summaryrefslogtreecommitdiff
path: root/arch/powerpc/include/asm/kvm_ppc.h
AgeCommit message (Collapse)AuthorFilesLines
2022-11-30KVM: PPC: Book3E: Fix CONFIG_TRACE_IRQFLAGS supportNicholas Piggin1-0/+12
32-bit does not trace_irqs_off() to match the trace_irqs_on() call in kvmppc_fix_ee_before_entry(). This can lead to irqs being enabled twice in the trace, and the irqs-off region between guest exit and the host enabling local irqs again is not properly traced. 64-bit code does call this, but from asm code where volatiles are live and so incorrectly get clobbered. Move the irq reconcile into C to fix both problems. Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20221127124942.1665522-2-npiggin@gmail.com
2022-09-15KVM: PPC: remove orphan declarations from kvm_ppc.hGaosheng Cui1-4/+0
Remove the following orphan declarations from kvm_ppc.h: 1. kvmppc_mmu_priv_switch() has been removed since commit dd9ebf1f9435 ("KVM: PPC: e500: Add shadow PID support"). 2. kvmppc_core_destroy_mmu() has been removed since commit ecc0981ff07c ("KVM: ppc: cosmetic changes to mmu hook names"). 3. kvmppc_prepare_vrma() has been removed since commit aa04b4cc5be6 ("KVM: PPC: Allocate RMAs (Real Mode Areas) at boot for use by guests"). So remove the declarations for them from header file. Signed-off-by: Gaosheng Cui <cuigaosheng1@huawei.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20220913075029.682327-10-cuigaosheng1@huawei.com
2022-05-18KVM: PPC: Book3s: Remove real mode interrupt controller hcalls handlersAlexey Kardashevskiy1-7/+0
Currently we have 2 sets of interrupt controller hypercalls handlers for real and virtual modes, this is from POWER8 times when switching MMU on was considered an expensive operation. POWER9 however does not have dependent threads and MMU is enabled for handling hcalls so the XIVE native or XICS-on-XIVE real mode handlers never execute on real P9 and later CPUs. This untemplate the handlers and only keeps the real mode handlers for XICS native (up to POWER8) and remove the rest of dead code. Changes in functions are mechanical except few missing empty lines to make checkpatch.pl happy. The default implemented hcalls list already contains XICS hcalls so no change there. This should not cause any behavioral change. Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Acked-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20220509071150.181250-1-aik@ozlabs.ru
2022-05-18KVM: PPC: Book3s: Retire H_PUT_TCE/etc real mode handlersAlexey Kardashevskiy1-2/+0
LoPAPR defines guest visible IOMMU with hypercalls to use it - H_PUT_TCE/etc. Implemented first on POWER7 where hypercalls would trap in the KVM in the real mode (with MMU off). The problem with the real mode is some memory is not available and some API usage crashed the host but enabling MMU was an expensive operation. The problems with the real mode handlers are: 1. Occasionally these cannot complete the request so the code is copied+modified to work in the virtual mode, very little is shared; 2. The real mode handlers have to be linked into vmlinux to work; 3. An exception in real mode immediately reboots the machine. If the small DMA window is used, the real mode handlers bring better performance. However since POWER8, there has always been a bigger DMA window which VMs use to map the entire VM memory to avoid calling H_PUT_TCE. Such 1:1 mapping happens once and uses H_PUT_TCE_INDIRECT (a bulk version of H_PUT_TCE) which virtual mode handler is even closer to its real mode version. On POWER9 hypercalls trap straight to the virtual mode so the real mode handlers never execute on POWER9 and later CPUs. So with the current use of the DMA windows and MMU improvements in POWER9 and later, there is no point in duplicating the code. The 32bit passed through devices may slow down but we do not have many of these in practice. For example, with this applied, a 1Gbit ethernet adapter still demostrates above 800Mbit/s of actual throughput. This removes the real mode handlers from KVM and related code from the powernv platform. This updates the list of implemented hcalls in KVM-HV as the realmode handlers are removed. This changes ABI - kvmppc_h_get_tce() moves to the KVM module and kvmppc_find_table() is static now. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20220506053755.3820702-1-aik@ozlabs.ru
2022-05-13KVM: PPC: Book3S HV P9: Move cede logic out of XIVE escalation rearmingNicholas Piggin1-2/+2
Move the cede abort logic out of xive escalation rearming and into the caller to prepare for handling a similar case with nested guest entry. Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Reviewed-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20220303053315.1056880-4-npiggin@gmail.com
2022-05-13KVM: PPC: Remove kvmppc_claim_lpidNicholas Piggin1-1/+0
Removing kvmppc_claim_lpid makes the lpid allocator API a bit simpler to change the underlying implementation in a future patch. The host LPID is always 0, so that can be a detail of the allocator. If the allocator range is restricted, that can reserve LPIDs at the top of the range. This allows kvmppc_claim_lpid to be removed. Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20220123120043.3586018-2-npiggin@gmail.com
2022-04-03KVM: PPC: Move kvmhv_on_pseries() into kvm_ppc.hMichael Ellerman1-0/+12
We recently introduced a usage of kvmhv_on_pseries() in powerpc.c, which causes a build error for ppc64_book3e_allmodconfig: arch/powerpc/kvm/powerpc.c:716:8: error: implicit declaration of function ‘kvmhv_on_pseries’ 716 | if (kvmhv_on_pseries()) { | ^~~~~~~~~~~~~~~~ Fix it by moving kvmhv_on_pseries() into kvm_ppc.h so that the stub version is available for book3e builds. Fixes: f771b55731fc ("KVM: PPC: Use KVM_CAP_PPC_AIL_MODE_3") Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2022-02-02KVM: PPC: Merge powerpc's debugfs entry content into generic entryAlexey Kardashevskiy1-0/+2
At the moment KVM on PPC creates 4 types of entries under the kvm debugfs: 1) "%pid-%fd" per a KVM instance (for all platforms); 2) "vm%pid" (for PPC Book3s HV KVM); 3) "vm%u_vcpu%u_timing" (for PPC Book3e KVM); 4) "kvm-xive-%p" (for XIVE PPC Book3s KVM, the same for XICS); The problem with this is that multiple VMs per process is not allowed for 2) and 3) which makes it possible for userspace to trigger errors when creating duplicated debugfs entries. This merges all these into 1). This defines kvm_arch_create_kvm_debugfs() similar to kvm_arch_create_vcpu_debugfs(). This defines 2 hooks in kvmppc_ops that allow specific KVM implementations add necessary entries, this adds the _e500 suffix to kvmppc_create_vcpu_debugfs_e500() to make it clear what platform it is for. This makes use of already existing kvm_arch_create_vcpu_debugfs() on PPC. This removes no more used debugfs_dir pointers from PPC kvm_arch structs. This stops removing vcpu entries as once created vcpus stay around for the entire life of a VM and removed when the KVM instance is closed, see commit d56f5136b010 ("KVM: let kvm_destroy_vm_debugfs clean up vCPU debugfs directories"). Suggested-by: Fabiano Rosas <farosas@linux.ibm.com> Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20220111005404.162219-1-aik@ozlabs.ru
2021-12-19Merge branch 'topic/ppc-kvm' of ↵Paolo Bonzini1-2/+2
https://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux into HEAD Fix conflicts between memslot overhaul and commit 511d25d6b789f ("KVM: PPC: Book3S: Suppress warnings when allocating too big memory slots") from the powerpc tree.
2021-12-08KVM: PPC: Avoid referencing userspace memory region in memslot updatesSean Christopherson1-4/+0
For PPC HV, get the number of pages directly from the new memslot instead of computing the same from the userspace memory region, and explicitly check for !DELETE instead of inferring the same when toggling mmio_update. The motivation for these changes is to avoid referencing the @mem param so that it can be dropped in a future commit. No functional change intended. Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com> Message-Id: <1e97fb5198be25f98ef82e63a8d770c682264cc9.1638817639.git.maciej.szmigiero@oracle.com>
2021-12-08KVM: Let/force architectures to deal with arch specific memslot dataSean Christopherson1-4/+6
Pass the "old" slot to kvm_arch_prepare_memory_region() and force arch code to handle propagating arch specific data from "new" to "old" when necessary. This is a baby step towards dynamically allocating "new" from the get go, and is a (very) minor performance boost on x86 due to not unnecessarily copying arch data. For PPC HV, copy the rmap in the !CREATE and !DELETE paths, i.e. for MOVE and FLAGS_ONLY. This is functionally a nop as the previous behavior would overwrite the pointer for CREATE, and eventually discard/ignore it for DELETE. For x86, copy the arch data only for FLAGS_ONLY changes. Unlike PPC HV, x86 needs to reallocate arch data in the MOVE case as the size of x86's allocations depend on the alignment of the memslot's gfn. Opportunistically tweak kvm_arch_prepare_memory_region()'s param order to match the "commit" prototype. Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com> [mss: add missing RISCV kvm_arch_prepare_memory_region() change] Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com> Message-Id: <67dea5f11bbcfd71e3da5986f11e87f5dd4013f9.1638817639.git.maciej.szmigiero@oracle.com>
2021-11-24KVM: PPC: Book3S HV P9: Remove subcore HMI handlingNicholas Piggin1-0/+1
On POWER9 and newer, rather than the complex HMI synchronisation and subcore state, have each thread un-apply the guest TB offset before calling into the early HMI handler. This allows the subcore state to be avoided, including subcore enter / exit guest, which includes an expensive divide that shows up slightly in profiles. Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20211123095231.1036501-54-npiggin@gmail.com
2021-11-24KVM: PPC: Book3S HV: Split P8 from P9 path guest vCPU TLB flushingNicholas Piggin1-2/+1
This creates separate functions for old and new paths for vCPU TLB flushing, which will reduce complexity of the next change. Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20211123095231.1036501-43-npiggin@gmail.com
2021-08-10KVM: PPC: Book3S HV: XIVE: Change interface of passthrough interrupt routinesCédric Le Goater1-2/+2
The routine kvmppc_set_passthru_irq() calls kvmppc_xive_set_mapped() and kvmppc_xive_clr_mapped() with an IRQ descriptor. Use directly the host IRQ number to remove a useless conversion. Add some debug. Signed-off-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20210701132750.1475580-15-clg@kaod.org
2021-06-10KVM: PPC: Book3S HV: Remove virt mode checks from real mode handlersNicholas Piggin1-9/+1
Now that the P7/8 path no longer supports radix, real-mode handlers do not need to deal with being called in virt mode. This change effectively reverts commit acde25726bc6 ("KVM: PPC: Book3S HV: Add radix checks in real-mode hypercall handlers"). It removes a few more real-mode tests in rm hcall handlers, which allows the indirect ops for the xive module to be removed from the built-in xics rm handlers. kvmppc_h_random is renamed to kvmppc_rm_h_random to be a bit more descriptive and consistent with other rm handlers. Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Reviewed-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20210528090752.3542186-25-npiggin@gmail.com
2021-06-10KVM: PPC: Book3S HV P9: Stop handling hcalls in real-mode in the P9 pathNicholas Piggin1-0/+6
In the interest of minimising the amount of code that is run in "real-mode", don't handle hcalls in real mode in the P9 path. This requires some new handlers for H_CEDE and xics-on-xive to be added before xive is pulled or cede logic is checked. This introduces a change in radix guest behaviour where radix guests that execute 'sc 1' in userspace now get a privilege fault whereas previously the 'sc 1' would be reflected as a syscall interrupt to the guest kernel. That reflection is only required for hash guests that run PR KVM. Background: In POWER8 and earlier processors, it is very expensive to exit from the HV real mode context of a guest hypervisor interrupt, and switch to host virtual mode. On those processors, guest->HV interrupts reach the hypervisor with the MMU off because the MMU is loaded with guest context (LPCR, SDR1, SLB), and the other threads in the sub-core need to be pulled out of the guest too. Then the primary must save off guest state, invalidate SLB and ERAT, and load up host state before the MMU can be enabled to run in host virtual mode (~= regular Linux mode). Hash guests also require a lot of hcalls to run due to the nature of the MMU architecture and paravirtualisation design. The XICS interrupt controller requires hcalls to run. So KVM traditionally tries hard to avoid the full exit, by handling hcalls and other interrupts in real mode as much as possible. By contrast, POWER9 has independent MMU context per-thread, and in radix mode the hypervisor is in host virtual memory mode when the HV interrupt is taken. Radix guests do not require significant hcalls to manage their translations, and xive guests don't need hcalls to handle interrupts. So it's much less important for performance to handle hcalls in real mode on POWER9. One caveat is that the TCE hcalls are performance critical, real-mode variants introduced for POWER8 in order to achieve 10GbE performance. Real mode TCE hcalls were found to be less important on POWER9, which was able to drive 40GBe networking without them (using the virt mode hcalls) but performance is still important. These hcalls will benefit from subsequent guest entry/exit optimisation including possibly a faster "partial exit" that does not entirely switch to host context to handle the hcall. Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20210528090752.3542186-14-npiggin@gmail.com
2021-06-10KVM: PPC: Book3S HV P9: implement kvmppc_xive_pull_vcpu in CNicholas Piggin1-0/+2
This is more symmetric with kvmppc_xive_push_vcpu, and has the advantage that it runs with the MMU on. The extra test added to the asm will go away with a future change. Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Reviewed-by: Cédric Le Goater <clg@kaod.org> Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20210528090752.3542186-9-npiggin@gmail.com
2021-05-01Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds1-5/+4
Pull kvm updates from Paolo Bonzini: "This is a large update by KVM standards, including AMD PSP (Platform Security Processor, aka "AMD Secure Technology") and ARM CoreSight (debug and trace) changes. ARM: - CoreSight: Add support for ETE and TRBE - Stage-2 isolation for the host kernel when running in protected mode - Guest SVE support when running in nVHE mode - Force W^X hypervisor mappings in nVHE mode - ITS save/restore for guests using direct injection with GICv4.1 - nVHE panics now produce readable backtraces - Guest support for PTP using the ptp_kvm driver - Performance improvements in the S2 fault handler x86: - AMD PSP driver changes - Optimizations and cleanup of nested SVM code - AMD: Support for virtual SPEC_CTRL - Optimizations of the new MMU code: fast invalidation, zap under read lock, enable/disably dirty page logging under read lock - /dev/kvm API for AMD SEV live migration (guest API coming soon) - support SEV virtual machines sharing the same encryption context - support SGX in virtual machines - add a few more statistics - improved directed yield heuristics - Lots and lots of cleanups Generic: - Rework of MMU notifier interface, simplifying and optimizing the architecture-specific code - a handful of "Get rid of oprofile leftovers" patches - Some selftests improvements" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (379 commits) KVM: selftests: Speed up set_memory_region_test selftests: kvm: Fix the check of return value KVM: x86: Take advantage of kvm_arch_dy_has_pending_interrupt() KVM: SVM: Skip SEV cache flush if no ASIDs have been used KVM: SVM: Remove an unnecessary prototype declaration of sev_flush_asids() KVM: SVM: Drop redundant svm_sev_enabled() helper KVM: SVM: Move SEV VMCB tracking allocation to sev.c KVM: SVM: Explicitly check max SEV ASID during sev_hardware_setup() KVM: SVM: Unconditionally invoke sev_hardware_teardown() KVM: SVM: Enable SEV/SEV-ES functionality by default (when supported) KVM: SVM: Condition sev_enabled and sev_es_enabled on CONFIG_KVM_AMD_SEV=y KVM: SVM: Append "_enabled" to module-scoped SEV/SEV-ES control variables KVM: SEV: Mask CPUID[0x8000001F].eax according to supported features KVM: SVM: Move SEV module params/variables to sev.c KVM: SVM: Disable SEV/SEV-ES if NPT is disabled KVM: SVM: Free sev_asid_bitmap during init if SEV setup fails KVM: SVM: Zero out the VMCB array used to track SEV ASID association x86/sev: Drop redundant and potentially misleading 'sev_enabled' KVM: x86: Move reverse CPUID helpers to separate header file KVM: x86: Rename GPR accessors to make mode-aware variants the defaults ...
2021-04-17KVM: PPC: Convert to the gfn-based MMU notifier callbacksSean Christopherson1-5/+4
Move PPC to the gfn-base MMU notifier APIs, and update all 15 bajillion PPC-internal hooks to work with gfns instead of hvas. No meaningful functional change intended, though the exact order of operations is slightly different since the memslot lookups occur before calling into arch code. Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20210402005658.3024832-6-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-04-12KVM: PPC: Book3S HV: remove unused kvmppc_h_protect argumentNicholas Piggin1-2/+1
The va argument is not used in the function or set by its asm caller, so remove it to be safe. Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Reviewed-by: Daniel Axtens <dja@axtens.net> Acked-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20210412014845.1517916-8-npiggin@gmail.com
2021-02-23Merge tag 'powerpc-5.12-1' of ↵Linus Torvalds1-5/+5
git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux Pull powerpc updates from Michael Ellerman: - A large series adding wrappers for our interrupt handlers, so that irq/nmi/user tracking can be isolated in the wrappers rather than spread in each handler. - Conversion of the 32-bit syscall handling into C. - A series from Nick to streamline our TLB flushing when using the Radix MMU. - Switch to using queued spinlocks by default for 64-bit server CPUs. - A rework of our PCI probing so that it happens later in boot, when more generic infrastructure is available. - Two small fixes to allow 32-bit little-endian processes to run on 64-bit kernels. - Other smaller features, fixes & cleanups. Thanks to: Alexey Kardashevskiy, Ananth N Mavinakayanahalli, Aneesh Kumar K.V, Athira Rajeev, Bhaskar Chowdhury, Cédric Le Goater, Chengyang Fan, Christophe Leroy, Christopher M. Riedl, Fabiano Rosas, Florian Fainelli, Frederic Barrat, Ganesh Goudar, Hari Bathini, Jiapeng Chong, Joseph J Allen, Kajol Jain, Markus Elfring, Michal Suchanek, Nathan Lynch, Naveen N. Rao, Nicholas Piggin, Oliver O'Halloran, Pingfan Liu, Po-Hsu Lin, Qian Cai, Ram Pai, Randy Dunlap, Sandipan Das, Stephen Rothwell, Tyrel Datwyler, Will Springer, Yury Norov, and Zheng Yongjun. * tag 'powerpc-5.12-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (188 commits) powerpc/perf: Adds support for programming of Thresholding in P10 powerpc/pci: Remove unimplemented prototypes powerpc/uaccess: Merge raw_copy_to_user_allowed() into raw_copy_to_user() powerpc/uaccess: Merge __put_user_size_allowed() into __put_user_size() powerpc/uaccess: get rid of small constant size cases in raw_copy_{to,from}_user() powerpc/64: Fix stack trace not displaying final frame powerpc/time: Remove get_tbl() powerpc/time: Avoid using get_tbl() spi: mpc52xx: Avoid using get_tbl() powerpc/syscall: Avoid storing 'current' in another pointer powerpc/32: Handle bookE debugging in C in syscall entry/exit powerpc/syscall: Do not check unsupported scv vector on PPC32 powerpc/32: Remove the counter in global_dbcr0 powerpc/32: Remove verification of MSR_PR on syscall in the ASM entry powerpc/syscall: implement system call entry/exit logic in C for PPC32 powerpc/32: Always save non volatile GPRs at syscall entry powerpc/syscall: Change condition to check MSR_RI powerpc/syscall: Save r3 in regs->orig_r3 powerpc/syscall: Use is_compat_task() powerpc/syscall: Make interrupt.c buildable on PPC32 ...
2021-02-11powerpc/mm: Add PG_dcache_clean to indicate dcache clean stateAneesh Kumar K.V1-2/+2
This just add a better name for PG_arch_1. No functional change in this patch. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20210203045812.234439-2-aneesh.kumar@linux.ibm.com
2021-02-10KVM: PPC: Don't always report hash MMU capability for P9 < DD2.2Fabiano Rosas1-0/+1
These machines don't support running both MMU types at the same time, so remove the KVM_CAP_PPC_MMU_HASH_V3 capability when the host is using Radix MMU. [paulus@ozlabs.org - added defensive check on kvmppc_hv_ops->hash_v3_possible] Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2021-02-10KVM: PPC: Book3S HV: Introduce new capability for 2nd DAWRRavi Bangoria1-0/+1
Introduce KVM_CAP_PPC_DAWR1 which can be used by QEMU to query whether KVM supports 2nd DAWR or not. The capability is by default disabled even when the underlying CPU supports 2nd DAWR. QEMU needs to check and enable it manually to use the feature. Signed-off-by: Ravi Bangoria <ravi.bangoria@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2021-02-08powerpc: remove unneeded semicolonsChengyang Fan1-3/+3
Remove superfluous semicolons after function definitions. Signed-off-by: Chengyang Fan <cy.fan@huawei.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20210125095338.1719405-1-cy.fan@huawei.com
2020-07-23KVM: PPC: Clean up redundant kvm_run parameters in assemblyTianjia Zhang1-1/+1
In the current kvm version, 'kvm_run' has been included in the 'kvm_vcpu' structure. For historical reasons, many kvm-related function parameters retain the 'kvm_run' and 'kvm_vcpu' parameters at the same time. This patch does a unified cleanup of these remaining redundant parameters. [paulus@ozlabs.org - Fixed places that were missed in book3s_interrupts.S] Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2020-05-27KVM: PPC: Clean up redundant 'kvm_run' parametersTianjia Zhang1-14/+13
In the current kvm version, 'kvm_run' has been included in the 'kvm_vcpu' structure. For historical reasons, many kvm-related function parameters retain the 'kvm_run' and 'kvm_vcpu' parameters at the same time. This patch does a unified cleanup of these remaining redundant parameters. Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com> Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com> Reviewed-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2020-03-26KVM: PPC: Book3S HV: Add a capability for enabling secure guestsPaul Mackerras1-0/+1
At present, on Power systems with Protected Execution Facility hardware and an ultravisor, a KVM guest can transition to being a secure guest at will. Userspace (QEMU) has no way of knowing whether a host system is capable of running secure guests. This will present a problem in future when the ultravisor is capable of migrating secure guests from one host to another, because virtualization management software will have no way to ensure that secure guests only run in domains where all of the hosts can support secure guests. This adds a VM capability which has two functions: (a) userspace can query it to find out whether the host can support secure guests, and (b) userspace can enable it for a guest, which allows that guest to become a secure guest. If userspace does not enable it, KVM will return an error when the ultravisor does the hypercall that indicates that the guest is starting to transition to a secure guest. The ultravisor will then abort the transition and the guest will terminate. Signed-off-by: Paul Mackerras <paulus@ozlabs.org> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Ram Pai <linuxram@us.ibm.com>
2020-03-19KVM: PPC: Kill kvmppc_ops::mmu_destroy() and kvmppc_mmu_destroy()Greg Kurz1-2/+0
These are only used by HV KVM and BookE, and in both cases they are nops. Signed-off-by: Greg Kurz <groug@kaod.org> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2020-03-19KVM: PPC: Book3S PR: Move kvmppc_mmu_init() into PR KVMGreg Kurz1-1/+0
This is only relevant to PR KVM. Make it obvious by moving the function declaration to the Book3s header and rename it with a _pr suffix. Signed-off-by: Greg Kurz <groug@kaod.org> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2020-03-16KVM: Simplify kvm_free_memslot() and all its descendentsSean Christopherson1-4/+2
Now that all callers of kvm_free_memslot() pass NULL for @dont, remove the param from the top-level routine and all arch's implementations. No functional change intended. Tested-by: Christoffer Dall <christoffer.dall@arm.com> Reviewed-by: Peter Xu <peterx@redhat.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16KVM: PPC: Move memslot memory allocation into prepare_memory_region()Sean Christopherson1-7/+4
Allocate the rmap array during kvm_arch_prepare_memory_region() to pave the way for removing kvm_arch_create_memslot() altogether. Moving PPC's memory allocation only changes the order of kernel memory allocations between PPC and common KVM code. No functional change intended. Acked-by: Paul Mackerras <paulus@ozlabs.org> Reviewed-by: Peter Xu <peterx@redhat.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-24KVM: PPC: Move kvm_vcpu_init() invocation to common codeSean Christopherson1-4/+2
Move the kvm_cpu_{un}init() calls to common PPC code as an intermediate step towards removing kvm_cpu_{un}init() altogether. No functional change intended. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-24KVM: PPC: Allocate vcpu struct in common PPC codeSean Christopherson1-3/+4
Move allocation of all flavors of PPC vCPUs to common PPC code. All variants either allocate 'struct kvm_vcpu' directly, or require that the embedded 'struct kvm_vcpu' member be located at offset 0, i.e. guarantee that the allocation can be directly interpreted as a 'struct kvm_vcpu' object. Remove the message from the build-time assertion regarding placement of the struct, as compatibility with the arch usercopy region is no longer the sole dependent on 'struct kvm_vcpu' being at offset zero. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-11-28KVM: PPC: Book3S HV: Support reset of secure guestBharata B Rao1-0/+1
Add support for reset of secure guest via a new ioctl KVM_PPC_SVM_OFF. This ioctl will be issued by QEMU during reset and includes the the following steps: - Release all device pages of the secure guest. - Ask UV to terminate the guest via UV_SVM_TERMINATE ucall - Unpin the VPA pages so that they can be migrated back to secure side when guest becomes secure again. This is required because pinned pages can't be migrated. - Reinit the partition scoped page tables After these steps, guest is ready to issue UV_ESM call once again to switch to secure mode. Signed-off-by: Bharata B Rao <bharata@linux.ibm.com> Signed-off-by: Sukadev Bhattiprolu <sukadev@linux.vnet.ibm.com> [Implementation of uv_svm_terminate() and its call from guest shutdown path] Signed-off-by: Ram Pai <linuxram@us.ibm.com> [Unpinning of VPA pages] Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-10-22KVM: PPC: Book3S: Replace reset_msr mmu op with inject_interrupt arch opNicholas Piggin1-0/+1
reset_msr sets the MSR for interrupt injection, but it's cleaner and more flexible to provide a single op to set both MSR and PC for the interrupt. Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-09-24KVM: PPC: Book3S HV: use smp_mb() when setting/clearing host_ipi flagMichael Roth1-3/+97
On a 2-socket Power9 system with 32 cores/128 threads (SMT4) and 1TB of memory running the following guest configs: guest A: - 224GB of memory - 56 VCPUs (sockets=1,cores=28,threads=2), where: VCPUs 0-1 are pinned to CPUs 0-3, VCPUs 2-3 are pinned to CPUs 4-7, ... VCPUs 54-55 are pinned to CPUs 108-111 guest B: - 4GB of memory - 4 VCPUs (sockets=1,cores=4,threads=1) with the following workloads (with KSM and THP enabled in all): guest A: stress --cpu 40 --io 20 --vm 20 --vm-bytes 512M guest B: stress --cpu 4 --io 4 --vm 4 --vm-bytes 512M host: stress --cpu 4 --io 4 --vm 2 --vm-bytes 256M the below soft-lockup traces were observed after an hour or so and persisted until the host was reset (this was found to be reliably reproducible for this configuration, for kernels 4.15, 4.18, 5.0, and 5.3-rc5): [ 1253.183290] rcu: INFO: rcu_sched self-detected stall on CPU [ 1253.183319] rcu: 124-....: (5250 ticks this GP) idle=10a/1/0x4000000000000002 softirq=5408/5408 fqs=1941 [ 1256.287426] watchdog: BUG: soft lockup - CPU#105 stuck for 23s! [CPU 52/KVM:19709] [ 1264.075773] watchdog: BUG: soft lockup - CPU#24 stuck for 23s! [worker:19913] [ 1264.079769] watchdog: BUG: soft lockup - CPU#31 stuck for 23s! [worker:20331] [ 1264.095770] watchdog: BUG: soft lockup - CPU#45 stuck for 23s! [worker:20338] [ 1264.131773] watchdog: BUG: soft lockup - CPU#64 stuck for 23s! [avocado:19525] [ 1280.408480] watchdog: BUG: soft lockup - CPU#124 stuck for 22s! [ksmd:791] [ 1316.198012] rcu: INFO: rcu_sched self-detected stall on CPU [ 1316.198032] rcu: 124-....: (21003 ticks this GP) idle=10a/1/0x4000000000000002 softirq=5408/5408 fqs=8243 [ 1340.411024] watchdog: BUG: soft lockup - CPU#124 stuck for 22s! [ksmd:791] [ 1379.212609] rcu: INFO: rcu_sched self-detected stall on CPU [ 1379.212629] rcu: 124-....: (36756 ticks this GP) idle=10a/1/0x4000000000000002 softirq=5408/5408 fqs=14714 [ 1404.413615] watchdog: BUG: soft lockup - CPU#124 stuck for 22s! [ksmd:791] [ 1442.227095] rcu: INFO: rcu_sched self-detected stall on CPU [ 1442.227115] rcu: 124-....: (52509 ticks this GP) idle=10a/1/0x4000000000000002 softirq=5408/5408 fqs=21403 [ 1455.111787] INFO: task worker:19907 blocked for more than 120 seconds. [ 1455.111822] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1 [ 1455.111833] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 1455.111884] INFO: task worker:19908 blocked for more than 120 seconds. [ 1455.111905] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1 [ 1455.111925] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 1455.111966] INFO: task worker:20328 blocked for more than 120 seconds. [ 1455.111986] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1 [ 1455.111998] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 1455.112048] INFO: task worker:20330 blocked for more than 120 seconds. [ 1455.112068] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1 [ 1455.112097] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 1455.112138] INFO: task worker:20332 blocked for more than 120 seconds. [ 1455.112159] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1 [ 1455.112179] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 1455.112210] INFO: task worker:20333 blocked for more than 120 seconds. [ 1455.112231] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1 [ 1455.112242] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 1455.112282] INFO: task worker:20335 blocked for more than 120 seconds. [ 1455.112303] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1 [ 1455.112332] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 1455.112372] INFO: task worker:20336 blocked for more than 120 seconds. [ 1455.112392] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1 CPUs 45, 24, and 124 are stuck on spin locks, likely held by CPUs 105 and 31. CPUs 105 and 31 are stuck in smp_call_function_many(), waiting on target CPU 42. For instance: # CPU 105 registers (via xmon) R00 = c00000000020b20c R16 = 00007d1bcd800000 R01 = c00000363eaa7970 R17 = 0000000000000001 R02 = c0000000019b3a00 R18 = 000000000000006b R03 = 000000000000002a R19 = 00007d537d7aecf0 R04 = 000000000000002a R20 = 60000000000000e0 R05 = 000000000000002a R21 = 0801000000000080 R06 = c0002073fb0caa08 R22 = 0000000000000d60 R07 = c0000000019ddd78 R23 = 0000000000000001 R08 = 000000000000002a R24 = c00000000147a700 R09 = 0000000000000001 R25 = c0002073fb0ca908 R10 = c000008ffeb4e660 R26 = 0000000000000000 R11 = c0002073fb0ca900 R27 = c0000000019e2464 R12 = c000000000050790 R28 = c0000000000812b0 R13 = c000207fff623e00 R29 = c0002073fb0ca808 R14 = 00007d1bbee00000 R30 = c0002073fb0ca800 R15 = 00007d1bcd600000 R31 = 0000000000000800 pc = c00000000020b260 smp_call_function_many+0x3d0/0x460 cfar= c00000000020b270 smp_call_function_many+0x3e0/0x460 lr = c00000000020b20c smp_call_function_many+0x37c/0x460 msr = 900000010288b033 cr = 44024824 ctr = c000000000050790 xer = 0000000000000000 trap = 100 CPU 42 is running normally, doing VCPU work: # CPU 42 stack trace (via xmon) [link register ] c00800001be17188 kvmppc_book3s_radix_page_fault+0x90/0x2b0 [kvm_hv] [c000008ed3343820] c000008ed3343850 (unreliable) [c000008ed33438d0] c00800001be11b6c kvmppc_book3s_hv_page_fault+0x264/0xe30 [kvm_hv] [c000008ed33439d0] c00800001be0d7b4 kvmppc_vcpu_run_hv+0x8dc/0xb50 [kvm_hv] [c000008ed3343ae0] c00800001c10891c kvmppc_vcpu_run+0x34/0x48 [kvm] [c000008ed3343b00] c00800001c10475c kvm_arch_vcpu_ioctl_run+0x244/0x420 [kvm] [c000008ed3343b90] c00800001c0f5a78 kvm_vcpu_ioctl+0x470/0x7c8 [kvm] [c000008ed3343d00] c000000000475450 do_vfs_ioctl+0xe0/0xc70 [c000008ed3343db0] c0000000004760e4 ksys_ioctl+0x104/0x120 [c000008ed3343e00] c000000000476128 sys_ioctl+0x28/0x80 [c000008ed3343e20] c00000000000b388 system_call+0x5c/0x70 --- Exception: c00 (System Call) at 00007d545cfd7694 SP (7d53ff7edf50) is in userspace It was subsequently found that ipi_message[PPC_MSG_CALL_FUNCTION] was set for CPU 42 by at least 1 of the CPUs waiting in smp_call_function_many(), but somehow the corresponding call_single_queue entries were never processed by CPU 42, causing the callers to spin in csd_lock_wait() indefinitely. Nick Piggin suggested something similar to the following sequence as a possible explanation (interleaving of CALL_FUNCTION/RESCHEDULE IPI messages seems to be most common, but any mix of CALL_FUNCTION and !CALL_FUNCTION messages could trigger it): CPU X: smp_muxed_ipi_set_message(): X: smp_mb() X: message[RESCHEDULE] = 1 X: doorbell_global_ipi(42): X: kvmppc_set_host_ipi(42, 1) X: ppc_msgsnd_sync()/smp_mb() X: ppc_msgsnd() -> 42 42: doorbell_exception(): // from CPU X 42: ppc_msgsync() 105: smp_muxed_ipi_set_message(): 105: smb_mb() // STORE DEFERRED DUE TO RE-ORDERING --105: message[CALL_FUNCTION] = 1 | 105: doorbell_global_ipi(42): | 105: kvmppc_set_host_ipi(42, 1) | 42: kvmppc_set_host_ipi(42, 0) | 42: smp_ipi_demux_relaxed() | 42: // returns to executing guest | // RE-ORDERED STORE COMPLETES ->105: message[CALL_FUNCTION] = 1 105: ppc_msgsnd_sync()/smp_mb() 105: ppc_msgsnd() -> 42 42: local_paca->kvm_hstate.host_ipi == 0 // IPI ignored 105: // hangs waiting on 42 to process messages/call_single_queue This can be prevented with an smp_mb() at the beginning of kvmppc_set_host_ipi(), such that stores to message[<type>] (or other state indicated by the host_ipi flag) are ordered vs. the store to to host_ipi. However, doing so might still allow for the following scenario (not yet observed): CPU X: smp_muxed_ipi_set_message(): X: smp_mb() X: message[RESCHEDULE] = 1 X: doorbell_global_ipi(42): X: kvmppc_set_host_ipi(42, 1) X: ppc_msgsnd_sync()/smp_mb() X: ppc_msgsnd() -> 42 42: doorbell_exception(): // from CPU X 42: ppc_msgsync() // STORE DEFERRED DUE TO RE-ORDERING -- 42: kvmppc_set_host_ipi(42, 0) | 42: smp_ipi_demux_relaxed() | 105: smp_muxed_ipi_set_message(): | 105: smb_mb() | 105: message[CALL_FUNCTION] = 1 | 105: doorbell_global_ipi(42): | 105: kvmppc_set_host_ipi(42, 1) | // RE-ORDERED STORE COMPLETES -> 42: kvmppc_set_host_ipi(42, 0) 42: // returns to executing guest 105: ppc_msgsnd_sync()/smp_mb() 105: ppc_msgsnd() -> 42 42: local_paca->kvm_hstate.host_ipi == 0 // IPI ignored 105: // hangs waiting on 42 to process messages/call_single_queue Fixing this scenario would require an smp_mb() *after* clearing host_ipi flag in kvmppc_set_host_ipi() to order the store vs. subsequent processing of IPI messages. To handle both cases, this patch splits kvmppc_set_host_ipi() into separate set/clear functions, where we execute smp_mb() prior to setting host_ipi flag, and after clearing host_ipi flag. These functions pair with each other to synchronize the sender and receiver sides. With that change in place the above workload ran for 20 hours without triggering any lock-ups. Fixes: 755563bc79c7 ("powerpc/powernv: Fixes for hypervisor doorbell handling") # v4.0 Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com> Acked-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20190911223155.16045-1-mdroth@linux.vnet.ibm.com
2019-08-27KVM: PPC: Book3S: Enable XIVE native capability only if OPAL has required ↵Paul Mackerras1-0/+1
functions There are some POWER9 machines where the OPAL firmware does not support the OPAL_XIVE_GET_QUEUE_STATE and OPAL_XIVE_SET_QUEUE_STATE calls. The impact of this is that a guest using XIVE natively will not be able to be migrated successfully. On the source side, the get_attr operation on the KVM native device for the KVM_DEV_XIVE_GRP_EQ_CONFIG attribute will fail; on the destination side, the set_attr operation for the same attribute will fail. This adds tests for the existence of the OPAL get/set queue state functions, and if they are not supported, the XIVE-native KVM device is not created and the KVM_CAP_PPC_IRQ_XIVE capability returns false. Userspace can then either provide a software emulation of XIVE, or else tell the guest that it does not have a XIVE controller available to it. Cc: stable@vger.kernel.org # v5.2+ Fixes: 3fab2d10588e ("KVM: PPC: Book3S HV: XIVE: Activate XIVE exploitation mode") Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-06-05treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 266Thomas Gleixner1-12/+1
Based on 1 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license version 2 as published by the free software foundation this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details you should have received a copy of the gnu general public license along with this program if not write to the free software foundation 51 franklin street fifth floor boston ma 02110 1301 usa extracted by the scancode license scanner the SPDX license identifier GPL-2.0-only has been chosen to replace the boilerplate/reference in 67 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Allison Randal <allison@lohutok.net> Reviewed-by: Richard Fontana <rfontana@redhat.com> Reviewed-by: Alexios Zavras <alexios.zavras@intel.com> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190529141333.953658117@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-30KVM: PPC: Book3S HV: XIVE: Add get/set accessors for the VP XIVE stateCédric Le Goater1-0/+11
The state of the thread interrupt management registers needs to be collected for migration. These registers are cached under the 'xive_saved_state.w01' field of the VCPU when the VPCU context is pulled from the HW thread. An OPAL call retrieves the backup of the IPB register in the underlying XIVE NVT structure and merges it in the KVM state. Signed-off-by: Cédric Le Goater <clg@kaod.org> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30KVM: PPC: Book3S HV: XIVE: Introduce a new capability KVM_CAP_PPC_IRQ_XIVECédric Le Goater1-0/+13
The user interface exposes a new capability KVM_CAP_PPC_IRQ_XIVE to let QEMU connect the vCPU presenters to the XIVE KVM device if required. The capability is not advertised for now as the full support for the XIVE native exploitation mode is not yet available. When this is case, the capability will be advertised on PowerNV Hypervisors only. Nested guests (pseries KVM Hypervisor) are not supported. Internally, the interface to the new KVM device is protected with a new interrupt mode: KVMPPC_IRQ_XIVE. Signed-off-by: Cédric Le Goater <clg@kaod.org> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30KVM: PPC: Book3S HV: Add a new KVM device for the XIVE native exploitation modeCédric Le Goater1-0/+8
This is the basic framework for the new KVM device supporting the XIVE native exploitation mode. The user interface exposes a new KVM device to be created by QEMU, only available when running on a L0 hypervisor. Support for nested guests is not available yet. The XIVE device reuses the device structure of the XICS-on-XIVE device as they have a lot in common. That could possibly change in the future if the need arise. Signed-off-by: Cédric Le Goater <clg@kaod.org> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30KVM: PPC: Book3S HV: Flush TLB on secondary radix threadsPaul Mackerras1-1/+2
When running on POWER9 with kvm_hv.indep_threads_mode = N and the host in SMT1 mode, KVM will run guest VCPUs on offline secondary threads. If those guests are in radix mode, we fail to load the LPID and flush the TLB if necessary, leading to the guest crashing with an unsupported MMU fault. This arises from commit 9a4506e11b97 ("KVM: PPC: Book3S HV: Make radix handle process scoped LPID flush in C, with relocation on", 2018-05-17), which didn't consider the case where indep_threads_mode = N. For simplicity, this makes the real-mode guest entry path flush the TLB in the same place for both radix and hash guests, as we did before 9a4506e11b97, though the code is now C code rather than assembly code. We also have the radix TLB flush open-coded rather than calling radix__local_flush_tlb_lpid_guest(), because the TLB flush can be called in real mode, and in real mode we don't want to invoke the tracepoint code. Fixes: 9a4506e11b97 ("KVM: PPC: Book3S HV: Make radix handle process scoped LPID flush in C, with relocation on") Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30KVM: PPC: Book3S HV: Move HPT guest TLB flushing to C codePaul Mackerras1-0/+2
This replaces assembler code in book3s_hv_rmhandlers.S that checks the kvm->arch.need_tlb_flush cpumask and optionally does a TLB flush with C code in book3s_hv_builtin.c. Note that unlike the radix version, the hash version doesn't do an explicit ERAT invalidation because we will invalidate and load up the SLB before entering the guest, and that will invalidate the ERAT. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30KVM: PPC: Book3S: Allocate guest TCEs on demand tooAlexey Kardashevskiy1-2/+0
We already allocate hardware TCE tables in multiple levels and skip intermediate levels when we can, now it is a turn of the KVM TCE tables. Thankfully these are allocated already in 2 levels. This moves the table's last level allocation from the creating helper to kvmppc_tce_put() and kvm_spapr_tce_fault(). Since such allocation cannot be done in real mode, this creates a virtual mode version of kvmppc_tce_put() which handles allocations. This adds kvmppc_rm_ioba_validate() to do an additional test if the consequent kvmppc_tce_put() needs a page which has not been allocated; if this is the case, we bail out to virtual mode handlers. The allocations are protected by a new mutex as kvm->lock is not suitable for the task because the fault handler is called with the mmap_sem held but kvmhv_setup_mmu() locks kvm->lock and mmap_sem in the reverse order. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30KVM: PPC: Book3S HV: Avoid lockdep debugging in TCE realmode handlersAlexey Kardashevskiy1-2/+0
The kvmppc_tce_to_ua() helper is called from real and virtual modes and it works fine as long as CONFIG_DEBUG_LOCKDEP is not enabled. However if the lockdep debugging is on, the lockdep will most likely break in kvm_memslots() because of srcu_dereference_check() so we need to use PPC-own kvm_memslots_raw() which uses realmode safe rcu_dereference_raw_notrace(). This creates a realmode copy of kvmppc_tce_to_ua() which replaces kvm_memslots() with kvm_memslots_raw(). Since kvmppc_rm_tce_to_ua() becomes static and can only be used inside HV KVM, this moves it earlier under CONFIG_KVM_BOOK3S_HV_POSSIBLE. This moves truly virtual-mode kvmppc_tce_to_ua() to where it belongs and drops the prmap parameter which was never used in the virtual mode. Fixes: d3695aa4f452 ("KVM: PPC: Add support for multiple-TCE hcalls", 2016-02-15) Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-04-30KVM: PPC: Book3S HV: Implement real mode H_PAGE_INIT handlerSuraj Jitindar Singh1-0/+2
Implement a real mode handler for the H_CALL H_PAGE_INIT which can be used to zero or copy a guest page. The page is defined to be 4k and must be 4k aligned. The in-kernel real mode handler halves the time to handle this H_CALL compared to handling it in userspace for a hash guest. Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-02-27KVM: PPC: Fix compilation when KVM is not enabledPaul Mackerras1-1/+1
Compiling with CONFIG_PPC_POWERNV=y and KVM disabled currently gives an error like this: CC arch/powerpc/kernel/dbell.o In file included from arch/powerpc/kernel/dbell.c:20:0: arch/powerpc/include/asm/kvm_ppc.h: In function ‘xics_on_xive’: arch/powerpc/include/asm/kvm_ppc.h:625:9: error: implicit declaration of function ‘xive_enabled’ [-Werror=implicit-function-declaration] return xive_enabled() && cpu_has_feature(CPU_FTR_HVMODE); ^ cc1: all warnings being treated as errors scripts/Makefile.build:276: recipe for target 'arch/powerpc/kernel/dbell.o' failed make[3]: *** [arch/powerpc/kernel/dbell.o] Error 1 Fix this by making the xics_on_xive() definition conditional on the same symbol (CONFIG_KVM_BOOK3S_64_HANDLER) that determines whether we include <asm/xive.h> or not, since that's the header that defines xive_enabled(). Fixes: 03f953329bd8 ("KVM: PPC: Book3S: Allow XICS emulation to work in nested hosts using XIVE") Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-02-22Merge remote-tracking branch 'remotes/powerpc/topic/ppc-kvm' into kvm-ppc-nextPaul Mackerras1-1/+2
This merges in the "ppc-kvm" topic branch of the powerpc tree to get a series of commits that touch both general arch/powerpc code and KVM code. These commits will be merged both via the KVM tree and the powerpc tree. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
2019-02-21KVM: PPC: Book3S HV: Simplify machine check handlingPaul Mackerras1-1/+2
This makes the handling of machine check interrupts that occur inside a guest simpler and more robust, with less done in assembler code and in real mode. Now, when a machine check occurs inside a guest, we always get the machine check event struct and put a copy in the vcpu struct for the vcpu where the machine check occurred. We no longer call machine_check_queue_event() from kvmppc_realmode_mc_power7(), because on POWER8, when a vcpu is running on an offline secondary thread and we call machine_check_queue_event(), that calls irq_work_queue(), which doesn't work because the CPU is offline, but instead triggers the WARN_ON(lazy_irq_pending()) in pnv_smp_cpu_kill_self() (which fires again and again because nothing clears the condition). All that machine_check_queue_event() actually does is to cause the event to be printed to the console. For a machine check occurring in the guest, we now print the event in kvmppc_handle_exit_hv() instead. The assembly code at label machine_check_realmode now just calls C code and then continues exiting the guest. We no longer either synthesize a machine check for the guest in assembly code or return to the guest without a machine check. The code in kvmppc_handle_exit_hv() is extended to handle the case where the guest is not FWNMI-capable. In that case we now always synthesize a machine check interrupt for the guest. Previously, if the host thinks it has recovered the machine check fully, it would return to the guest without any notification that the machine check had occurred. If the machine check was caused by some action of the guest (such as creating duplicate SLB entries), it is much better to tell the guest that it has caused a problem. Therefore we now always generate a machine check interrupt for guests that are not FWNMI-capable. Reviewed-by: Aravinda Prasad <aravinda@linux.vnet.ibm.com> Reviewed-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>