Age | Commit message (Collapse) | Author | Files | Lines |
|
Commit caaa4c804fae ("KVM: PPC: Book3S HV: Fix physical address
calculations") unfortunately resulted in some low-order address bits
getting dropped in the case where the guest is creating a 4k HPTE
and the host page size is 64k. By getting the low-order bits from
hva rather than gpa we miss out on bits 12 - 15 in this case, since
hva is at page granularity. This puts the missing bits back in.
Reported-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
We don't use PACATOC for PR. Avoid updating HOST_R2 with PR
KVM mode when both HV and PR are enabled in the kernel. Without this we
get the below crash
(qemu)
Unable to handle kernel paging request for data at address 0xffffffffffff8310
Faulting instruction address: 0xc00000000001d5a4
cpu 0x2: Vector: 300 (Data Access) at [c0000001dc53aef0]
pc: c00000000001d5a4: .vtime_delta.isra.1+0x34/0x1d0
lr: c00000000001d760: .vtime_account_system+0x20/0x60
sp: c0000001dc53b170
msr: 8000000000009032
dar: ffffffffffff8310
dsisr: 40000000
current = 0xc0000001d76c62d0
paca = 0xc00000000fef1100 softe: 0 irq_happened: 0x01
pid = 4472, comm = qemu-system-ppc
enter ? for help
[c0000001dc53b200] c00000000001d760 .vtime_account_system+0x20/0x60
[c0000001dc53b290] c00000000008d050 .kvmppc_handle_exit_pr+0x60/0xa50
[c0000001dc53b340] c00000000008f51c kvm_start_lightweight+0xb4/0xc4
[c0000001dc53b510] c00000000008cdf0 .kvmppc_vcpu_run_pr+0x150/0x2e0
[c0000001dc53b9e0] c00000000008341c .kvmppc_vcpu_run+0x2c/0x40
[c0000001dc53ba50] c000000000080af4 .kvm_arch_vcpu_ioctl_run+0x54/0x1b0
[c0000001dc53bae0] c00000000007b4c8 .kvm_vcpu_ioctl+0x478/0x730
[c0000001dc53bca0] c0000000002140cc .do_vfs_ioctl+0x4ac/0x770
[c0000001dc53bd80] c0000000002143e8 .SyS_ioctl+0x58/0xb0
[c0000001dc53be30] c000000000009e58 syscall_exit+0x0/0x98
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Commit ce11e48b7fdd256ec68b932a89b397a790566031 ("KVM: PPC: E500: Add
userspace debug stub support") added "struct thread_struct" to the
stack of kvmppc_vcpu_run(). thread_struct is 1152 bytes on my build,
compared to 48 bytes for the recently-introduced "struct debug_reg".
Use the latter instead.
This fixes the following error:
cc1: warnings being treated as errors
arch/powerpc/kvm/booke.c: In function 'kvmppc_vcpu_run':
arch/powerpc/kvm/booke.c:760:1: error: the frame size of 1424 bytes is larger than 1024 bytes
make[2]: *** [arch/powerpc/kvm/booke.o] Error 1
make[1]: *** [arch/powerpc/kvm] Error 2
make[1]: *** Waiting for unfinished jobs....
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Now that the svcpu sync is interrupt aware we can enable interrupts
earlier in the exit code path again, moving 32bit and 64bit closer
together.
While at it, document the fact that we're always executing the exit
path with interrupts enabled so that the next person doesn't trap
over this.
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
As soon as we get back to our "highmem" handler in virtual address
space we may get preempted. Today the reason we can get preempted is
that we replay interrupts and all the lazy logic thinks we have
interrupts enabled.
However, it's not hard to make the code interruptible and that way
we can enable and handle interrupts even earlier.
This fixes random guest crashes that happened with CONFIG_PREEMPT=y
for me.
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
We call a C helper to save all svcpu fields into our vcpu. The C
ABI states that r12 is considered volatile. However, we keep our
exit handler id in r12 currently.
So we need to save it away into a non-volatile register instead
that definitely does get preserved across the C call.
This bug usually didn't hit anyone yet since gcc is smart enough
to generate code that doesn't even need r12 which means it stayed
identical throughout the call by sheer luck. But we can't rely on
that.
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Since kvmppc_hv_find_lock_hpte() is called from both virtmode and
realmode, so it can trigger the deadlock.
Suppose the following scene:
Two physical cpuM, cpuN, two VM instances A, B, each VM has a group of
vcpus.
If on cpuM, vcpu_A_1 holds bitlock X (HPTE_V_HVLOCK), then is switched
out, and on cpuN, vcpu_A_2 try to lock X in realmode, then cpuN will be
caught in realmode for a long time.
What makes things even worse if the following happens,
On cpuM, bitlockX is hold, on cpuN, Y is hold.
vcpu_B_2 try to lock Y on cpuM in realmode
vcpu_A_2 try to lock X on cpuN in realmode
Oops! deadlock happens
Signed-off-by: Liu Ping Fan <pingfank@linux.vnet.ibm.com>
Reviewed-by: Paul Mackerras <paulus@samba.org>
CC: stable@vger.kernel.org
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Running a kernel with CONFIG_PROVE_RCU=y yields the following diagnostic:
===============================
[ INFO: suspicious RCU usage. ]
3.12.0-rc5-kvm+ #9 Not tainted
-------------------------------
include/linux/kvm_host.h:473 suspicious rcu_dereference_check() usage!
other info that might help us debug this:
rcu_scheduler_active = 1, debug_locks = 0
1 lock held by qemu-system-ppc/4831:
stack backtrace:
CPU: 28 PID: 4831 Comm: qemu-system-ppc Not tainted 3.12.0-rc5-kvm+ #9
Call Trace:
[c000000be462b2a0] [c00000000001644c] .show_stack+0x7c/0x1f0 (unreliable)
[c000000be462b370] [c000000000ad57c0] .dump_stack+0x88/0xb4
[c000000be462b3f0] [c0000000001315e8] .lockdep_rcu_suspicious+0x138/0x180
[c000000be462b480] [c00000000007862c] .gfn_to_memslot+0x13c/0x170
[c000000be462b510] [c00000000007d384] .gfn_to_hva_prot+0x24/0x90
[c000000be462b5a0] [c00000000007d420] .kvm_read_guest_page+0x30/0xd0
[c000000be462b630] [c00000000007d528] .kvm_read_guest+0x68/0x110
[c000000be462b6e0] [c000000000084594] .kvmppc_rtas_hcall+0x34/0x180
[c000000be462b7d0] [c000000000097934] .kvmppc_pseries_do_hcall+0x74/0x830
[c000000be462b880] [c0000000000990e8] .kvmppc_vcpu_run_hv+0xff8/0x15a0
[c000000be462b9e0] [c0000000000839cc] .kvmppc_vcpu_run+0x2c/0x40
[c000000be462ba50] [c0000000000810b4] .kvm_arch_vcpu_ioctl_run+0x54/0x1b0
[c000000be462bae0] [c00000000007b508] .kvm_vcpu_ioctl+0x478/0x730
[c000000be462bca0] [c00000000025532c] .do_vfs_ioctl+0x4dc/0x7a0
[c000000be462bd80] [c0000000002556b4] .SyS_ioctl+0xc4/0xe0
[c000000be462be30] [c000000000009ee4] syscall_exit+0x0/0x98
To fix this, we take the SRCU read lock around the kvmppc_rtas_hcall()
call.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Lockdep reported that there is a potential for deadlock because
vcpu->arch.tbacct_lock is not irq-safe, and is sometimes taken inside
the rq_lock (run-queue lock) in the scheduler, which is taken within
interrupts. The lockdep splat looks like:
======================================================
[ INFO: HARDIRQ-safe -> HARDIRQ-unsafe lock order detected ]
3.12.0-rc5-kvm+ #8 Not tainted
------------------------------------------------------
qemu-system-ppc/4803 [HC0[0]:SC0[0]:HE0:SE1] is trying to acquire:
(&(&vcpu->arch.tbacct_lock)->rlock){+.+...}, at: [<c0000000000947ac>] .kvmppc_core_vcpu_put_hv+0x2c/0xa0
and this task is already holding:
(&rq->lock){-.-.-.}, at: [<c000000000ac16c0>] .__schedule+0x180/0xaa0
which would create a new lock dependency:
(&rq->lock){-.-.-.} -> (&(&vcpu->arch.tbacct_lock)->rlock){+.+...}
but this new dependency connects a HARDIRQ-irq-safe lock:
(&rq->lock){-.-.-.}
... which became HARDIRQ-irq-safe at:
[<c00000000013797c>] .lock_acquire+0xbc/0x190
[<c000000000ac3c74>] ._raw_spin_lock+0x34/0x60
[<c0000000000f8564>] .scheduler_tick+0x54/0x180
[<c0000000000c2610>] .update_process_times+0x70/0xa0
[<c00000000012cdfc>] .tick_periodic+0x3c/0xe0
[<c00000000012cec8>] .tick_handle_periodic+0x28/0xb0
[<c00000000001ef40>] .timer_interrupt+0x120/0x2e0
[<c000000000002868>] decrementer_common+0x168/0x180
[<c0000000001c7ca4>] .get_page_from_freelist+0x924/0xc10
[<c0000000001c8e00>] .__alloc_pages_nodemask+0x200/0xba0
[<c0000000001c9eb8>] .alloc_pages_exact_nid+0x68/0x110
[<c000000000f4c3ec>] .page_cgroup_init+0x1e0/0x270
[<c000000000f24480>] .start_kernel+0x3e0/0x4e4
[<c000000000009d30>] .start_here_common+0x20/0x70
to a HARDIRQ-irq-unsafe lock:
(&(&vcpu->arch.tbacct_lock)->rlock){+.+...}
... which became HARDIRQ-irq-unsafe at:
... [<c00000000013797c>] .lock_acquire+0xbc/0x190
[<c000000000ac3c74>] ._raw_spin_lock+0x34/0x60
[<c0000000000946ac>] .kvmppc_core_vcpu_load_hv+0x2c/0x100
[<c00000000008394c>] .kvmppc_core_vcpu_load+0x2c/0x40
[<c000000000081000>] .kvm_arch_vcpu_load+0x10/0x30
[<c00000000007afd4>] .vcpu_load+0x64/0xd0
[<c00000000007b0f8>] .kvm_vcpu_ioctl+0x68/0x730
[<c00000000025530c>] .do_vfs_ioctl+0x4dc/0x7a0
[<c000000000255694>] .SyS_ioctl+0xc4/0xe0
[<c000000000009ee4>] syscall_exit+0x0/0x98
Some users have reported this deadlock occurring in practice, though
the reports have been primarily on 3.10.x-based kernels.
This fixes the problem by making tbacct_lock be irq-safe.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Some users have reported instances of the host hanging with secondary
threads of a core waiting for the primary thread to exit the guest,
and the primary thread stuck in nap mode. This prompted a review of
the memory barriers in the guest entry/exit code, and this is the
result. Most of these changes are the suggestions of Dean Burdick
<deanburdick@us.ibm.com>.
The barriers between updating napping_threads and reading the
entry_exit_count on the one hand, and updating entry_exit_count and
reading napping_threads on the other, need to be isync not lwsync,
since we need to ensure that either the napping_threads update or the
entry_exit_count update get seen. It is not sufficient to order the
load vs. lwarx, as lwsync does; we need to order the load vs. the
stwcx., so we need isync.
In addition, we need a full sync before sending IPIs to wake other
threads from nap, to ensure that the write to the entry_exit_count is
visible before the IPI occurs.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This fixes a bug in kvmppc_do_h_enter() where the physical address
for a page can be calculated incorrectly if transparent huge pages
(THP) are active. Until THP came along, it was true that if we
encountered a large (16M) page in kvmppc_do_h_enter(), then the
associated memslot must be 16M aligned for both its guest physical
address and the userspace address, and the physical address
calculations in kvmppc_do_h_enter() assumed that. With THP, that
is no longer true.
In the case where we are using MMU notifiers and the page size that
we get from the Linux page tables is larger than the page being mapped
by the guest, we need to fill in some low-order bits of the physical
address. Without THP, these bits would be the same in the guest
physical address (gpa) and the host virtual address (hva). With THP,
they can be different, and we need to use the bits from hva rather
than gpa.
In the case where we are not using MMU notifiers, the host physical
address we get from the memslot->arch.slot_phys[] array already
includes the low-order bits down to the PAGE_SIZE level, even if
we are using large pages. Thus we can simplify the calculation in
this case to just add in the remaining bits in the case where
PAGE_SIZE is 64k and the guest is mapping a 4k page.
The same bug exists in kvmppc_book3s_hv_page_fault(). The basic fix
is to use psize (the page size from the HPTE) rather than pte_size
(the page size from the Linux PTE) when updating the HPTE low word
in r. That means that pfn needs to be computed to PAGE_SIZE
granularity even if the Linux PTE is a huge page PTE. That can be
arranged simply by doing the page_to_pfn() before setting page to
the head of the compound page. If psize is less than PAGE_SIZE,
then we need to make sure we only update the bits from PAGE_SIZE
upwards, in order not to lose any sub-page offset bits in r.
On the other hand, if psize is greater than PAGE_SIZE, we need to
make sure we don't bring in non-zero low order bits in pfn, hence
we mask (pfn << PAGE_SHIFT) with ~(psize - 1).
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Pull KVM changes from Paolo Bonzini:
"Here are the 3.13 KVM changes. There was a lot of work on the PPC
side: the HV and emulation flavors can now coexist in a single kernel
is probably the most interesting change from a user point of view.
On the x86 side there are nested virtualization improvements and a few
bugfixes.
ARM got transparent huge page support, improved overcommit, and
support for big endian guests.
Finally, there is a new interface to connect KVM with VFIO. This
helps with devices that use NoSnoop PCI transactions, letting the
driver in the guest execute WBINVD instructions. This includes some
nVidia cards on Windows, that fail to start without these patches and
the corresponding userspace changes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (146 commits)
kvm, vmx: Fix lazy FPU on nested guest
arm/arm64: KVM: PSCI: propagate caller endianness to the incoming vcpu
arm/arm64: KVM: MMIO support for BE guest
kvm, cpuid: Fix sparse warning
kvm: Delete prototype for non-existent function kvm_check_iopl
kvm: Delete prototype for non-existent function complete_pio
hung_task: add method to reset detector
pvclock: detect watchdog reset at pvclock read
kvm: optimize out smp_mb after srcu_read_unlock
srcu: API for barrier after srcu read unlock
KVM: remove vm mmap method
KVM: IOMMU: hva align mapping page size
KVM: x86: trace cpuid emulation when called from emulator
KVM: emulator: cleanup decode_register_operand() a bit
KVM: emulator: check rex prefix inside decode_register()
KVM: x86: fix emulation of "movzbl %bpl, %eax"
kvm_host: typo fix
KVM: x86: emulate SAHF instruction
MAINTAINERS: add tree for kvm.git
Documentation/kvm: add a 00-INDEX file
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
Pull powerpc updates from Benjamin Herrenschmidt:
"The bulk of this is LE updates. One should now be able to build an LE
kernel and even run some things in it.
I'm still sitting on a handful of patches to enable the new ABI that I
*might* still send this merge window around, but due to the
incertainty (they are pretty fresh) I want to keep them separate.
Other notable changes are some infrastructure bits to better handle
PCI pass-through under KVM, some bits and pieces added to the new
PowerNV platform support such as access to the CPU SCOM bus via sysfs,
and support for EEH error handling on PHB3 (Power8 PCIe).
We also grew arch_get_random_long() for both pseries and powernv when
running on P7+ and P8, exploiting the HW rng.
And finally various embedded updates from freescale"
* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (154 commits)
powerpc: Fix fatal SLB miss when restoring PPR
powerpc/powernv: Reserve the correct PE number
powerpc/powernv: Add PE to its own PELTV
powerpc/powernv: Add support for indirect XSCOM via debugfs
powerpc/scom: Improve debugfs interface
powerpc/scom: Enable 64-bit addresses
powerpc/boot: Properly handle the base "of" boot wrapper
powerpc/bpf: Support MOD operation
powerpc/bpf: Fix DIVWU instruction opcode
of: Move definition of of_find_next_cache_node into common code.
powerpc: Remove big endianness assumption in of_find_next_cache_node
powerpc/tm: Remove interrupt disable in __switch_to()
powerpc: word-at-a-time optimization for 64-bit Little Endian
powerpc/bpf: BPF JIT compiler for 64-bit Little Endian
powerpc: Only save/restore SDR1 if in hypervisor mode
powerpc/pmu: Fix ADB_PMU_LED_IDE dependencies
powerpc/nvram: Fix endian issue when using the partition length
powerpc/nvram: Fix endian issue when reading the NVRAM size
powerpc/nvram: Scan partitions only once
powerpc/mpc512x: remove unnecessary #if
...
|
|
Conflicts:
arch/powerpc/include/asm/processor.h
|
|
drop is_hv_enabled, because that should not be a callback property
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This moves the kvmppc_ops callbacks to be a per VM entity. This
enables us to select HV and PR mode when creating a VM. We also
allow both kvm-hv and kvm-pr kernel module to be loaded. To
achieve this we move /dev/kvm ownership to kvm.ko module. Depending on
which KVM mode we select during VM creation we take a reference
count on respective module
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
[agraf: fix coding style]
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
We will use that in the later patch to find the kvm ops handler
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
[agraf: squash in compile fix]
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This patch moves PR related tracepoints to a separate header. This
enables in converting PR to a kernel module which will be done in
later patches
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This help us to identify whether we are running with hypervisor mode KVM
enabled. The change is needed so that we can have both HV and PR kvm
enabled in the same kernel.
If both HV and PR KVM are included, interrupts come in to the HV version
of the kvmppc_interrupt code, which then jumps to the PR handler,
renamed to kvmppc_interrupt_pr, if the guest is a PR guest.
Allowing both PR and HV in the same kernel required some changes to
kvm_dev_ioctl_check_extension(), since the values returned now can't
be selected with #ifdefs as much as previously. We look at is_hv_enabled
to return the right value when checking for capabilities.For capabilities that
are only provided by HV KVM, we return the HV value only if
is_hv_enabled is true. For capabilities provided by PR KVM but not HV,
we return the PR value only if is_hv_enabled is false.
NOTE: in later patch we replace is_hv_enabled with a static inline
function comparing kvm_ppc_ops
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
With this patch if HV is included, interrupts come in to the HV version
of the kvmppc_interrupt code, which then jumps to the PR handler,
renamed to kvmppc_interrupt_pr, if the guest is a PR guest. This helps
in enabling both HV and PR, which we do in later patch
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This patch add a new callback kvmppc_ops. This will help us in enabling
both HV and PR KVM together in the same kernel. The actual change to
enable them together is done in the later patch in the series.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
[agraf: squash in booke changes]
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This help ups to select the relevant code in the kernel code
when we later move HV and PR bits as seperate modules. The patch
also makes the config options for PR KVM selectable
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
With later patches supporting PR kvm as a kernel module, the changes
that has to be built into the main kernel binary to enable PR KVM module
is now selected via KVM_BOOK3S_PR_POSSIBLE
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Since the code in book3s_64_vio_hv.c is called from real mode with HV
KVM, and therefore has to be built into the main kernel binary, this
makes it always built-in rather than part of the KVM module. It gets
called from the KVM module by PR KVM, so this adds an EXPORT_SYMBOL_GPL().
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This label is not used now.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This patch adds the debug stub support on booke/bookehv.
Now QEMU debug stub can use hw breakpoint, watchpoint and
software breakpoint to debug guest.
This is how we save/restore debug register context when switching
between guest, userspace and kernel user-process:
When QEMU is running
-> thread->debug_reg == QEMU debug register context.
-> Kernel will handle switching the debug register on context switch.
-> no vcpu_load() called
QEMU makes ioctls (except RUN)
-> This will call vcpu_load()
-> should not change context.
-> Some ioctls can change vcpu debug register, context saved in vcpu->debug_regs
QEMU Makes RUN ioctl
-> Save thread->debug_reg on STACK
-> Store thread->debug_reg == vcpu->debug_reg
-> load thread->debug_reg
-> RUN VCPU ( So thread points to vcpu context )
Context switch happens When VCPU running
-> makes vcpu_load() should not load any context
-> kernel loads the vcpu context as thread->debug_regs points to vcpu context.
On heavyweight_exit
-> Load the context saved on stack in thread->debug_reg
Currently we do not support debug resource emulation to guest,
On debug exception, always exit to user space irrespective of
user space is expecting the debug exception or not. If this is
unexpected exception (breakpoint/watchpoint event not set by
userspace) then let us leave the action on user space. This
is similar to what it was before, only thing is that now we
have proper exit state available to user space.
Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
For KVM also use the "struct debug_reg" defined in asm/processor.h
Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
"ehpriv 1" instruction is used for setting software breakpoints
by user space. This patch adds support to exit to user space
with "run->debug" have relevant information.
As this is the first point we are using run->debug, also defined
the run->debug structure.
Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Mark the guest page as accessed so that there is likely
less chances of this page getting swap-out.
Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com>
Acked-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
"G" bit in MAS2 indicates whether the page is Guarded.
There is no reason to stop guest setting "G", so allow him.
Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
"E" bit in MAS2 bit indicates whether the page is accessed
in Little-Endian or Big-Endian byte order.
There is no reason to stop guest setting "E", so allow him."
Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
When an interrupt or exception happens in the guest that comes to the
host, the CPU goes to hypervisor real mode (MMU off) to handle the
exception but doesn't change the MMU context. After saving a few
registers, we then clear the "in guest" flag. If, for any reason,
we get an exception in the real-mode code, that then gets handled
by the normal kernel exception handlers, which turn the MMU on. This
is disastrous if the MMU is still set to the guest context, since we
end up executing instructions from random places in the guest kernel
with hypervisor privilege.
In order to catch this situation, we define a new value for the "in guest"
flag, KVM_GUEST_MODE_HOST_HV, to indicate that we are in hypervisor real
mode with guest MMU context. If the "in guest" flag is set to this value,
we branch off to an emergency handler. For the moment, this just does
a branch to self to stop the CPU from doing anything further.
While we're here, we define another new flag value to indicate that we
are in a HV guest, as distinct from a PR guest. This will be useful
when we have a kernel that can support both PR and HV guests concurrently.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
add kvmppc_free_vcores() to free the kvmppc_vcore structures
that we allocate for a guest, which are currently being leaked.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Currently, whenever any of the MMU notifier callbacks get called, we
invalidate all the shadow PTEs. This is inefficient because it means
that we typically then get a lot of DSIs and ISIs in the guest to fault
the shadow PTEs back in. We do this even if the address range being
notified doesn't correspond to guest memory.
This commit adds code to scan the memslot array to find out what range(s)
of guest physical addresses corresponds to the host virtual address range
being affected. For each such range we flush only the shadow PTEs
for the range, on all cpus.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
The mark_page_dirty() function, despite what its name might suggest,
doesn't actually mark the page as dirty as far as the MM subsystem is
concerned. It merely sets a bit in KVM's map of dirty pages, if
userspace has requested dirty tracking for the relevant memslot.
To tell the MM subsystem that the page is dirty, we have to call
kvm_set_pfn_dirty() (or an equivalent such as SetPageDirty()).
This adds a call to kvm_set_pfn_dirty(), and while we are here, also
adds a call to kvm_set_pfn_accessed() to tell the MM subsystem that
the page has been accessed. Since we are now using the pfn in
several places, this adds a 'pfn' variable to store it and changes
the places that used hpaddr >> PAGE_SHIFT to use pfn instead, which
is the same thing.
This also changes a use of HPTE_R_PP to PP_RXRX. Both are 3, but
PP_RXRX is more informative as being the read-only page permission
bit setting.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
When the MM code is invalidating a range of pages, it calls the KVM
kvm_mmu_notifier_invalidate_range_start() notifier function, which calls
kvm_unmap_hva_range(), which arranges to flush all the existing host
HPTEs for guest pages. However, the Linux PTEs for the range being
flushed are still valid at that point. We are not supposed to establish
any new references to pages in the range until the ...range_end()
notifier gets called. The PPC-specific KVM code doesn't get any
explicit notification of that; instead, we are supposed to use
mmu_notifier_retry() to test whether we are or have been inside a
range flush notifier pair while we have been getting a page and
instantiating a host HPTE for the page.
This therefore adds a call to mmu_notifier_retry inside
kvmppc_mmu_map_page(). This call is inside a region locked with
kvm->mmu_lock, which is the same lock that is called by the KVM
MMU notifier functions, thus ensuring that no new notification can
proceed while we are in the locked region. Inside this region we
also create the host HPTE and link the corresponding hpte_cache
structure into the lists used to find it later. We cannot allocate
the hpte_cache structure inside this locked region because that can
lead to deadlock, so we allocate it outside the region and free it
if we end up not using it.
This also moves the updates of vcpu3s->hpte_cache_count inside the
regions locked with vcpu3s->mmu_lock, and does the increment in
kvmppc_mmu_hpte_cache_map() when the pte is added to the cache
rather than when it is allocated, in order that the hpte_cache_count
is accurate.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Currently we request write access to all pages that get mapped into the
guest, even if the guest is only loading from the page. This reduces
the effectiveness of KSM because it means that we unshare every page we
access. Also, we always set the changed (C) bit in the guest HPTE if
it allows writing, even for a guest load.
This fixes both these problems. We pass an 'iswrite' flag to the
mmu.xlate() functions and to kvmppc_mmu_map_page() to indicate whether
the access is a load or a store. The mmu.xlate() functions now only
set C for stores. kvmppc_gfn_to_pfn() now calls gfn_to_pfn_prot()
instead of gfn_to_pfn() so that it can indicate whether we need write
access to the page, and get back a 'writable' flag to indicate whether
the page is writable or not. If that 'writable' flag is clear, we then
make the host HPTE read-only even if the guest HPTE allowed writing.
This means that we can get a protection fault when the guest writes to a
page that it has mapped read-write but which is read-only on the host
side (perhaps due to KSM having merged the page). Thus we now call
kvmppc_handle_pagefault() for protection faults as well as HPTE not found
faults. In kvmppc_handle_pagefault(), if the access was allowed by the
guest HPTE and we thus need to install a new host HPTE, we then need to
remove the old host HPTE if there is one. This is done with a new
function, kvmppc_mmu_unmap_page(), which uses kvmppc_mmu_pte_vflush() to
find and remove the old host HPTE.
Since the memslot-related functions require the KVM SRCU read lock to
be held, this adds srcu_read_lock/unlock pairs around the calls to
kvmppc_handle_pagefault().
Finally, this changes kvmppc_mmu_book3s_32_xlate_pte() to not ignore
guest HPTEs that don't permit access, and to return -EPERM for accesses
that are not permitted by the page protections.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Both PR and HV KVM have separate, identical copies of the
kvmppc_skip_interrupt and kvmppc_skip_Hinterrupt handlers that are
used for the situation where an interrupt happens when loading the
instruction that caused an exit from the guest. To eliminate this
duplication and make it easier to compile in both PR and HV KVM,
this moves this code to arch/powerpc/kernel/exceptions-64s.S along
with other kernel interrupt handler code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This makes PR KVM allocate its kvm_vcpu structs from the kvm_vcpu_cache
rather than having them embedded in the kvmppc_vcpu_book3s struct,
which is allocated with vzalloc. The reason is to reduce the
differences between PR and HV KVM in order to make is easier to have
them coexist in one kernel binary.
With this, the kvm_vcpu struct has a pointer to the kvmppc_vcpu_book3s
struct. The pointer to the kvmppc_book3s_shadow_vcpu struct has moved
from the kvmppc_vcpu_book3s struct to the kvm_vcpu struct, and is only
present for 32-bit, since it is only used for 32-bit.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: squash in compile fix from Aneesh]
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This adds a per-VM mutex to provide mutual exclusion between vcpus
for accesses to and updates of the guest hashed page table (HPT).
This also makes the code use single-byte writes to the HPT entry
when updating of the reference (R) and change (C) bits. The reason
for doing this, rather than writing back the whole HPTE, is that on
non-PAPR virtual machines, the guest OS might be writing to the HPTE
concurrently, and writing back the whole HPTE might conflict with
that. Also, real hardware does single-byte writes to update R and C.
The new mutex is taken in kvmppc_mmu_book3s_64_xlate() when reading
the HPT and updating R and/or C, and in the PAPR HPT update hcalls
(H_ENTER, H_REMOVE, etc.). Having the mutex means that we don't need
to use a hypervisor lock bit in the HPT update hcalls, and we don't
need to be careful about the order in which the bytes of the HPTE are
updated by those hcalls.
The other change here is to make emulated TLB invalidations (tlbie)
effective across all vcpus. To do this we call kvmppc_mmu_pte_vflush
for all vcpus in kvmppc_ppc_book3s_64_tlbie().
For 32-bit, this makes the setting of the accessed and dirty bits use
single-byte writes, and makes tlbie invalidate shadow HPTEs for all
vcpus.
With this, PR KVM can successfully run SMP guests.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
The implementation of H_ENTER in PR KVM has some errors:
* With H_EXACT not set, if the HPTEG is full, we return H_PTEG_FULL
as the return value of kvmppc_h_pr_enter, but the caller is expecting
one of the EMULATE_* values. The H_PTEG_FULL needs to go in the
guest's R3 instead.
* With H_EXACT set, if the selected HPTE is already valid, the H_ENTER
call should return a H_PTEG_FULL error.
This fixes these errors and also makes it write only the selected HPTE,
not the whole group, since only the selected HPTE has been modified.
This also micro-optimizes the calculations involving pte_index and i.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
64-bit POWER processors have a three-bit field for page protection in
the hashed page table entry (HPTE). Currently we only interpret the two
bits that were present in older versions of the architecture. The only
defined combination that has the new bit set is 110, meaning read-only
for supervisor and no access for user mode.
This adds code to kvmppc_mmu_book3s_64_xlate() to interpret the extra
bit appropriately.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Currently, PR KVM uses 4k pages for the host-side mappings of guest
memory, regardless of the host page size. When the host page size is
64kB, we might as well use 64k host page mappings for guest mappings
of 64kB and larger pages and for guest real-mode mappings. However,
the magic page has to remain a 4k page.
To implement this, we first add another flag bit to the guest VSID
values we use, to indicate that this segment is one where host pages
should be mapped using 64k pages. For segments with this bit set
we set the bits in the shadow SLB entry to indicate a 64k base page
size. When faulting in host HPTEs for this segment, we make them
64k HPTEs instead of 4k. We record the pagesize in struct hpte_cache
for use when invalidating the HPTE.
For now we restrict the segment containing the magic page (if any) to
4k pages. It should be possible to lift this restriction in future
by ensuring that the magic 4k page is appropriately positioned within
a host 64k page.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This adds the code to interpret 64k HPTEs in the guest hashed page
table (HPT), 64k SLB entries, and to tell the guest about 64k pages
in kvm_vm_ioctl_get_smmu_info(). Guest 64k pages are still shadowed
by 4k pages.
This also adds another hash table to the four we have already in
book3s_mmu_hpte.c to allow us to find all the PTEs that we have
instantiated that match a given 64k guest page.
The tlbie instruction changed starting with POWER6 to use a bit in
the RB operand to indicate large page invalidations, and to use other
RB bits to indicate the base and actual page sizes and the segment
size. 64k pages came in slightly earlier, with POWER5++.
We use one bit in vcpu->arch.hflags to indicate that the emulated
cpu supports 64k pages, and another to indicate that it has the new
tlbie definition.
The KVM_PPC_GET_SMMU_INFO ioctl presents a bit of a problem, because
the MMU capabilities depend on which CPU model we're emulating, but it
is a VM ioctl not a VCPU ioctl and therefore doesn't get passed a VCPU
fd. In addition, commonly-used userspace (QEMU) calls it before
setting the PVR for any VCPU. Therefore, as a best effort we look at
the first vcpu in the VM and return 64k pages or not depending on its
capabilities. We also make the PVR default to the host PVR on recent
CPUs that support 1TB segments (and therefore multiple page sizes as
well) so that KVM_PPC_GET_SMMU_INFO will include 64k page and 1TB
segment support on those CPUs.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Currently PR-style KVM keeps the volatile guest register values
(R0 - R13, CR, LR, CTR, XER, PC) in a shadow_vcpu struct rather than
the main kvm_vcpu struct. For 64-bit, the shadow_vcpu exists in two
places, a kmalloc'd struct and in the PACA, and it gets copied back
and forth in kvmppc_core_vcpu_load/put(), because the real-mode code
can't rely on being able to access the kmalloc'd struct.
This changes the code to copy the volatile values into the shadow_vcpu
as one of the last things done before entering the guest. Similarly
the values are copied back out of the shadow_vcpu to the kvm_vcpu
immediately after exiting the guest. We arrange for interrupts to be
still disabled at this point so that we can't get preempted on 64-bit
and end up copying values from the wrong PACA.
This means that the accessor functions in kvm_book3s.h for these
registers are greatly simplified, and are same between PR and HV KVM.
In places where accesses to shadow_vcpu fields are now replaced by
accesses to the kvm_vcpu, we can also remove the svcpu_get/put pairs.
Finally, on 64-bit, we don't need the kmalloc'd struct at all any more.
With this, the time to read the PVR one million times in a loop went
from 567.7ms to 575.5ms (averages of 6 values), an increase of about
1.4% for this worse-case test for guest entries and exits. The
standard deviation of the measurements is about 11ms, so the
difference is only marginally significant statistically.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
Commit 9d1ffdd8f3 ("KVM: PPC: Book3S PR: Don't corrupt guest state
when kernel uses VMX") added a call to kvmppc_load_up_altivec() that
isn't guarded by CONFIG_ALTIVEC, causing a link failure when building
a kernel without CONFIG_ALTIVEC set. This adds an #ifdef to fix this.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
If we come out of a guest with an interrupt that we don't know about,
instead of crashing the host with a BUG(), we now return to userspace
with the exit reason set to KVM_EXIT_UNKNOWN and the trap vector in
the hw.hardware_exit_reason field of the kvm_run structure, as is done
on x86. Note that run->exit_reason is already set to KVM_EXIT_UNKNOWN
at the beginning of kvmppc_handle_exit().
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This enables us to use the Processor Compatibility Register (PCR) on
POWER7 to put the processor into architecture 2.05 compatibility mode
when running a guest. In this mode the new instructions and registers
that were introduced on POWER7 are disabled in user mode. This
includes all the VSX facilities plus several other instructions such
as ldbrx, stdbrx, popcntw, popcntd, etc.
To select this mode, we have a new register accessible through the
set/get_one_reg interface, called KVM_REG_PPC_ARCH_COMPAT. Setting
this to zero gives the full set of capabilities of the processor.
Setting it to one of the "logical" PVR values defined in PAPR puts
the vcpu into the compatibility mode for the corresponding
architecture level. The supported values are:
0x0f000002 Architecture 2.05 (POWER6)
0x0f000003 Architecture 2.06 (POWER7)
0x0f100003 Architecture 2.06+ (POWER7+)
Since the PCR is per-core, the architecture compatibility level and
the corresponding PCR value are stored in the struct kvmppc_vcore, and
are therefore shared between all vcpus in a virtual core.
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: squash in fix to add missing break statements and documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
|