reliance on random include chains.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20240304005104.454678686@linutronix.de
|
|
The branch counters logging (A.K.A LBR event logging) introduces a
per-counter indication of precise event occurrences in LBRs. It can
provide a means to attribute exposed retirement latency to combinations
of events across a block of instructions. It also provides a means of
attributing Timed LBR latencies to events.
The feature is first introduced on SRF/GRR. It is an enhancement of the
ARCH LBR. It adds new fields in the LBR_INFO MSRs to log the occurrences
of events on the GP counters. The information is displayed by the order
of counters.
The design proposed in this patch requires that the events which are
logged must be in a group with the event that has LBR. If there are
more than one LBR group, the counters logging information only from the
current group (overflowed) are stored for the perf tool, otherwise the
perf tool cannot know which and when other groups are scheduled
especially when multiplexing is triggered. The user can ensure it uses
the maximum number of counters that support LBR info (4 by now) by
making the group large enough.
The HW only logs events by the order of counters. The order may be
different from the order of enabling which the perf tool can understand.
When parsing the information of each branch entry, convert the counter
order to the enabled order, and store the enabled order in the extension
space.
Unconditionally reset LBRs for an LBR event group when it's deleted. The
logged counter information is only valid for the current LBR group. If
another LBR group is scheduled later, the information from the stale
LBRs would be otherwise wrongly interpreted.
Add a sanity check in intel_pmu_hw_config(). Disable the feature if other
counter filters (inv, cmask, edge, in_tx) are set or LBR call stack mode
is enabled. (For the LBR call stack mode, we cannot simply flush the
LBR, since it will break the call stack. Also, there is no obvious usage
with the call stack mode for now.)
Only applying the PERF_SAMPLE_BRANCH_COUNTERS doesn't require any branch
stack setup.
Expose the maximum number of supported counters and the width of the
counters into the sysfs. The perf tool can use the information to parse
the logged counters in each branch.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20231025201626.3000228-5-kan.liang@linux.intel.com
|
|
Currently, the additional information of a branch entry is stored in a
u64 space. With more and more information added, the space is running
out. For example, the information of occurrences of events will be added
for each branch.
Two places were suggested to append the counters.
https://lore.kernel.org/lkml/20230802215814.GH231007@hirez.programming.kicks-ass.net/
One place is right after the flags of each branch entry. It changes the
existing struct perf_branch_entry. The later ARCH specific
implementation has to be really careful to consistently pick
the right struct.
The other place is right after the entire struct perf_branch_stack.
The disadvantage is that the pointer of the extra space has to be
recorded. The common interface perf_sample_save_brstack() has to be
updated.
The latter is much straightforward, and should be easily understood and
maintained. It is implemented in the patch.
Add a new branch sample type, PERF_SAMPLE_BRANCH_COUNTERS, to indicate
the event which is recorded in the branch info.
The "u64 counters" may store the occurrences of several events. The
information regarding the number of events/counters and the width of
each counter should be exposed via sysfs as a reference for the perf
tool. Define the branch_counter_nr and branch_counter_width ABI here.
The support will be implemented later in the Intel-specific patch.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20231025201626.3000228-1-kan.liang@linux.intel.com
|
|
There is a fairly long list of grievances about the current code. The
main beefs:
1. hybrid_big_small assumes that the *HARDWARE* (CPUID) provided
core types are a bitmap. They are not. If Intel happened to
make a core type of 0xff, hilarity would ensue.
2. adl_get_hybrid_cpu_type() utterly inscrutable. There are
precisely zero comments and zero changelog about what it is
attempting to do.
According to Kan, the adl_get_hybrid_cpu_type() is there because some
Alder Lake (ADL) CPUs can do some silly things. Some ADL models are
*supposed* to be hybrid CPUs with big and little cores, but there are
some SKUs that only have big cores. CPUID(0x1a) on those CPUs does
not say that the CPUs are big cores. It apparently just returns 0x0.
It confuses perf because it expects to see either 0x40 (Core) or
0x20 (Atom).
The perf workaround for this is to watch for a CPU core saying it is
type 0x0. If that happens on an Alder Lake, it calls
x86_pmu.get_hybrid_cpu_type() and just assumes that the core is a
Core (0x40) CPU.
To fix up the mess, separate out the CPU types and the 'pmu' types.
This allows 'hybrid_pmu_type' bitmaps without worrying that some
future CPU type will set multiple bits.
Since the types are now separate, add a function to glue them back
together again. Actual comment on the situation in the glue
function (find_hybrid_pmu_for_cpu()).
Also, give ->get_hybrid_cpu_type() a real return type and make it
clear that it is overriding the *CPU* type, not the PMU type.
Rename cpu_type to pmu_type in the struct x86_hybrid_pmu to reflect the
change.
Originally-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230829125806.3016082-6-kan.liang@linux.intel.com
|
|
From PMU's perspective, the SPR/GNR server has a similar uarch to the
ADL/MTL client p-core. Many functions are shared. However, the shared
function name uses the abbreviation of the server product code name,
rather than the common uarch code name.
Rename these internal shared functions by the common uarch name.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230829125806.3016082-2-kan.liang@linux.intel.com
|
|
The Grand Ridge and Sierra Forest are successors to Snow Ridge. They
both have Crestmont core. From the core PMU's perspective, they are
similar to the e-core of MTL. The only difference is the LBR event
logging feature, which will be implemented in the following patches.
Create a non-hybrid PMU setup for Grand Ridge and Sierra Forest.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lore.kernel.org/r/20230522113040.2329924-1-kan.liang@linux.intel.com
|
|
Several similar kernel warnings can be triggered,
[56605.607840] CPU0 PEBS record size 0, expected 32, config 0 cpuc->record_size=208
when the below commands are running in parallel for a while on SPR.
while true;
do
perf record --no-buildid -a --intr-regs=AX \
-e cpu/event=0xd0,umask=0x81/pp \
-c 10003 -o /dev/null ./triad;
done &
while true;
do
perf record -o /tmp/out -W -d \
-e '{ld_blocks.store_forward:period=1000000, \
MEM_TRANS_RETIRED.LOAD_LATENCY:u:precise=2:ldlat=4}' \
-c 1037 ./triad;
done
The triad program is just the generation of loads/stores.
The warnings are triggered when an unexpected PEBS record (with a
different config and size) is found.
A system-wide PEBS event with the large PEBS config may be enabled
during a context switch. Some PEBS records for the system-wide PEBS
may be generated while the old task is sched out but the new one
hasn't been sched in yet. When the new task is sched in, the
cpuc->pebs_record_size may be updated for the per-task PEBS events. So
the existing system-wide PEBS records have a different size from the
later PEBS records.
The PEBS buffer should be flushed right before the hardware is
reprogrammed. The new size and threshold should be updated after the
old buffer has been flushed.
Reported-by: Stephane Eranian <eranian@google.com>
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230421184529.3320912-1-kan.liang@linux.intel.com
|
|
Pull kvm updates from Paolo Bonzini:
"ARM:
- Provide a virtual cache topology to the guest to avoid
inconsistencies with migration on heterogenous systems. Non secure
software has no practical need to traverse the caches by set/way in
the first place
- Add support for taking stage-2 access faults in parallel. This was
an accidental omission in the original parallel faults
implementation, but should provide a marginal improvement to
machines w/o FEAT_HAFDBS (such as hardware from the fruit company)
- A preamble to adding support for nested virtualization to KVM,
including vEL2 register state, rudimentary nested exception
handling and masking unsupported features for nested guests
- Fixes to the PSCI relay that avoid an unexpected host SVE trap when
resuming a CPU when running pKVM
- VGIC maintenance interrupt support for the AIC
- Improvements to the arch timer emulation, primarily aimed at
reducing the trap overhead of running nested
- Add CONFIG_USERFAULTFD to the KVM selftests config fragment in the
interest of CI systems
- Avoid VM-wide stop-the-world operations when a vCPU accesses its
own redistributor
- Serialize when toggling CPACR_EL1.SMEN to avoid unexpected
exceptions in the host
- Aesthetic and comment/kerneldoc fixes
- Drop the vestiges of the old Columbia mailing list and add [Oliver]
as co-maintainer
RISC-V:
- Fix wrong usage of PGDIR_SIZE instead of PUD_SIZE
- Correctly place the guest in S-mode after redirecting a trap to the
guest
- Redirect illegal instruction traps to guest
- SBI PMU support for guest
s390:
- Sort out confusion between virtual and physical addresses, which
currently are the same on s390
- A new ioctl that performs cmpxchg on guest memory
- A few fixes
x86:
- Change tdp_mmu to a read-only parameter
- Separate TDP and shadow MMU page fault paths
- Enable Hyper-V invariant TSC control
- Fix a variety of APICv and AVIC bugs, some of them real-world, some
of them affecting architecurally legal but unlikely to happen in
practice
- Mark APIC timer as expired if its in one-shot mode and the count
underflows while the vCPU task was being migrated
- Advertise support for Intel's new fast REP string features
- Fix a double-shootdown issue in the emergency reboot code
- Ensure GIF=1 and disable SVM during an emergency reboot, i.e. give
SVM similar treatment to VMX
- Update Xen's TSC info CPUID sub-leaves as appropriate
- Add support for Hyper-V's extended hypercalls, where "support" at
this point is just forwarding the hypercalls to userspace
- Clean up the kvm->lock vs. kvm->srcu sequences when updating the
PMU and MSR filters
- One-off fixes and cleanups
- Fix and cleanup the range-based TLB flushing code, used when KVM is
running on Hyper-V
- Add support for filtering PMU events using a mask. If userspace
wants to restrict heavily what events the guest can use, it can now
do so without needing an absurd number of filter entries
- Clean up KVM's handling of "PMU MSRs to save", especially when vPMU
support is disabled
- Add PEBS support for Intel Sapphire Rapids
- Fix a mostly benign overflow bug in SEV's
send|receive_update_data()
- Move several SVM-specific flags into vcpu_svm
x86 Intel:
- Handle NMI VM-Exits before leaving the noinstr region
- A few trivial cleanups in the VM-Enter flows
- Stop enabling VMFUNC for L1 purely to document that KVM doesn't
support EPTP switching (or any other VM function) for L1
- Fix a crash when using eVMCS's enlighted MSR bitmaps
Generic:
- Clean up the hardware enable and initialization flow, which was
scattered around multiple arch-specific hooks. Instead, just let
the arch code call into generic code. Both x86 and ARM should
benefit from not having to fight common KVM code's notion of how to
do initialization
- Account allocations in generic kvm_arch_alloc_vm()
- Fix a memory leak if coalesced MMIO unregistration fails
selftests:
- On x86, cache the CPU vendor (AMD vs. Intel) and use the info to
emit the correct hypercall instruction instead of relying on KVM to
patch in VMMCALL
- Use TAP interface for kvm_binary_stats_test and tsc_msrs_test"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (325 commits)
KVM: SVM: hyper-v: placate modpost section mismatch error
KVM: x86/mmu: Make tdp_mmu_allowed static
KVM: arm64: nv: Use reg_to_encoding() to get sysreg ID
KVM: arm64: nv: Only toggle cache for virtual EL2 when SCTLR_EL2 changes
KVM: arm64: nv: Filter out unsupported features from ID regs
KVM: arm64: nv: Emulate EL12 register accesses from the virtual EL2
KVM: arm64: nv: Allow a sysreg to be hidden from userspace only
KVM: arm64: nv: Emulate PSTATE.M for a guest hypervisor
KVM: arm64: nv: Add accessors for SPSR_EL1, ELR_EL1 and VBAR_EL1 from virtual EL2
KVM: arm64: nv: Handle SMCs taken from virtual EL2
KVM: arm64: nv: Handle trapped ERET from virtual EL2
KVM: arm64: nv: Inject HVC exceptions to the virtual EL2
KVM: arm64: nv: Support virtual EL2 exceptions
KVM: arm64: nv: Handle HCR_EL2.NV system register traps
KVM: arm64: nv: Add nested virt VCPU primitives for vEL2 VCPU state
KVM: arm64: nv: Add EL2 system registers to vcpu context
KVM: arm64: nv: Allow userspace to set PSR_MODE_EL2x
KVM: arm64: nv: Reset VCPU to EL2 registers if VCPU nested virt is set
KVM: arm64: nv: Introduce nested virtualization VCPU feature
KVM: arm64: Use the S2 MMU context to iterate over S2 table
...
|
|
The time order is incorrect when the TSC in a PEBS record is used.
$perf record -e cycles:upp dd if=/dev/zero of=/dev/null
count=10000
$ perf script --show-task-events
perf-exec 0 0.000000: PERF_RECORD_COMM: perf-exec:915/915
dd 915 106.479872: PERF_RECORD_COMM exec: dd:915/915
dd 915 106.483270: PERF_RECORD_EXIT(915:915):(914:914)
dd 915 106.512429: 1 cycles:upp:
ffffffff96c011b7 [unknown] ([unknown])
... ...
The perf time is from sched_clock_cpu(). The current PEBS code
unconditionally convert the TSC to native_sched_clock(). There is a
shift between the two clocks. If the TSC is stable, the shift is
consistent, __sched_clock_offset. If the TSC is unstable, the shift has
to be calculated at runtime.
This patch doesn't support the conversion when the TSC is unstable. The
TSC unstable case is a corner case and very unlikely to happen. If it
happens, the TSC in a PEBS record will be dropped and fall back to
perf_event_clock().
Fixes: 47a3aeb39e8d ("perf/x86/intel/pebs: Fix PEBS timestamps overwritten")
Reported-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/CAM9d7cgWDVAq8-11RbJ2uGfwkKD6fA-OMwOKDrNUrU_=8MgEjg@mail.gmail.com/
|
|
According to Intel SDM, the EPT-friendly PEBS is supported by all the
platforms after ICX, ADL and the future platforms with PEBS format 5.
Currently the only in-kernel user of this capability is KVM, which has
very limited support for hybrid core pmu, so ADL and its successors do
not currently expose this capability. When both hybrid core and PEBS
format 5 are present, KVM will decide on its own merits.
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: linux-perf-users@vger.kernel.org
Suggested-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20221109082802.27543-4-likexu@tencent.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Factor out perf_prepare_header() so that it can call
perf_prepare_sample() without a header if not needed.
Also it checks the filtered_sample_type to avoid duplicate
work when perf_prepare_sample() is called twice (or more).
Suggested-by: Peter Zijlstr <peterz@infradead.org>
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Song Liu <song@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230118060559.615653-8-namhyung@kernel.org
|
|
When we saves the branch stack to the perf sample data, we needs to
update the sample flags and the dynamic size. To make sure this is
done consistently, add the perf_sample_save_brstack() helper and
convert all call sites.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Athira Rajeev <atrajeev@linux.vnet.ibm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230118060559.615653-5-namhyung@kernel.org
|
|
When we save the callchain to the perf sample data, we need to update
the sample flags and the dynamic size. To ensure this is done consistently,
add the perf_sample_save_callchain() helper and convert all call sites.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Song Liu <song@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230118060559.615653-3-namhyung@kernel.org
|
|
Retire Latency reports the number of elapsed core clocks between the
retirement of the instruction indicated by the Instruction Pointer field
of the PEBS record and the retirement of the prior instruction. It's
enumerated by the IA32_PERF_CAPABILITIES.PEBS_TIMING_INFO[17].
Add flag PMU_FL_RETIRE_LATENCY to indicate the availability of the
feature.
The Retire Latency is not supported by the fixed counter 0 on p-core of
MTL.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230104201349.1451191-3-kan.liang@linux.intel.com
|
|
From PMU's perspective, Meteor Lake is similar to Alder Lake. Both are
hybrid platforms, with e-core and p-core.
The key differences include:
- The e-core supports 2 PDIST GP counters (GP0 & GP1)
- New MSRs for the Module Snoop Response Events on the e-core.
- New Data Source fields are introduced for the e-core.
- There are 8 GP counters for the e-core.
- The load latency AUX event is not required for the p-core anymore.
- Retire Latency (Support in a separate patch) for both cores.
Since most of the code in the intel_pmu_init() should be the same as
Alder Lake, to avoid code duplication, share the path with Alder Lake.
Add new specific functions of extra_regs, and get_event_constraints
to support the OCR events, Module Snoop Response Events and 2 PDIST
GP counters on e-core.
Add new MTL specific mem_attrs which drops the load latency AUX event.
The Data Source field is extended to 4:0, which can contains max 32
sources.
The Retire Latency is implemented with a separate patch.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230104201349.1451191-2-kan.liang@linux.intel.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf events updates from Ingo Molnar:
- Thoroughly rewrite the data structures that implement perf task
context handling, with the goal of fixing various quirks and
unfeatures both in already merged, and in upcoming proposed code.
The old data structure is the per task and per cpu
perf_event_contexts:
task_struct::perf_events_ctxp[] <-> perf_event_context <-> perf_cpu_context
^ | ^ | ^
`---------------------------------' | `--> pmu ---'
v ^
perf_event ------'
In this new design this is replaced with a single task context and a
single CPU context, plus intermediate data-structures:
task_struct::perf_event_ctxp -> perf_event_context <- perf_cpu_context
^ | ^ ^
`---------------------------' | |
| | perf_cpu_pmu_context <--.
| `----. ^ |
| | | |
| v v |
| ,--> perf_event_pmu_context |
| | |
| | |
v v |
perf_event ---> pmu ----------------'
[ See commit bd2756811766 for more details. ]
This rewrite was developed by Peter Zijlstra and Ravi Bangoria.
- Optimize perf_tp_event()
- Update the Intel uncore PMU driver, extending it with UPI topology
discovery on various hardware models.
- Misc fixes & cleanups
* tag 'perf-core-2022-12-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (25 commits)
perf/x86/intel/uncore: Fix reference count leak in __uncore_imc_init_box()
perf/x86/intel/uncore: Fix reference count leak in snr_uncore_mmio_map()
perf/x86/intel/uncore: Fix reference count leak in hswep_has_limit_sbox()
perf/x86/intel/uncore: Fix reference count leak in sad_cfg_iio_topology()
perf/x86/intel/uncore: Make set_mapping() procedure void
perf/x86/intel/uncore: Update sysfs-devices-mapping file
perf/x86/intel/uncore: Enable UPI topology discovery for Sapphire Rapids
perf/x86/intel/uncore: Enable UPI topology discovery for Icelake Server
perf/x86/intel/uncore: Get UPI NodeID and GroupID
perf/x86/intel/uncore: Enable UPI topology discovery for Skylake Server
perf/x86/intel/uncore: Generalize get_topology() for SKX PMUs
perf/x86/intel/uncore: Disable I/O stacks to PMU mapping on ICX-D
perf/x86/intel/uncore: Clear attr_update properly
perf/x86/intel/uncore: Introduce UPI topology type
perf/x86/intel/uncore: Generalize IIO topology support
perf/core: Don't allow grouping events from different hw pmus
perf/amd/ibs: Make IBS a core pmu
perf: Fix function pointer case
perf/x86/amd: Remove the repeated declaration
perf: Fix possible memleak in pmu_dev_alloc()
...
|
|
According to the latest event list, update the MEM_INST_RETIRED events
which support the DataLA facility for SPR.
Fixes: 61b985e3e775 ("perf/x86/intel: Add perf core PMU support for Sapphire Rapids")
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20221031154119.571386-2-kan.liang@linux.intel.com
|
|
According to the latest event list, update the MEM_INST_RETIRED events
which support the DataLA facility.
Fixes: 6017608936c1 ("perf/x86/intel: Add Icelake support")
Reported-by: Jannis Klinkenberg <jannis.klinkenberg@rwth-aachen.de>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20221031154119.571386-1-kan.liang@linux.intel.com
|
|
There have been various issues and limitations with the way perf uses
(task) contexts to track events. Most notable is the single hardware
PMU task context, which has resulted in a number of yucky things (both
proposed and merged).
Notably:
- HW breakpoint PMU
- ARM big.little PMU / Intel ADL PMU
- Intel Branch Monitoring PMU
- AMD IBS PMU
- S390 cpum_cf PMU
- PowerPC trace_imc PMU
*Current design:*
Currently we have a per task and per cpu perf_event_contexts:
task_struct::perf_events_ctxp[] <-> perf_event_context <-> perf_cpu_context
^ | ^ | ^
`---------------------------------' | `--> pmu ---'
v ^
perf_event ------'
Each task has an array of pointers to a perf_event_context. Each
perf_event_context has a direct relation to a PMU and a group of
events for that PMU. The task related perf_event_context's have a
pointer back to that task.
Each PMU has a per-cpu pointer to a per-cpu perf_cpu_context, which
includes a perf_event_context, which again has a direct relation to
that PMU, and a group of events for that PMU.
The perf_cpu_context also tracks which task context is currently
associated with that CPU and includes a few other things like the
hrtimer for rotation etc.
Each perf_event is then associated with its PMU and one
perf_event_context.
*Proposed design:*
New design proposed by this patch reduce to a single task context and
a single CPU context but adds some intermediate data-structures:
task_struct::perf_event_ctxp -> perf_event_context <- perf_cpu_context
^ | ^ ^
`---------------------------' | |
| | perf_cpu_pmu_context <--.
| `----. ^ |
| | | |
| v v |
| ,--> perf_event_pmu_context |
| | |
| | |
v v |
perf_event ---> pmu ----------------'
With the new design, perf_event_context will hold all events for all
pmus in the (respective pinned/flexible) rbtrees. This can be achieved
by adding pmu to rbtree key:
{cpu, pmu, cgroup, group_index}
Each perf_event_context carries a list of perf_event_pmu_context which
is used to hold per-pmu-per-context state. For example, it keeps track
of currently active events for that pmu, a pmu specific task_ctx_data,
a flag to tell whether rotation is required or not etc.
Additionally, perf_cpu_pmu_context is used to hold per-pmu-per-cpu
state like hrtimer details to drive the event rotation, a pointer to
perf_event_pmu_context of currently running task and some other
ancillary information.
Each perf_event is associated to it's pmu, perf_event_context and
perf_event_pmu_context.
Further optimizations to current implementation are possible. For
example, ctx_resched() can be optimized to reschedule only single pmu
events.
Much thanks to Ravi for picking this up and pushing it towards
completion.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Co-developed-by: Ravi Bangoria <ravi.bangoria@amd.com>
Signed-off-by: Ravi Bangoria <ravi.bangoria@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20221008062424.313-1-ravi.bangoria@amd.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf events updates from Ingo Molnar:
"PMU driver updates:
- Add AMD Last Branch Record Extension Version 2 (LbrExtV2) feature
support for Zen 4 processors.
- Extend the perf ABI to provide branch speculation information, if
available, and use this on CPUs that have it (eg. LbrExtV2).
- Improve Intel PEBS TSC timestamp handling & integration.
- Add Intel Raptor Lake S CPU support.
- Add 'perf mem' and 'perf c2c' memory profiling support on AMD CPUs
by utilizing IBS tagged load/store samples.
- Clean up & optimize various x86 PMU details.
HW breakpoints:
- Big rework to optimize the code for systems with hundreds of CPUs
and thousands of breakpoints:
- Replace the nr_bp_mutex global mutex with the bp_cpuinfo_sem
per-CPU rwsem that is read-locked during most of the key
operations.
- Improve the O(#cpus * #tasks) logic in toggle_bp_slot() and
fetch_bp_busy_slots().
- Apply micro-optimizations & cleanups.
- Misc cleanups & enhancements"
* tag 'perf-core-2022-10-07' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (75 commits)
perf/hw_breakpoint: Annotate tsk->perf_event_mutex vs ctx->mutex
perf: Fix pmu_filter_match()
perf: Fix lockdep_assert_event_ctx()
perf/x86/amd/lbr: Adjust LBR regardless of filtering
perf/x86/utils: Fix uninitialized var in get_branch_type()
perf/uapi: Define PERF_MEM_SNOOPX_PEER in kernel header file
perf/x86/amd: Support PERF_SAMPLE_PHY_ADDR
perf/x86/amd: Support PERF_SAMPLE_ADDR
perf/x86/amd: Support PERF_SAMPLE_{WEIGHT|WEIGHT_STRUCT}
perf/x86/amd: Support PERF_SAMPLE_DATA_SRC
perf/x86/amd: Add IBS OP_DATA2 DataSrc bit definitions
perf/mem: Introduce PERF_MEM_LVLNUM_{EXTN_MEM|IO}
perf/x86/uncore: Add new Raptor Lake S support
perf/x86/cstate: Add new Raptor Lake S support
perf/x86/msr: Add new Raptor Lake S support
perf/x86: Add new Raptor Lake S support
bpf: Check flags for branch stack in bpf_read_branch_records helper
perf, hw_breakpoint: Fix use-after-free if perf_event_open() fails
perf: Use sample_flags for raw_data
perf: Use sample_flags for addr
...
|
|
Merge upstream to get RAPTORLAKE_S
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
|
|
Use the new sample_flags to indicate whether the addr field is filled by
the PMU driver. As most PMU drivers pass 0, it can set the flag only if
it has a non-zero value. And use 0 in perf_sample_output() if it's not
filled already.
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220921220032.2858517-1-namhyung@kernel.org
|
|
So that it can call perf_callchain() only if needed. Historically it used
__PERF_SAMPLE_CALLCHAIN_EARLY but we can do that with sample_flags in the
struct perf_sample_data.
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220908214104.3851807-1-namhyung@kernel.org
|
|
Use the new sample_flags to indicate whether the txn field is filled by
the PMU driver.
Remove the txn field from the perf_sample_data_init() to minimize the
number of cache lines touched.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220901130959.1285717-7-kan.liang@linux.intel.com
|
|
Use the new sample_flags to indicate whether the data_src field is
filled by the PMU driver.
Remove the data_src field from the perf_sample_data_init() to minimize
the number of cache lines touched.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220901130959.1285717-6-kan.liang@linux.intel.com
|
|
Use the new sample_flags to indicate whether the weight field is filled
by the PMU driver.
Remove the weight field from the perf_sample_data_init() to minimize the
number of cache lines touched.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220901130959.1285717-5-kan.liang@linux.intel.com
|
|
Use the new sample_flags to indicate whether the branch stack is filled
by the PMU driver.
Remove the br_stack from the perf_sample_data_init() to minimize the number
of cache lines touched.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220901130959.1285717-4-kan.liang@linux.intel.com
|
|
The PEBS TSC-based timestamps do not appear correctly in the final
perf.data output file from perf record.
The data->time field setup by PEBS in the setup_pebs_fixed_sample_data()
is later overwritten by perf_events generic code in
perf_prepare_sample(). There is an ordering problem.
Set the sample flags when the data->time is updated by PEBS.
The data->time field will not be overwritten anymore.
Reported-by: Andreas Kogler <andreas.kogler.0x@gmail.com>
Reported-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220901130959.1285717-3-kan.liang@linux.intel.com
|
|
For some Alder Lake N machine, the below unchecked MSR access error may be
triggered.
[ 0.088017] rcu: Hierarchical SRCU implementation.
[ 0.088017] unchecked MSR access error: WRMSR to 0x38f (tried to write
0x0001000f0000003f) at rIP: 0xffffffffb5684de8 (native_write_msr+0x8/0x30)
[ 0.088017] Call Trace:
[ 0.088017] <TASK>
[ 0.088017] __intel_pmu_enable_all.constprop.46+0x4a/0xa0
The Alder Lake N only has e-cores. The X86_FEATURE_HYBRID_CPU flag is
not set. The perf cannot retrieve the correct CPU type via
get_this_hybrid_cpu_type(). The model specific get_hybrid_cpu_type() is
hardcode to p-core. The wrong CPU type is given to the PMU of the
Alder Lake N.
Since Alder Lake N isn't in fact a hybrid CPU, remove ALDERLAKE_N from
the rest of {ALDER,RAPTOP}LAKE and create a non-hybrid PMU setup.
The differences between Gracemont and the previous Tremont are,
- Number of GP counters
- Load and store latency Events
- PEBS event_constraints
- Instruction Latency support
- Data source encoding
- Memory access latency encoding
Fixes: c2a960f7c574 ("perf/x86: Add new Alder Lake and Raptor Lake support")
Reported-by: Jianfeng Gao <jianfeng.gao@intel.com>
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220831142702.153110-1-kan.liang@linux.intel.com
|
|
According to the latest event list, the LOAD_LATENCY PEBS event only
works on the GP counter 0 and 1 for ADL and RPL.
Update the pebs event constraints table.
Fixes: f83d2f91d259 ("perf/x86/intel: Add Alder Lake Hybrid support")
Reported-by: Ammy Yi <ammy.yi@intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20220818184429.2355857-1-kan.liang@linux.intel.com
|
|
With the existing code in store_latency_data(), the memory operation (mem_op)
returned to the user is always OP_LOAD where in fact, it should be OP_STORE.
This comes from the fact that the function is simply grabbing the information
from a data source map which covers only load accesses. Intel 12th gen CPU
offers precise store sampling that captures both the data source and latency.
Therefore it can use the data source mapping table but must override the
memory operation to reflect stores instead of loads.
Fixes: 61b985e3e775 ("perf/x86/intel: Add perf core PMU support for Sapphire Rapids")
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220818054613.1548130-1-eranian@google.com
|
|
The SDM explicitly states that PEBS Baseline implies Extended PEBS.
For cpu model forward compatibility (e.g. on ICX, SPR, ADL), it's
safe to stop doing FMS table thing such as setting pebs_capable and
PMU_FL_PEBS_ALL since it's already set in the intel_ds_init().
The Goldmont Plus is the only platform which supports extended PEBS
but doesn't have Baseline. Keep the status quo.
Reported-by: Like Xu <likexu@tencent.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Link: https://lkml.kernel.org/r/20220816114057.51307-1-likexu@tencent.com
|
|
The PEBS data source encoding for the e-core is different from the
p-core.
Add the pebs_data_source[] in the struct x86_hybrid_pmu to store the
data source encoding for each type of the core.
Add intel_pmu_pebs_data_source_grt() for the e-core.
There is nothing changed for the data source encoding of the p-core,
which still reuse the intel_pmu_pebs_data_source_skl().
Fixes: f83d2f91d259 ("perf/x86/intel: Add Alder Lake Hybrid support")
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/20220629150840.2235741-2-kan.liang@linux.intel.com
|
|
The PEBS memory access latency encoding for the e-core is slightly
different from the p-core. The bit 4 is Lock, while the bit 5 is TLB
access.
Add a new flag to indicate the load/store latency event on a hybrid
platform.
Add a new function pointer to retrieve the latency data for a hybrid
platform. Only implement the new flag and function for the e-core on
ADL. Still use the existing PERF_X86_EVENT_PEBS_LDLAT/STLAT flag for the
p-core on ADL.
Factor out pebs_set_tlb_lock() to set the generic memory data source
information of the TLB access and lock for both load and store latency.
Move the intel_get_event_constraints() to ahead of the :ppp check,
otherwise the new flag never gets a chance to be set for the :ppp
events.
Fixes: f83d2f91d259 ("perf/x86/intel: Add Alder Lake Hybrid support")
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/20220629150840.2235741-1-kan.liang@linux.intel.com
|
|
The new PEBS Record Format 5 is similar to the PEBS Record Format 4. The
only difference is the layout of the Counter Reset fields of the PEBS
Config Buffer in the DS area. For the PEBS format 4, the Counter Reset
fields allocation is for 8 general-purpose counters followed by 4
fixed-function counters. For the PEBS format 5, the Counter Reset fields
allocation is for 32 general-purpose counters followed by 16
fixed-function counters.
Extend the MAX_PEBS_EVENTS to 32. Add MAX_PEBS_EVENTS_FMT4 for the
previous platform. Except for the DS auto-reload code, other places
already assume 32 counters. Only check the PEBS_FMT in the DS
auto-reload code.
Extend the MAX_FIXED_PEBS_EVENTS to 16, which only impacts the size of
struct debug_store and some local temporary variables. The size of
struct debug_store increases 288B, which is small and should be
acceptable.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1643750603-100733-1-git-send-email-kan.liang@linux.intel.com
|