Age | Commit message (Collapse) | Author | Files | Lines |
|
commit 63dee5df43a31f3844efabc58972f0a206ca4534 upstream.
We have powerpc specific logic in our page fault handling to decide if
an access to an unmapped address below the stack pointer should expand
the stack VMA.
The code was originally added in 2004 "ported from 2.4". The rough
logic is that the stack is allowed to grow to 1MB with no extra
checking. Over 1MB the access must be within 2048 bytes of the stack
pointer, or be from a user instruction that updates the stack pointer.
The 2048 byte allowance below the stack pointer is there to cover the
288 byte "red zone" as well as the "about 1.5kB" needed by the signal
delivery code.
Unfortunately since then the signal frame has expanded, and is now
4224 bytes on 64-bit kernels with transactional memory enabled. This
means if a process has consumed more than 1MB of stack, and its stack
pointer lies less than 4224 bytes from the next page boundary, signal
delivery will fault when trying to expand the stack and the process
will see a SEGV.
The total size of the signal frame is the size of struct rt_sigframe
(which includes the red zone) plus __SIGNAL_FRAMESIZE (128 bytes on
64-bit).
The 2048 byte allowance was correct until 2008 as the signal frame
was:
struct rt_sigframe {
struct ucontext uc; /* 0 1440 */
/* --- cacheline 11 boundary (1408 bytes) was 32 bytes ago --- */
long unsigned int _unused[2]; /* 1440 16 */
unsigned int tramp[6]; /* 1456 24 */
struct siginfo * pinfo; /* 1480 8 */
void * puc; /* 1488 8 */
struct siginfo info; /* 1496 128 */
/* --- cacheline 12 boundary (1536 bytes) was 88 bytes ago --- */
char abigap[288]; /* 1624 288 */
/* size: 1920, cachelines: 15, members: 7 */
/* padding: 8 */
};
1920 + 128 = 2048
Then in commit ce48b2100785 ("powerpc: Add VSX context save/restore,
ptrace and signal support") (Jul 2008) the signal frame expanded to
2304 bytes:
struct rt_sigframe {
struct ucontext uc; /* 0 1696 */ <--
/* --- cacheline 13 boundary (1664 bytes) was 32 bytes ago --- */
long unsigned int _unused[2]; /* 1696 16 */
unsigned int tramp[6]; /* 1712 24 */
struct siginfo * pinfo; /* 1736 8 */
void * puc; /* 1744 8 */
struct siginfo info; /* 1752 128 */
/* --- cacheline 14 boundary (1792 bytes) was 88 bytes ago --- */
char abigap[288]; /* 1880 288 */
/* size: 2176, cachelines: 17, members: 7 */
/* padding: 8 */
};
2176 + 128 = 2304
At this point we should have been exposed to the bug, though as far as
I know it was never reported. I no longer have a system old enough to
easily test on.
Then in 2010 commit 320b2b8de126 ("mm: keep a guard page below a
grow-down stack segment") caused our stack expansion code to never
trigger, as there was always a VMA found for a write up to PAGE_SIZE
below r1.
That meant the bug was hidden as we continued to expand the signal
frame in commit 2b0a576d15e0 ("powerpc: Add new transactional memory
state to the signal context") (Feb 2013):
struct rt_sigframe {
struct ucontext uc; /* 0 1696 */
/* --- cacheline 13 boundary (1664 bytes) was 32 bytes ago --- */
struct ucontext uc_transact; /* 1696 1696 */ <--
/* --- cacheline 26 boundary (3328 bytes) was 64 bytes ago --- */
long unsigned int _unused[2]; /* 3392 16 */
unsigned int tramp[6]; /* 3408 24 */
struct siginfo * pinfo; /* 3432 8 */
void * puc; /* 3440 8 */
struct siginfo info; /* 3448 128 */
/* --- cacheline 27 boundary (3456 bytes) was 120 bytes ago --- */
char abigap[288]; /* 3576 288 */
/* size: 3872, cachelines: 31, members: 8 */
/* padding: 8 */
/* last cacheline: 32 bytes */
};
3872 + 128 = 4000
And commit 573ebfa6601f ("powerpc: Increase stack redzone for 64-bit
userspace to 512 bytes") (Feb 2014):
struct rt_sigframe {
struct ucontext uc; /* 0 1696 */
/* --- cacheline 13 boundary (1664 bytes) was 32 bytes ago --- */
struct ucontext uc_transact; /* 1696 1696 */
/* --- cacheline 26 boundary (3328 bytes) was 64 bytes ago --- */
long unsigned int _unused[2]; /* 3392 16 */
unsigned int tramp[6]; /* 3408 24 */
struct siginfo * pinfo; /* 3432 8 */
void * puc; /* 3440 8 */
struct siginfo info; /* 3448 128 */
/* --- cacheline 27 boundary (3456 bytes) was 120 bytes ago --- */
char abigap[512]; /* 3576 512 */ <--
/* size: 4096, cachelines: 32, members: 8 */
/* padding: 8 */
};
4096 + 128 = 4224
Then finally in 2017, commit 1be7107fbe18 ("mm: larger stack guard
gap, between vmas") exposed us to the existing bug, because it changed
the stack VMA to be the correct/real size, meaning our stack expansion
code is now triggered.
Fix it by increasing the allowance to 4224 bytes.
Hard-coding 4224 is obviously unsafe against future expansions of the
signal frame in the same way as the existing code. We can't easily use
sizeof() because the signal frame structure is not in a header. We
will either fix that, or rip out all the custom stack expansion
checking logic entirely.
Fixes: ce48b2100785 ("powerpc: Add VSX context save/restore, ptrace and signal support")
Cc: stable@vger.kernel.org # v2.6.27+
Reported-by: Tom Lane <tgl@sss.pgh.pa.us>
Tested-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200724092528.1578671-2-mpe@ellerman.id.au
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit aa4113340ae6c2811e046f08c2bc21011d20a072 ]
In the current implementation, the call to loadcam_multi() is wrapped
between switch_to_as1() and restore_to_as0() calls so, when it tries
to create its own temporary AS=1 TLB1 entry, it ends up duplicating
the existing one created by switch_to_as1(). Add a check to skip
creating the temporary entry if already running in AS=1.
Fixes: d9e1831a4202 ("powerpc/85xx: Load all early TLB entries at once")
Cc: stable@vger.kernel.org # v4.4+
Signed-off-by: Laurentiu Tudor <laurentiu.tudor@nxp.com>
Acked-by: Scott Wood <oss@buserror.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200123111914.2565-1-laurentiu.tudor@nxp.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 8fabc623238e68b3ac63c0dd1657bf86c1fa33af ]
Some powerpc platforms (e.g. 85xx) limit DMA-able memory way below 4G.
If a system has more physical memory than this limit, the swiotlb
buffer is not addressable because it is allocated from memblock using
top-down mode.
Force memblock to bottom-up mode before calling swiotlb_init() to
ensure that the swiotlb buffer is DMA-able.
Reported-by: Christian Zigotzky <chzigotzky@xenosoft.de>
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20191204123524.22919-1-rppt@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 49a502ea23bf9dec47f8f3c3960909ff409cd1bb ]
As several other arches including x86, this patch makes it explicit
that a bad page fault is a NULL pointer dereference when the fault
address is lower than PAGE_SIZE
In the mean time, this page makes all bad_page_fault() messages
shorter so that they remain on one single line. And it prefixes them
by "BUG: " so that they get easily grepped.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
[mpe: Avoid pr_cont()]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit e93ba1b7eb5b188c749052df7af1c90821c5f320 ]
This patch fixes the loop in p_block_mapped() and v_block_mapped()
to scan the entire bat_addrs[] array.
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 09b4438db13fa83b6219aee5993711a2aa2a0c64 ]
This causes SLB alloation to start 1 beyond the start of the SLB.
There is no real problem because after it wraps it stats behaving
properly, it's just surprisig to see when looking at SLB traces.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 2d4d9b308f8f8dec68f6dbbff18c68ec7c6bd26f ]
When booted with "topology_updates=no", or when "off" is written to
/proc/powerpc/topology_updates, NUMA reassignments are inhibited for
PRRN and VPHN events. However, migration and suspend unconditionally
re-enable reassignments via start_topology_update(). This is
incoherent.
Check the topology_updates_enabled flag in
start/stop_topology_update() so that callers of those APIs need not be
aware of whether reassignments are enabled. This allows the
administrative decision on reassignments to remain in force across
migrations and suspensions.
Signed-off-by: Nathan Lynch <nathanl@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 10c5e83afd4a3f01712d97d3bb1ae34d5b74a185 upstream.
In order to protect against speculation attacks on
indirect branches, the branch predictor is flushed at
kernel entry to protect for the following situations:
- userspace process attacking another userspace process
- userspace process attacking the kernel
Basically when the privillege level change (i.e. the
kernel is entered), the branch predictor state is flushed.
Signed-off-by: Diana Craciun <diana.craciun@nxp.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 51c3c62b58b357e8d35e4cc32f7b4ec907426fe3 upstream.
This stops us from doing code patching in init sections after they've
been freed.
In this chain:
kvm_guest_init() ->
kvm_use_magic_page() ->
fault_in_pages_readable() ->
__get_user() ->
__get_user_nocheck() ->
barrier_nospec();
We have a code patching location at barrier_nospec() and
kvm_guest_init() is an init function. This whole chain gets inlined,
so when we free the init section (hence kvm_guest_init()), this code
goes away and hence should no longer be patched.
We seen this as userspace memory corruption when using a memory
checker while doing partition migration testing on powervm (this
starts the code patching post migration via
/sys/kernel/mobility/migration). In theory, it could also happen when
using /sys/kernel/debug/powerpc/barrier_nospec.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Christophe Leroy <christophe.leroy@c-s.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 437ccdc8ce629470babdda1a7086e2f477048cbd ]
When VPHN function is not supported and during cpu hotplug event,
kernel prints message 'VPHN function not supported. Disabling
polling...'. Currently it prints on every hotplug event, it floods
dmesg when a KVM guest tries to hotplug huge number of vcpus, let's
just print once and suppress further kernel prints.
Signed-off-by: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit f5e284803a7206d43e26f9ffcae5de9626d95e37 ]
When enumerating page size definitions to check hardware support,
we construct a constant which is (1U << (def->shift - 10)).
However, the array of page size definitions is only initalised for
various MMU_PAGE_* constants, so it contains a number of 0-initialised
elements with def->shift == 0. This means we end up shifting by a
very large number, which gives the following UBSan splat:
================================================================================
UBSAN: Undefined behaviour in /home/dja/dev/linux/linux/arch/powerpc/mm/tlb_nohash.c:506:21
shift exponent 4294967286 is too large for 32-bit type 'unsigned int'
CPU: 0 PID: 0 Comm: swapper Not tainted 4.19.0-rc3-00045-ga604f927b012-dirty #6
Call Trace:
[c00000000101bc20] [c000000000a13d54] .dump_stack+0xa8/0xec (unreliable)
[c00000000101bcb0] [c0000000004f20a8] .ubsan_epilogue+0x18/0x64
[c00000000101bd30] [c0000000004f2b10] .__ubsan_handle_shift_out_of_bounds+0x110/0x1a4
[c00000000101be20] [c000000000d21760] .early_init_mmu+0x1b4/0x5a0
[c00000000101bf10] [c000000000d1ba28] .early_setup+0x100/0x130
[c00000000101bf90] [c000000000000528] start_here_multiplatform+0x68/0x80
================================================================================
Fix this by first checking if the element exists (shift != 0) before
constructing the constant.
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 926bc2f100c24d4842b3064b5af44ae964c1d81c ]
The stores to update the SLB shadow area must be made as they appear
in the C code, so that the hypervisor does not see an entry with
mismatched vsid and esid. Use WRITE_ONCE for this.
GCC has been observed to elide the first store to esid in the update,
which means that if the hypervisor interrupts the guest after storing
to vsid, it could see an entry with old esid and new vsid, which may
possibly result in memory corruption.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit ea05ba7c559c8e5a5946c3a94a2a266e9a6680a6 ]
This patch fixes some problems encountered at runtime with
configurations that support memory-less nodes, or that hot-add CPUs
into nodes that are memoryless during system execution after boot. The
problems of interest include:
* Nodes known to powerpc to be memoryless at boot, but to have CPUs in
them are allowed to be 'possible' and 'online'. Memory allocations
for those nodes are taken from another node that does have memory
until and if memory is hot-added to the node.
* Nodes which have no resources assigned at boot, but which may still
be referenced subsequently by affinity or associativity attributes,
are kept in the list of 'possible' nodes for powerpc. Hot-add of
memory or CPUs to the system can reference these nodes and bring
them online instead of redirecting the references to one of the set
of nodes known to have memory at boot.
Note that this software operates under the context of CPU hotplug. We
are not doing memory hotplug in this code, but rather updating the
kernel's CPU topology (i.e. arch_update_cpu_topology /
numa_update_cpu_topology). We are initializing a node that may be used
by CPUs or memory before it can be referenced as invalid by a CPU
hotplug operation. CPU hotplug operations are protected by a range of
APIs including cpu_maps_update_begin/cpu_maps_update_done,
cpus_read/write_lock / cpus_read/write_unlock, device locks, and more.
Memory hotplug operations, including try_online_node, are protected by
mem_hotplug_begin/mem_hotplug_done, device locks, and more. In the
case of CPUs being hot-added to a previously memoryless node, the
try_online_node operation occurs wholly within the CPU locks with no
overlap. Using HMC hot-add/hot-remove operations, we have been able to
add and remove CPUs to any possible node without failures. HMC
operations involve a degree self-serialization, though.
Signed-off-by: Michael Bringmann <mwb@linux.vnet.ibm.com>
Reviewed-by: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit a346137e9142b039fd13af2e59696e3d40c487ef ]
On powerpc systems which allow 'hot-add' of CPU or memory resources,
it may occur that the new resources are to be inserted into nodes that
were not used for these resources at bootup. In the kernel, any node
that is used must be defined and initialized. These empty nodes may
occur when,
* Dedicated vs. shared resources. Shared resources require information
such as the VPHN hcall for CPU assignment to nodes. Associativity
decisions made based on dedicated resource rules, such as
associativity properties in the device tree, may vary from decisions
made using the values returned by the VPHN hcall.
* memoryless nodes at boot. Nodes need to be defined as 'possible' at
boot for operation with other code modules. Previously, the powerpc
code would limit the set of possible nodes to those which have
memory assigned at boot, and were thus online. Subsequent add/remove
of CPUs or memory would only work with this subset of possible
nodes.
* memoryless nodes with CPUs at boot. Due to the previous restriction
on nodes, nodes that had CPUs but no memory were being collapsed
into other nodes that did have memory at boot. In practice this
meant that the node assignment presented by the runtime kernel
differed from the affinity and associativity attributes presented by
the device tree or VPHN hcalls. Nodes that might be known to the
pHyp were not 'possible' in the runtime kernel because they did not
have memory at boot.
This patch ensures that sufficient nodes are defined to support
configuration requirements after boot, as well as at boot. This patch
set fixes a couple of problems.
* Nodes known to powerpc to be memoryless at boot, but to have CPUs in
them are allowed to be 'possible' and 'online'. Memory allocations
for those nodes are taken from another node that does have memory
until and if memory is hot-added to the node. * Nodes which have no
resources assigned at boot, but which may still be referenced
subsequently by affinity or associativity attributes, are kept in
the list of 'possible' nodes for powerpc. Hot-add of memory or CPUs
to the system can reference these nodes and bring them online
instead of redirecting to one of the set of nodes that were known to
have memory at boot.
This patch extracts the value of the lowest domain level (number of
allocable resources) from the device tree property
"ibm,max-associativity-domains" to use as the maximum number of nodes
to setup as possibly available in the system. This new setting will
override the instruction:
nodes_and(node_possible_map, node_possible_map, node_online_map);
presently seen in the function arch/powerpc/mm/numa.c:initmem_init().
If the "ibm,max-associativity-domains" property is not present at
boot, no operation will be performed to define or enable additional
nodes, or enable the above 'nodes_and()'.
Signed-off-by: Michael Bringmann <mwb@linux.vnet.ibm.com>
Reviewed-by: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit a7a9dcd882a67b68568868b988289fce5ffd8419 ]
Early on in do_page_fault() we call store_updates_sp(), regardless of
the type of exception. For an instruction miss this doesn't make
sense, because we only use this information to detect if a data miss
is the result of a stack expansion instruction or not.
Worse still, it results in a data miss within every userspace
instruction miss handler, because we try and load the very instruction
we are about to install a pte for!
A simple exec microbenchmark runs 6% faster on POWER8 with this fix:
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
int main(int argc, char *argv[])
{
unsigned long left = atol(argv[1]);
char leftstr[16];
if (left-- == 0)
return 0;
sprintf(leftstr, "%ld", left);
execlp(argv[0], argv[0], leftstr, NULL);
perror("exec failed\n");
return 0;
}
Pass the number of iterations on the command line (eg 10000) and time
how long it takes to execute.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[Note this patch is not upstream. The bug fix was fixed differently in
upstream prior to the bug being identified.]
The SLB miss handler calls slb_allocate_realmode() in order to create an
SLB entry for the faulting address. At the very start of that function
we check that the faulting Effective Address (EA) is less than
PGTABLE_RANGE (ignoring the region), ie. is it an address which could
possibly fit in the virtual address space.
For an EA which fails that test, we branch out of line (to label 8), but
we still go on to create an SLB entry for the address. The SLB entry we
create has a VSID of 0, which means it will never match anything in the
hash table and so can't actually translate to a physical address.
However that SLB entry will be inserted in the SLB, and so needs to be
managed properly like any other SLB entry. In particular we need to
insert the SLB entry in the SLB cache, so that it will be flushed when
the process is descheduled.
And that is where the bugs begin. The first bug is that slb_finish_load()
uses cr7 to decide if it should insert the SLB entry into the SLB cache.
When we come from the invalid EA case we don't set cr7, it just has some
junk value from userspace. So we may or may not insert the SLB entry in
the SLB cache. If we fail to insert it, we may then incorrectly leave it
in the SLB when the process is descheduled.
The second bug is that even if we do happen to add the entry to the SLB
cache, we do not have enough bits in the SLB cache to remember the full
ESID value for very large EAs.
For example if a process branches to 0x788c545a18000000, that results in
a 256MB SLB entry with an ESID of 0x788c545a1. But each entry in the SLB
cache is only 32-bits, meaning we truncate the ESID to 0x88c545a1. This
has the same effect as the first bug, we incorrectly leave the SLB entry
in the SLB when the process is descheduled.
When a process accesses an invalid EA it results in a SEGV signal being
sent to the process, which typically results in the process being
killed. Process death isn't instantaneous however, the process may catch
the SEGV signal and continue somehow, or the kernel may start writing a
core dump for the process, either of which means it's possible for the
process to be preempted while its processing the SEGV but before it's
been killed.
If that happens, when the process is scheduled back onto the CPU we will
allocate a new SLB entry for the NIP, which will insert a second entry
into the SLB for the bad EA. Because we never flushed the original
entry, due to either bug one or two, we now have two SLB entries that
match the same EA.
If another access is made to that EA, either by the process continuing
after catching the SEGV, or by a second process accessing the same bad
EA on the same CPU, we will trigger an SLB multi-hit machine check
exception. This has been observed happening in the wild.
The fix is when we hit the invalid EA case, we mark the SLB cache as
being full. This causes us to not insert the truncated ESID into the SLB
cache, and means when the process is switched out we will flush the
entire SLB. Note that this works both for the original fault and for a
subsequent call to slb_allocate_realmode() from switch_slb().
Because we mark the SLB cache as full, it doesn't really matter what
value is in cr7, but rather than leaving it as something random we set
it to indicate the address was a kernel address. That also skips the
attempt to insert it in the SLB cache which is a nice side effect.
Another way to fix the bug would be to make the entries in the SLB cache
wider, so that we don't truncate the ESID. However this would be a more
intrusive change as it alters the size and layout of the paca.
This bug was fixed in upstream by commit f0f558b131db ("powerpc/mm:
Preserve CFAR value on SLB miss caused by access to bogus address"),
which changed the way we handle a bad EA entirely removing this bug in
the process.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1be7107fbe18eed3e319a6c3e83c78254b693acb upstream.
Stack guard page is a useful feature to reduce a risk of stack smashing
into a different mapping. We have been using a single page gap which
is sufficient to prevent having stack adjacent to a different mapping.
But this seems to be insufficient in the light of the stack usage in
userspace. E.g. glibc uses as large as 64kB alloca() in many commonly
used functions. Others use constructs liks gid_t buffer[NGROUPS_MAX]
which is 256kB or stack strings with MAX_ARG_STRLEN.
This will become especially dangerous for suid binaries and the default
no limit for the stack size limit because those applications can be
tricked to consume a large portion of the stack and a single glibc call
could jump over the guard page. These attacks are not theoretical,
unfortunatelly.
Make those attacks less probable by increasing the stack guard gap
to 1MB (on systems with 4k pages; but make it depend on the page size
because systems with larger base pages might cap stack allocations in
the PAGE_SIZE units) which should cover larger alloca() and VLA stack
allocations. It is obviously not a full fix because the problem is
somehow inherent, but it should reduce attack space a lot.
One could argue that the gap size should be configurable from userspace,
but that can be done later when somebody finds that the new 1MB is wrong
for some special case applications. For now, add a kernel command line
option (stack_guard_gap) to specify the stack gap size (in page units).
Implementation wise, first delete all the old code for stack guard page:
because although we could get away with accounting one extra page in a
stack vma, accounting a larger gap can break userspace - case in point,
a program run with "ulimit -S -v 20000" failed when the 1MB gap was
counted for RLIMIT_AS; similar problems could come with RLIMIT_MLOCK
and strict non-overcommit mode.
Instead of keeping gap inside the stack vma, maintain the stack guard
gap as a gap between vmas: using vm_start_gap() in place of vm_start
(or vm_end_gap() in place of vm_end if VM_GROWSUP) in just those few
places which need to respect the gap - mainly arch_get_unmapped_area(),
and and the vma tree's subtree_gap support for that.
Original-patch-by: Oleg Nesterov <oleg@redhat.com>
Original-patch-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[wt: backport to 4.11: adjust context]
[wt: backport to 4.9: adjust context ; kernel doc was not in admin-guide]
[wt: backport to 4.4: adjust context ; drop ppc hugetlb_radix changes]
Signed-off-by: Willy Tarreau <w@1wt.eu>
[gkh: minor build fixes for 4.4]
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 88b1bf7268f56887ca88eb09c6fb0f4fc970121a upstream.
Commit 4c6d9acce1f4 ("powerpc/mm: Add hooks for cxl") converted local
TLB invalidates to global if the cxl driver is active. This is necessary
because the CAPP snoops invalidations to forward them to the PSL on the
cxl adapter. However one path was forgotten. native_flush_hash_range()
still does local TLB invalidates, as found out the hard way recently.
This patch fixes it by following the same logic as previously: if the
cxl driver is active, the local TLB invalidates are 'upgraded' to
global.
Fixes: 4c6d9acce1f4 ("powerpc/mm: Add hooks for cxl")
Signed-off-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d2cf909cda5f8c5609cb7ed6cda816c3e15528c7 upstream.
If a cxl adapter faults on an invalid address for a kernel context, we
may enter copro_calculate_slb() with a NULL mm pointer (kernel
context) and an effective address which looks like a user
address. Which will cause a crash when dereferencing mm. It is clearly
an AFU bug, but there's no reason to crash either. So return an error,
so that cxl can ack the interrupt with an address error.
Fixes: 73d16a6e0e51 ("powerpc/cell: Move data segment faulting code out of cell platform")
Signed-off-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f077aaf0754bcba0fffdbd925bc12f09cd1e38aa upstream.
In commit c60ac5693c47 ("powerpc: Update kernel VSID range", 2013-03-13)
we lost a check on the region number (the top four bits of the effective
address) for addresses below PAGE_OFFSET. That commit replaced a check
that the top 18 bits were all zero with a check that bits 46 - 59 were
zero (performed for all addresses, not just user addresses).
This means that userspace can access an address like 0x1000_0xxx_xxxx_xxxx
and we will insert a valid SLB entry for it. The VSID used will be the
same as if the top 4 bits were 0, but the page size will be some random
value obtained by indexing beyond the end of the mm_ctx_high_slices_psize
array in the paca. If that page size is the same as would be used for
region 0, then userspace just has an alias of the region 0 space. If the
page size is different, then no HPTE will be found for the access, and
the process will get a SIGSEGV (since hash_page_mm() will refuse to create
a HPTE for the bogus address).
The access beyond the end of the mm_ctx_high_slices_psize can be at most
5.5MB past the array, and so will be in RAM somewhere. Since the access
is a load performed in real mode, it won't fault or crash the kernel.
At most this bug could perhaps leak a little bit of information about
blocks of 32 bytes of memory located at offsets of i * 512kB past the
paca->mm_ctx_high_slices_psize array, for 1 <= i <= 11.
Fixes: c60ac5693c47 ("powerpc: Update kernel VSID range")
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 08a5bb2921e490939f78f38fd0d02858bb709942 upstream.
hugepd_free() used __get_cpu_var() once. Nothing ensured that the code
accessing the variable did not migrate from one CPU to another and soon
this was noticed by Tiejun Chen in 94b09d755462 ("powerpc/hugetlb:
Replace __get_cpu_var with get_cpu_var"). So we had it fixed.
Christoph Lameter was doing his __get_cpu_var() replaces and forgot
PowerPC. Then he noticed this and sent his fixed up batch again which
got applied as 69111bac42f5 ("powerpc: Replace __get_cpu_var uses").
The careful reader will noticed one little detail: get_cpu_var() got
replaced with this_cpu_ptr(). So now we have a put_cpu_var() which does
a preempt_enable() and nothing that does preempt_disable() so we
underflow the preempt counter.
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
- Kconfig: remove BE-only platforms from LE kernel build from Boqun
Feng
- Refresh ps3_defconfig from Geoff Levand
- Emit GNU & SysV hashes for the vdso from Michael Ellerman
- Define an enum for the bolted SLB indexes from Anshuman Khandual
- Use a local to avoid multiple calls to get_slb_shadow() from Michael
Ellerman
- Add gettimeofday() benchmark from Michael Neuling
- Avoid link stack corruption in __get_datapage() from Michael Neuling
- Add virt_to_pfn and use this instead of opencoding from Aneesh Kumar
K.V
- Add ppc64le_defconfig from Michael Ellerman
- pseries: extract of_helpers module from Andy Shevchenko
- Correct string length in pseries_of_derive_parent() from Nathan
Fontenot
- Free the MSI bitmap if it was slab allocated from Denis Kirjanov
- Shorten irq_chip name for the SIU from Christophe Leroy
- Wait 1s for secondaries to enter OPAL during kexec from Samuel
Mendoza-Jonas
- Fix _ALIGN_* errors due to type difference, from Aneesh Kumar K.V
- powerpc/pseries/hvcserver: don't memset pi_buff if it is null from
Colin Ian King
- Disable hugepd for 64K page size, from Aneesh Kumar K.V
- Differentiate between hugetlb and THP during page walk from Aneesh
Kumar K.V
- Make PCI non-optional for pseries from Michael Ellerman
- Individual System V IPC system calls from Sam bobroff
- Add selftest of unmuxed IPC calls from Michael Ellerman
- discard .exit.data at runtime from Stephen Rothwell
- Delete old orphaned PrPMC 280/2800 DTS and boot file, from Paul
Gortmaker
- Use of_get_next_parent to simplify code from Christophe Jaillet
- Paginate some xmon output from Sam bobroff
- Add some more elements to the xmon PACA dump from Michael Ellerman
- Allow the tm-syscall selftest to build with old headers from Michael
Ellerman
- Run EBB selftests only on POWER8 from Denis Kirjanov
- Drop CONFIG_TUNE_CELL in favour of CONFIG_CELL_CPU from Michael
Ellerman
- Avoid reference to potentially freed memory in prom.c from Christophe
Jaillet
- Quieten boot wrapper output with run_cmd from Geoff Levand
- EEH fixes and cleanups from Gavin Shan
- Fix recursive fenced PHB on Broadcom shiner adapter from Gavin Shan
- Use of_get_next_parent() in of_get_ibm_chip_id() from Michael
Ellerman
- Fix section mismatch warning in msi_bitmap_alloc() from Denis
Kirjanov
- Fix ps3-lpm white space from Rudhresh Kumar J
- Fix ps3-vuart null dereference from Colin King
- nvram: Add missing kfree in error path from Christophe Jaillet
- nvram: Fix function name in some errors messages, from Christophe
Jaillet
- drivers/macintosh: adb: fix misleading Kconfig help text from Aaro
Koskinen
- agp/uninorth: fix a memleak in create_gatt_table from Denis Kirjanov
- cxl: Free virtual PHB when removing from Andrew Donnellan
- scripts/kconfig/Makefile: Allow KBUILD_DEFCONFIG to be a target from
Michael Ellerman
- scripts/kconfig/Makefile: Fix KBUILD_DEFCONFIG check when building
with O= from Michael Ellerman
- Freescale updates from Scott: Highlights include 64-bit book3e
kexec/kdump support, a rework of the qoriq clock driver, device tree
changes including qoriq fman nodes, support for a new 85xx board, and
some fixes.
- MPC5xxx updates from Anatolij: Highlights include a driver for
MPC512x LocalPlus Bus FIFO with its device tree binding
documentation, mpc512x device tree updates and some minor fixes.
* tag 'powerpc-4.4-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (106 commits)
powerpc/msi: Fix section mismatch warning in msi_bitmap_alloc()
powerpc/prom: Use of_get_next_parent() in of_get_ibm_chip_id()
powerpc/pseries: Correct string length in pseries_of_derive_parent()
powerpc/e6500: hw tablewalk: make sure we invalidate and write to the same tlb entry
powerpc/mpc85xx: Add FSL QorIQ DPAA FMan support to the SoC device tree(s)
powerpc/mpc85xx: Create dts components for the FSL QorIQ DPAA FMan
powerpc/fsl: Add #clock-cells and clockgen label to clockgen nodes
powerpc: handle error case in cpm_muram_alloc()
powerpc: mpic: use IRQCHIP_SKIP_SET_WAKE instead of redundant mpic_irq_set_wake
powerpc/book3e-64: Enable kexec
powerpc/book3e-64/kexec: Set "r4 = 0" when entering spinloop
powerpc/booke: Only use VIRT_PHYS_OFFSET on booke32
powerpc/book3e-64/kexec: Enable SMP release
powerpc/book3e-64/kexec: create an identity TLB mapping
powerpc/book3e-64: Don't limit paca to 256 MiB
powerpc/book3e/kdump: Enable crash_kexec_wait_realmode
powerpc/book3e: support CONFIG_RELOCATABLE
powerpc/booke64: Fix args to copy_and_flush
powerpc/book3e-64: rename interrupt_end_book3e with __end_interrupts
powerpc/e6500: kexec: Handle hardware threads
...
|
|
With the setup_nr_nodes(), we have already initialized
node_possible_map. So it is safe to use for_each_node here.
There are many places in the kernel that use hardcoded 'for' loop with
nr_node_ids, because all other architectures have numa nodes populated
serially. That should be reason we had maintained the same for
powerpc.
But, since sparse numa node ids possible on powerpc, we unnecessarily
allocate memory for non existent numa nodes.
For e.g., on a system with 0,1,16,17 as numa nodes nr_node_ids=18 and
we allocate memory for nodes 2-14. This patch we allocate memory for
only existing numa nodes.
The patch is boot tested on a 4 node tuleta, confirming with printks
that it works as expected.
Signed-off-by: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Anton Blanchard <anton@samba.org>
Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Cc: Greg Kurz <gkurz@linux.vnet.ibm.com>
Cc: Grant Likely <grant.likely@linaro.org>
Cc: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
tlb entry
In order to workaround Erratum A-008139, we have to invalidate the
tlb entry with tlbilx before overwriting. Due to the performance
consideration, we don't add any memory barrier when acquire/release
the tcd lock. This means the two load instructions for esel_next do
have the possibility to return different value. This is definitely
not acceptable due to the Erratum A-008139. We have two options to
fix this issue:
a) Add memory barrier when acquire/release tcd lock to order the
load/store to esel_next.
b) Just make sure to invalidate and write to the same tlb entry and
tolerate the race that we may get the wrong value and overwrite
the tlb entry just updated by the other thread.
We observe better performance using option b. So reserve an additional
register to save the value of the esel_next.
Signed-off-by: Kevin Hao <haokexin@gmail.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
|
|
This is required for kdump to work when loaded at at an address that
does not fall within the first TLB entry -- which can easily happen
because while the lower limit is enforced via reserved memory, which
doesn't affect how much is mapped, the upper limit is enforced via a
different mechanism that does. Thus, more TLB entries are needed than
would normally be used, as the total memory to be mapped might not be a
power of two.
Signed-off-by: Scott Wood <scottwood@freescale.com>
|
|
Use an AS=1 trampoline TLB entry to allow all normal TLB1 entries to
be loaded at once. This avoids the need to keep the translation that
code is executing from in the same TLB entry in the final TLB
configuration as during early boot, which in turn is helpful for
relocatable kernels (e.g. kdump) where the kernel is not running from
what would be the first TLB entry.
On e6500, we limit map_mem_in_cams() to the primary hwthread of a
core (the boot cpu is always considered primary, as a kdump kernel
can be entered on any cpu). Each TLB only needs to be set up once,
and when we do, we don't want another thread to be running when we
create a temporary trampoline TLB1 entry.
Signed-off-by: Scott Wood <scottwood@freescale.com>
|
|
of_get_next_parent can be used to simplify the while() loop and
avoid the need of a temp variable.
Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
We need to properly identify whether a hugepage is an explicit or
a transparent hugepage in follow_huge_addr(). We used to depend
on hugepage shift argument to do that. But in some case that can
result in wrong results. For ex:
On finding a transparent hugepage we set hugepage shift to PMD_SHIFT.
But we can end up clearing the thp pte, via pmdp_huge_get_and_clear.
We do prevent reusing the pfn page via the usage of
kick_all_cpus_sync(). But that happens after we updated the pte to 0.
Hence in follow_huge_addr() we can find hugepage shift set, but transparent
huge page check fail for a thp pte.
NOTE: We fixed a variant of this race against thp split in commit
691e95fd7396905a38d98919e9c150dbc3ea21a3
("powerpc/mm/thp: Make page table walk safe against thp split/collapse")
Without this patch, we may hit the BUG_ON(flags & FOLL_GET) in
follow_page_mask occasionally.
In the long term, we may want to switch ppc64 64k page size config to
enable CONFIG_ARCH_WANT_GENERAL_HUGETLB
Reported-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
After commit e2b3d202d1dba8f3546ed28224ce485bc50010be
("powerpc: Switch 16GB and 16MB explicit hugepages to a
different page table format"), we don't need to support
is_hugepd() for 64K page size.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
native_hpte_clear() is called in real mode from two places:
- Early in boot during htab initialisation if firmware assisted dump is
active.
- Late in the kexec path.
In both contexts there is no need to disable interrupts are they are
already disabled. Furthermore, locking around the tlbie() is only required
for pre POWER5 hardware.
On POWER5 or newer hardware concurrent tlbie()s work as expected and on pre
POWER5 hardware concurrent tlbie()s could result in deadlock. This code
would only be executed at crashdump time, during which all bets are off,
concurrent tlbie()s are unlikely and taking locks is unsafe therefore the
best course of action is to simply do nothing. Concurrent tlbie()s are not
possible in the first case as secondary CPUs have not come up yet.
Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
For no reason other than it looks ugly.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This patch defines macros for the three bolted SLB indexes we use.
Switch the functions that take the indexes as an argument to use the
enum.
Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc fixes from Michael Ellerman:
- Fix 32-bit TCE table init in kdump kernel from Nish
- Fix kdump with non-power-of-2 crashkernel= from Nish
- Abort cxl_pci_enable_device_hook() if PCI channel is offline from
Andrew
- Fix to release DRC when configure_connector() fails from Bharata
- Wire up sys_userfaultfd()
- Fix race condition in tearing down MSI interrupts from Paul
- Fix unbalanced pci_dev_get() in cxl_probe() from Daniel
- Fix cxl build failure due to -Wunused-variable gcc behaviour change
from Ian
- Tell the toolchain to use ABI v2 when building an LE boot wrapper
from Benh
- Fix THP to recompute hash value after a failed update from Aneesh
- 32-bit memcpy/memset: only use dcbz once cache is enabled from
Christophe
* tag 'powerpc-4.3-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
powerpc32: memset: only use dcbz once cache is enabled
powerpc32: memcpy: only use dcbz once cache is enabled
powerpc/mm: Recompute hash value after a failed update
powerpc/boot: Specify ABI v2 when building an LE boot wrapper
cxl: Fix build failure due to -Wunused-variable behaviour change
cxl: Fix unbalanced pci_dev_get in cxl_probe
powerpc/MSI: Fix race condition in tearing down MSI interrupts
powerpc: Wire up sys_userfaultfd()
powerpc/pseries: Release DRC when configure_connector fails
cxl: abort cxl_pci_enable_device_hook() if PCI channel is offline
powerpc/powernv/pci-ioda: fix kdump with non-power-of-2 crashkernel=
powerpc/powernv/pci-ioda: fix 32-bit TCE table init in kdump kernel
|
|
If we had secondary hash flag set, we ended up modifying hash value in
the updatepp code path. Hence with a failed updatepp we will be using
a wrong hash value for the following hash insert. Fix this by
recomputing hash before insert.
Without this patch we can end up with using wrong slot number in linux
pte. That can result in us missing an hash pte update or invalidate
which can cause memory corruption or even machine check.
Fixes: 6d492ecc6489 ("powerpc/THP: Add code to handle HPTE faults for hugepages")
Cc: stable@vger.kernel.org # v3.11+
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm updates from Dan Williams:
"This update has successfully completed a 0day-kbuild run and has
appeared in a linux-next release. The changes outside of the typical
drivers/nvdimm/ and drivers/acpi/nfit.[ch] paths are related to the
removal of IORESOURCE_CACHEABLE, the introduction of memremap(), and
the introduction of ZONE_DEVICE + devm_memremap_pages().
Summary:
- Introduce ZONE_DEVICE and devm_memremap_pages() as a generic
mechanism for adding device-driver-discovered memory regions to the
kernel's direct map.
This facility is used by the pmem driver to enable pfn_to_page()
operations on the page frames returned by DAX ('direct_access' in
'struct block_device_operations').
For now, the 'memmap' allocation for these "device" pages comes
from "System RAM". Support for allocating the memmap from device
memory will arrive in a later kernel.
- Introduce memremap() to replace usages of ioremap_cache() and
ioremap_wt(). memremap() drops the __iomem annotation for these
mappings to memory that do not have i/o side effects. The
replacement of ioremap_cache() with memremap() is limited to the
pmem driver to ease merging the api change in v4.3.
Completion of the conversion is targeted for v4.4.
- Similar to the usage of memcpy_to_pmem() + wmb_pmem() in the pmem
driver, update the VFS DAX implementation and PMEM api to provide
persistence guarantees for kernel operations on a DAX mapping.
- Convert the ACPI NFIT 'BLK' driver to map the block apertures as
cacheable to improve performance.
- Miscellaneous updates and fixes to libnvdimm including support for
issuing "address range scrub" commands, clarifying the optimal
'sector size' of pmem devices, a clarification of the usage of the
ACPI '_STA' (status) property for DIMM devices, and other minor
fixes"
* tag 'libnvdimm-for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (34 commits)
libnvdimm, pmem: direct map legacy pmem by default
libnvdimm, pmem: 'struct page' for pmem
libnvdimm, pfn: 'struct page' provider infrastructure
x86, pmem: clarify that ARCH_HAS_PMEM_API implies PMEM mapped WB
add devm_memremap_pages
mm: ZONE_DEVICE for "device memory"
mm: move __phys_to_pfn and __pfn_to_phys to asm/generic/memory_model.h
dax: drop size parameter to ->direct_access()
nd_blk: change aperture mapping from WC to WB
nvdimm: change to use generic kvfree()
pmem, dax: have direct_access use __pmem annotation
dax: update I/O path to do proper PMEM flushing
pmem: add copy_from_iter_pmem() and clear_pmem()
pmem, x86: clean up conditional pmem includes
pmem: remove layer when calling arch_has_wmb_pmem()
pmem, x86: move x86 PMEM API to new pmem.h header
libnvdimm, e820: make CONFIG_X86_PMEM_LEGACY a tristate option
pmem: switch to devm_ allocations
devres: add devm_memremap
libnvdimm, btt: write and validate parent_uuid
...
|
|
While pmem is usable as a block device or via DAX mappings to userspace
there are several usage scenarios that can not target pmem due to its
lack of struct page coverage. In preparation for "hot plugging" pmem
into the vmemmap add ZONE_DEVICE as a new zone to tag these pages
separately from the ones that are subject to standard page allocations.
Importantly "device memory" can be removed at will by userspace
unbinding the driver of the device.
Having a separate zone prevents allocation and otherwise marks these
pages that are distinct from typical uniform memory. Device memory has
different lifetime and performance characteristics than RAM. However,
since we have run out of ZONES_SHIFT bits this functionality currently
depends on sacrificing ZONE_DMA.
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Jerome Glisse <j.glisse@gmail.com>
[hch: various simplifications in the arch interface]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/scottwood/linux into next
Freescale updates from Scott:
"Highlights include 32-bit memcpy/memset optimizations, checksum
optimizations, 85xx config fragments and updates, device tree updates,
e6500 fixes for non-SMP, and misc cleanup and minor fixes."
|
|
In some situations, a NUMA guest that supports
ibm,dynamic-memory-reconfiguration node will end up having flat NUMA
distances between nodes. This is because of two problems in the
current code.
1) Different representations of associativity lists.
There is an assumption about the associativity list in
initialize_distance_lookup_table(). Associativity list has two forms:
a) [cpu,memory]@x/ibm,associativity has following
format:
<N> <N integers>
b) ibm,dynamic-reconfiguration-memory/ibm,associativity-lookup-arrays
<M> <N> <M associativity lists each having N integers>
M = the number of associativity lists
N = the number of entries per associativity list
Fix initialize_distance_lookup_table() so that it does not assume
"case a". And update the caller to skip the length field before
sending the associativity list.
2) Distance table not getting updated from drconf path.
Node distance table will not get initialized in certain cases as
ibm,dynamic-reconfiguration-memory path does not initialize the
lookup table.
Call initialize_distance_lookup_table() from drconf path with
appropriate associativity list.
Reported-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Signed-off-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Acked-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
The relation between CONFIG_PPC_HAS_HASH_64K and CONFIG_PPC_64K_PAGES is
painfully complicated.
But if we rearrange it enough we can see that PPC_HAS_HASH_64K
essentially depends on PPC_STD_MMU_64 && PPC_64K_PAGES.
We can then notice that PPC_HAS_HASH_64K is used in files that are only
built for PPC_STD_MMU_64, meaning it's equivalent to PPC_64K_PAGES.
So replace all uses and drop it.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
|
|
Back in the olden days we added support for using 64K pages to map the
SPU (Synergistic Processing Unit) local store on Cell, when the main
kernel was using 4K pages.
This was useful at the time because distros were using 4K pages, but
using 64K pages on the SPUs could reduce TLB pressure there.
However these days the number of Cell users is approaching zero, and
supporting this option adds unpleasant complexity to the memory
management code.
So drop the option, CONFIG_SPU_FS_64K_LS, and all related code.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Acked-by: Jeremy Kerr <jk@ozlabs.org>
|
|
It makes no sense to put the instructions for calculating the lock
value (cpu number + 1) and the clearing of eq bit of cr1 in lbarx/stbcx
loop. And when the lock is acquired by the other thread, the current
lock value has no chance to equal with the lock value used by current
cpu. So we can skip the comparing for these two lock values in the
lbz/bne loop.
Signed-off-by: Kevin Hao <haokexin@gmail.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
|
|
This patch adds some documentation to patch_slb_encoding() explaining
how it works.
Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
[mpe: Update change log and mention the signedness of the immediate]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
The SLB code uses 'slot' and 'entry' interchangeably, change it to always
use 'entry'.
Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
[mpe: Rewrite change log]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This patch just removes one redundant entry for one extern variable
'slb_compare_rr_to_size' from the scope. This patch does not change
any functionality.
Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
In CoreNet systems it is not allowed to mix M and non-M mappings to the
same memory, and coherent DMA accesses are considered to be M mappings
for this purpose. Ignoring this has been observed to cause hard
lockups in non-SMP kernels on e6500.
Furthermore, e6500 implements the LRAT (logical to real address table)
which allows KVM guests to control the WIMGE bits. This means that
KVM cannot force the M bit on the way it usually does, so the guest had
better set it itself.
Signed-off-by: Scott Wood <scottwood@freescale.com>
|
|
map_kernel() doesn't catch all places that create kernel PTEs. In
particular, vmalloc() calls set_pte_at() directly. This causes a
crash when booting a non-SMP kernel on e6500.
Move the sync to __set_pte(), to be executed only for kernel addresses.
Signed-off-by: Scott Wood <scottwood@freescale.com>
|
|
__flush_dcache_icache_phys() requires the ability to access the
memory with the MMU disabled, which means that on a 32-bit system
any memory above 4 GiB is inaccessible. In particular, mpc86xx is
32-bit and can have more than 4 GiB of RAM.
Signed-off-by: Scott Wood <scottwood@freescale.com>
|
|
If we take an alignment exception which we cannot fix, the oops
currently prints:
Unable to handle kernel paging request for unknown fault
Lets print something more useful:
Unable to handle kernel paging request for unaligned access at address 0xc0000000f77bba8f
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux
Pull module_init replacement part two from Paul Gortmaker:
"Replace module_init with appropriate alternate initcall in non
modules.
This series converts non-modular code that is using the module_init()
call to hook itself into the system to instead use one of our
alternate priority initcalls.
Unlike the previous series that used device_initcall and hence was a
runtime no-op, these commits change to one of the alternate initcalls,
because (a) we have them and (b) it seems like the right thing to do.
For example, it would seem logical to use arch_initcall for arch
specific setup code and fs_initcall for filesystem setup code.
This does mean however, that changes in the init ordering will be
taking place, and so there is a small risk that some kind of implicit
init ordering issue may lie uncovered. But I think it is still better
to give these ones sensible priorities than to just assign them all to
device_initcall in order to exactly preserve the old ordering.
Thad said, we have already made similar changes in core kernel code in
commit c96d6660dc65 ("kernel: audit/fix non-modular users of
module_init in core code") without any regressions reported, so this
type of change isn't without precedent. It has also got the same
local testing and linux-next coverage as all the other pull requests
that I'm sending for this merge window have got.
Once again, there is an unused module_exit function removal that shows
up as an outlier upon casual inspection of the diffstat"
* tag 'module_init-alternate_initcall-v4.1-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux:
x86: perf_event_intel_pt.c: use arch_initcall to hook in enabling
x86: perf_event_intel_bts.c: use arch_initcall to hook in enabling
mm/page_owner.c: use late_initcall to hook in enabling
lib/list_sort: use late_initcall to hook in self tests
arm: use subsys_initcall in non-modular pl320 IPC code
powerpc: don't use module_init for non-modular core hugetlb code
powerpc: use subsys_initcall for Freescale Local Bus
x86: don't use module_init for non-modular core bootflag code
netfilter: don't use module_init/exit in core IPV4 code
fs/notify: don't use module_init for non-modular inotify_user code
mm: replace module_init usages with subsys_initcall in nommu.c
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core updates from Greg KH:
"Here is the driver core / firmware changes for 4.2-rc1.
A number of small changes all over the place in the driver core, and
in the firmware subsystem. Nothing really major, full details in the
shortlog. Some of it is a bit of churn, given that the platform
driver probing changes was found to not work well, so they were
reverted.
All of these have been in linux-next for a while with no reported
issues"
* tag 'driver-core-4.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (31 commits)
Revert "base/platform: Only insert MEM and IO resources"
Revert "base/platform: Continue on insert_resource() error"
Revert "of/platform: Use platform_device interface"
Revert "base/platform: Remove code duplication"
firmware: add missing kfree for work on async call
fs: sysfs: don't pass count == 0 to bin file readers
base:dd - Fix for typo in comment to function driver_deferred_probe_trigger().
base/platform: Remove code duplication
of/platform: Use platform_device interface
base/platform: Continue on insert_resource() error
base/platform: Only insert MEM and IO resources
firmware: use const for remaining firmware names
firmware: fix possible use after free on name on asynchronous request
firmware: check for file truncation on direct firmware loading
firmware: fix __getname() missing failure check
drivers: of/base: move of_init to driver_init
drivers/base: cacheinfo: fix annoying typo when DT nodes are absent
sysfs: disambiguate between "error code" and "failure" in comments
driver-core: fix build for !CONFIG_MODULES
driver-core: make __device_attach() static
...
|