Age | Commit message (Collapse) | Author | Files | Lines |
|
virtual time base register is a per VM, per cpu register that needs
to be saved and restored on vm exit and entry. Writing to VTB is not
allowed in the privileged mode.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
[agraf: fix compile error]
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
For scalability and performance reasons, we want the tick broadcast IPIs
to be handled as efficiently as possible. Fixed IPI messages
are one of the most efficient mechanisms available - they are faster than
the smp_call_function mechanism because the IPI handlers are fixed and hence
they don't involve costly operations such as adding IPI handlers to the target
CPU's function queue, acquiring locks for synchronization etc.
Luckily we have an unused IPI message slot, so use that to implement
tick broadcast IPIs efficiently.
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
[Functions renamed to tick_broadcast* and Changelog modified by
Preeti U. Murthy<preeti@linux.vnet.ibm.com>]
Signed-off-by: Preeti U. Murthy <preeti@linux.vnet.ibm.com>
Acked-by: Geoff Levand <geoff@infradead.org> [For the PS3 part]
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
The archs that implement virtual cputime accounting all
flush the cputime of a task when it gets descheduled
and sometimes set up some ground initialization for the
next task to account its cputime.
These archs all put their own hooks in their context
switch callbacks and handle the off-case themselves.
Consolidate this by creating a new account_switch_vtime()
callback called in generic code right after a context switch
and that these archs must implement to flush the prev task
cputime and initialize the next task cputime related state.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
|
|
Time for which the hrtimer is started for decrementer emulation is calculated
using tb_ticks_per_usec. While hrtimer uses the clockevent for DEC
reprogramming (if needed) and which calculate timebase ticks using the
multiplier and shifter mechanism implemented within clockevent layer.
It was observed that this conversion (timebase->time->timebase) are not
correct because the mechanism are not consistent.
In our setup it adds 2% jitter.
With this patch clockevent multiplier and shifter mechanism are used when
starting hrtimer for decrementer emulation. Now the jitter is < 0.5%.
Signed-off-by: Bharat Bhushan <bharat.bhushan@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
|
This is no longer selectable, so just remove all the dependent code.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
decrementer_check_overflow is called from arch_local_irq_restore so
we want to make it as light weight as possible. As such, turn
decrementer_check_overflow into an inline function.
To avoid a circular mess of includes, separate out the two components
of struct decrementer_clock and keep the struct clock_event_device
part local to time.c.
The fast path improves from:
arch_local_irq_restore
0: mflr r0
4: std r0,16(r1)
8: stdu r1,-112(r1)
c: stb r3,578(r13)
10: cmpdi cr7,r3,0
14: beq- cr7,24 <.arch_local_irq_restore+0x24>
...
24: addi r1,r1,112
28: ld r0,16(r1)
2c: mtlr r0
30: blr
to:
arch_local_irq_restore
0: std r30,-16(r1)
4: ld r30,0(r2)
8: stb r3,578(r13)
c: cmpdi cr7,r3,0
10: beq- cr7,6c <.arch_local_irq_restore+0x6c>
...
6c: ld r30,-16(r1)
70: blr
Unfortunately we still setup a local TOC (due to -mminimal-toc). Yet
another sign we should be moving to -mcmodel=medium.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
When re-enabling interrupts we have code to handle edge sensitive
decrementers by resetting the decrementer to 1 whenever it is negative.
If interrupts were disabled long enough that the decrementer wrapped to
positive we do nothing. This means interrupts can be delayed for a long
time until it finally goes negative again.
While we hope interrupts are never be disabled long enough for the
decrementer to go positive, we have a very good test team that can
drive any kernel into the ground. The softlockup data we get back
from these fails could be seconds in the future, completely missing
the cause of the lockup.
We already keep track of the timebase of the next event so use that
to work out if we should trigger a decrementer exception.
Signed-off-by: Anton Blanchard <anton@samba.org>
Cc: stable@kernel.org
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
Currently, when CONFIG_VIRT_CPU_ACCOUNTING is enabled, we use the
PURR register for measuring the user and system time used by
processes, as well as other related times such as hardirq and
softirq times. This turns out to be quite confusing for users
because it means that a program will often be measured as taking
less time when run on a multi-threaded processor (SMT2 or SMT4 mode)
than it does when run on a single-threaded processor (ST mode), even
though the program takes longer to finish. The discrepancy is
accounted for as stolen time, which is also confusing, particularly
when there are no other partitions running.
This changes the accounting to use the timebase instead, meaning that
the reported user and system times are the actual number of real-time
seconds that the program was executing on the processor thread,
regardless of which SMT mode the processor is in. Thus a program will
generally show greater user and system times when run on a
multi-threaded processor than on a single-threaded processor.
On pSeries systems on POWER5 or later processors, we measure the
stolen time (time when this partition wasn't running) using the
hypervisor dispatch trace log. We check for new entries in the
log on every entry from user mode and on every transition from
kernel process context to soft or hard IRQ context (i.e. when
account_system_vtime() gets called). So that we can correctly
distinguish time stolen from user time and time stolen from system
time, without having to check the log on every exit to user mode,
we store separate timestamps for exit to user mode and entry from
user mode.
On systems that have a SPURR (POWER6 and POWER7), we read the SPURR
in account_system_vtime() (as before), and then apportion the SPURR
ticks since the last time we read it between scaled user time and
scaled system time according to the relative proportions of user
time and system time over the same interval. This avoids having to
read the SPURR on every kernel entry and exit. On systems that have
PURR but not SPURR (i.e., POWER5), we do the same using the PURR
rather than the SPURR.
This disables the DTL user interface in /sys/debug/kernel/powerpc/dtl
for now since it conflicts with the use of the dispatch trace log
by the time accounting code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
Since the decrementer and timekeeping code was moved over to using
the generic clockevents and timekeeping infrastructure, several
variables and functions have been obsolete and effectively unused.
This deletes them.
In particular, wakeup_decrementer() is no longer needed since the
generic code reprograms the decrementer as part of the process of
resuming the timekeeping code, which happens during sysdev resume.
Thus the wakeup_decrementer calls in the suspend_enter methods for
52xx platforms have been removed. The call in the powermac cpu
frequency change code has been replaced by set_dec(1), which will
cause a timer interrupt as soon as interrupts are enabled, and the
generic code will then reprogram the decrementer with the correct
value.
This also simplifies the generic_suspend_en/disable_irqs functions
and makes them static since they are not referenced outside time.c.
The preempt_enable/disable calls are removed because the generic
code has disabled all but the boot cpu at the point where these
functions are called, so we can't be moved to another cpu.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
Since we started using the generic timekeeping code, we haven't had a
powerpc-specific version of do_gettimeofday, and hence there is now
nothing that reads the do_gtod variable in arch/powerpc/kernel/time.c.
This therefore removes it and the code that sets it.
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
from include/asm-powerpc. This is the result of a
mkdir arch/powerpc/include/asm
git mv include/asm-powerpc/* arch/powerpc/include/asm
Followed by a few documentation/comment fixups and a couple of places
where <asm-powepc/...> was being used explicitly. Of the latter only
one was outside the arch code and it is a driver only built for powerpc.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|