summaryrefslogtreecommitdiff
path: root/arch/arm64/include/asm
AgeCommit message (Collapse)AuthorFilesLines
2020-12-09Merge remote-tracking branch 'origin/kvm-arm64/psci-relay' into ↵Marc Zyngier24-402/+704
kvmarm-master/next Signed-off-by: Marc Zyngier <maz@kernel.org>
2020-12-04KVM: arm64: Fix EL2 mode availability checksDavid Brazdil1-0/+18
With protected nVHE hyp code interception host's PSCI SMCs, the host starts seeing new CPUs boot in EL1 instead of EL2. The kernel logic that keeps track of the boot mode needs to be adjusted. Add a static key enabled if KVM protected mode initialization is successful. When the key is enabled, is_hyp_mode_available continues to report `true` because its users either treat it as a check whether KVM will be / was initialized, or whether stub HVCs can be made (eg. hibernate). is_hyp_mode_mismatched is changed to report `false` when the key is enabled. That's because all cores' modes matched at the point of KVM init and KVM will not allow cores not present at init to boot. That said, the function is never used after KVM is initialized. Signed-off-by: David Brazdil <dbrazdil@google.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20201202184122.26046-27-dbrazdil@google.com
2020-12-04KVM: arm64: Trap host SMCs in protected modeDavid Brazdil1-0/+1
While protected KVM is installed, start trapping all host SMCs. For now these are simply forwarded to EL3, except PSCI CPU_ON/CPU_SUSPEND/SYSTEM_SUSPEND which are intercepted and the hypervisor installed on newly booted cores. Create new constant HCR_HOST_NVHE_PROTECTED_FLAGS with the new set of HCR flags to use while the nVHE vector is installed when the kernel was booted with the protected flag enabled. Switch back to the default HCR flags when switching back to the stub vector. Signed-off-by: David Brazdil <dbrazdil@google.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20201202184122.26046-26-dbrazdil@google.com
2020-12-04KVM: arm64: Bootstrap PSCI SMC handler in nVHE EL2David Brazdil1-0/+2
Add a handler of PSCI SMCs in nVHE hyp code. The handler is initialized with the version used by the host's PSCI driver and the function IDs it was configured with. If the SMC function ID matches one of the configured PSCI calls (for v0.1) or falls into the PSCI function ID range (for v0.2+), the SMC is handled by the PSCI handler. For now, all SMCs return PSCI_RET_NOT_SUPPORTED. Signed-off-by: David Brazdil <dbrazdil@google.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20201202184122.26046-17-dbrazdil@google.com
2020-12-04KVM: arm64: Support per_cpu_ptr in nVHE hyp codeDavid Brazdil1-0/+6
When compiling with __KVM_NVHE_HYPERVISOR__, redefine per_cpu_offset() to __hyp_per_cpu_offset() which looks up the base of the nVHE per-CPU region of the given cpu and computes its offset from the .hyp.data..percpu section. This enables use of per_cpu_ptr() helpers in nVHE hyp code. Until now only this_cpu_ptr() was supported by setting TPIDR_EL2. Signed-off-by: David Brazdil <dbrazdil@google.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20201202184122.26046-14-dbrazdil@google.com
2020-12-04KVM: arm64: Add .hyp.data..ro_after_init ELF sectionDavid Brazdil1-0/+1
Add rules for renaming the .data..ro_after_init ELF section in KVM nVHE object files to .hyp.data..ro_after_init, linking it into the kernel and mapping it in hyp at runtime. The section is RW to the host, then mapped RO in hyp. The expectation is that the host populates the variables in the section and they are never changed by hyp afterwards. Signed-off-by: David Brazdil <dbrazdil@google.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20201202184122.26046-13-dbrazdil@google.com
2020-12-04KVM: arm64: Init MAIR/TCR_EL2 from params structDavid Brazdil1-0/+2
MAIR_EL2 and TCR_EL2 are currently initialized from their _EL1 values. This will not work once KVM starts intercepting PSCI ON/SUSPEND SMCs and initializing EL2 state before EL1 state. Obtain the EL1 values during KVM init and store them in the init params struct. The struct will stay in memory and can be used when booting new cores. Take the opportunity to move copying the T0SZ value from idmap_t0sz in KVM init rather than in .hyp.idmap.text. This avoids the need for the idmap_t0sz symbol alias. Signed-off-by: David Brazdil <dbrazdil@google.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20201202184122.26046-12-dbrazdil@google.com
2020-12-04KVM: arm64: Move hyp-init params to a per-CPU structDavid Brazdil2-1/+7
Once we start initializing KVM on newly booted cores before the rest of the kernel, parameters to __do_hyp_init will need to be provided by EL2 rather than EL1. At that point it will not be possible to pass its three arguments directly because PSCI_CPU_ON only supports one context argument. Refactor __do_hyp_init to accept its parameters in a struct. This prepares the code for KVM booting cores as well as removes any limits on the number of __do_hyp_init arguments. Signed-off-by: David Brazdil <dbrazdil@google.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20201202184122.26046-11-dbrazdil@google.com
2020-12-04KVM: arm64: Remove vector_ptr param of hyp-initDavid Brazdil2-2/+24
KVM precomputes the hyp VA of __kvm_hyp_host_vector, essentially a constant (minus ASLR), before passing it to __kvm_hyp_init. Now that we have alternatives for converting kimg VA to hyp VA, replace this with computing the constant inside __kvm_hyp_init, thus removing the need for an argument. Signed-off-by: David Brazdil <dbrazdil@google.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20201202184122.26046-10-dbrazdil@google.com
2020-12-04arm64: Extract parts of el2_setup into a macroDavid Brazdil1-0/+181
When a CPU is booted in EL2, the kernel checks for VHE support and initializes the CPU core accordingly. For nVHE it also installs the stub vectors and drops down to EL1. Once KVM gains the ability to boot cores without going through the kernel entry point, it will need to initialize the CPU the same way. Extract the relevant bits of el2_setup into an init_el2_state macro with an argument specifying whether to initialize for VHE or nVHE. The following ifdefs are removed: * CONFIG_ARM_GIC_V3 - always selected on arm64 * CONFIG_COMPAT - hstr_el2 can be set even without 32-bit support No functional change intended. Size of el2_setup increased by 148 bytes due to duplication. Signed-off-by: David Brazdil <dbrazdil@google.com> [maz: reworked to fit the new PSTATE initial setup code] Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20201202184122.26046-9-dbrazdil@google.com
2020-12-04arm64: Make cpu_logical_map() take unsigned intDavid Brazdil1-2/+2
CPU index should never be negative. Change the signature of (set_)cpu_logical_map to take an unsigned int. This still works even if the users treat the CPU index as an int, and will allow the hypervisor's implementation to check that the index is valid with a single upper-bound check. Signed-off-by: David Brazdil <dbrazdil@google.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20201202184122.26046-8-dbrazdil@google.com
2020-12-04KVM: arm64: Add ARM64_KVM_PROTECTED_MODE CPU capabilityDavid Brazdil3-1/+11
Expose the boolean value whether the system is running with KVM in protected mode (nVHE + kernel param). CPU capability was selected over a global variable to allow use in alternatives. Signed-off-by: David Brazdil <dbrazdil@google.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20201202184122.26046-3-dbrazdil@google.com
2020-12-04KVM: arm64: Add kvm-arm.mode early kernel parameterDavid Brazdil1-0/+9
Add an early parameter that allows users to select the mode of operation for KVM/arm64. For now, the only supported value is "protected". By passing this flag users opt into the hypervisor placing additional restrictions on the host kernel. These allow the hypervisor to spawn guests whose state is kept private from the host. Restrictions will include stage-2 address translation to prevent host from accessing guest memory, filtering its SMC calls, etc. Without this parameter, the default behaviour remains selecting VHE/nVHE based on hardware support and CONFIG_ARM64_VHE. Signed-off-by: David Brazdil <dbrazdil@google.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20201202184122.26046-2-dbrazdil@google.com
2020-12-04Merge remote-tracking branch 'arm64/for-next/uaccess' into HEADMarc Zyngier14-397/+441
Signed-off-by: Marc Zyngier <maz@kernel.org>
2020-12-03Merge remote-tracking branch 'origin/kvm-arm64/csv3' into kvmarm-master/queueMarc Zyngier2-0/+3
Signed-off-by: Marc Zyngier <maz@kernel.org>
2020-12-02arm64: uaccess: remove vestigal UAO supportMark Rutland1-1/+0
Now that arm64 no longer uses UAO, remove the vestigal feature detection code and Kconfig text. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Christoph Hellwig <hch@lst.de> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20201202131558.39270-13-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2020-12-02arm64: uaccess: remove redundant PAN togglingMark Rutland2-41/+19
Some code (e.g. futex) needs to make privileged accesses to userspace memory, and uses uaccess_{enable,disable}_privileged() in order to permit this. All other uaccess primitives use LDTR/STTR, and never need to toggle PAN. Remove the redundant PAN toggling. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Christoph Hellwig <hch@lst.de> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20201202131558.39270-12-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2020-12-02arm64: uaccess: remove addr_limit_user_check()Mark Rutland1-4/+2
Now that set_fs() is gone, addr_limit_user_check() is redundant. Remove the checks and associated thread flag. To ensure that _TIF_WORK_MASK can be used as an immediate value in an AND instruction (as it is in `ret_to_user`), TIF_MTE_ASYNC_FAULT is renumbered to keep the constituent bits of _TIF_WORK_MASK contiguous. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Christoph Hellwig <hch@lst.de> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20201202131558.39270-11-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2020-12-02arm64: uaccess: remove set_fs()Mark Rutland5-45/+8
Now that the uaccess primitives dont take addr_limit into account, we have no need to manipulate this via set_fs() and get_fs(). Remove support for these, along with some infrastructure this renders redundant. We no longer need to flip UAO to access kernel memory under KERNEL_DS, and head.S unconditionally clears UAO for all kernel configurations via an ERET in init_kernel_el. Thus, we don't need to dynamically flip UAO, nor do we need to context-switch it. However, we still need to adjust PAN during SDEI entry. Masking of __user pointers no longer needs to use the dynamic value of addr_limit, and can use a constant derived from the maximum possible userspace task size. A new TASK_SIZE_MAX constant is introduced for this, which is also used by core code. In configurations supporting 52-bit VAs, this may include a region of unusable VA space above a 48-bit TTBR0 limit, but never includes any portion of TTBR1. Note that TASK_SIZE_MAX is an exclusive limit, while USER_DS and KERNEL_DS were inclusive limits, and is converted to a mask by subtracting one. As the SDEI entry code repurposes the otherwise unnecessary pt_regs::orig_addr_limit field to store the TTBR1 of the interrupted context, for now we rename that to pt_regs::sdei_ttbr1. In future we can consider factoring that out. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Acked-by: James Morse <james.morse@arm.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20201202131558.39270-10-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2020-12-02arm64: uaccess cleanup macro namingMark Rutland1-4/+4
Now the uaccess primitives use LDTR/STTR unconditionally, the uao_{ldp,stp,user_alternative} asm macros are misnamed, and have a redundant argument. Let's remove the redundant argument and rename these to user_{ldp,stp,ldst} respectively to clean this up. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Robin Murohy <robin.murphy@arm.com> Cc: Christoph Hellwig <hch@lst.de> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20201202131558.39270-9-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2020-12-02arm64: uaccess: split user/kernel routinesMark Rutland2-65/+47
This patch separates arm64's user and kernel memory access primitives into distinct routines, adding new __{get,put}_kernel_nofault() helpers to access kernel memory, upon which core code builds larger copy routines. The kernel access routines (using LDR/STR) are not affected by PAN (when legitimately accessing kernel memory), nor are they affected by UAO. Switching to KERNEL_DS may set UAO, but this does not adversely affect the kernel access routines. The user access routines (using LDTR/STTR) are not affected by PAN (when legitimately accessing user memory), but are affected by UAO. As these are only legitimate to use under USER_DS with UAO clear, this should not be problematic. Routines performing atomics to user memory (futex and deprecated instruction emulation) still need to transiently clear PAN, and these are left as-is. These are never used on kernel memory. Subsequent patches will refactor the uaccess helpers to remove redundant code, and will also remove the redundant PAN/UAO manipulation. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Christoph Hellwig <hch@lst.de> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20201202131558.39270-8-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2020-12-02arm64: uaccess: refactor __{get,put}_userMark Rutland1-17/+27
As a step towards implementing __{get,put}_kernel_nofault(), this patch splits most user-memory specific logic out of __{get,put}_user(), with the memory access and fault handling in new __{raw_get,put}_mem() helpers. For now the LDR/LDTR patching is left within the *get_mem() helpers, and will be removed in a subsequent patch. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Christoph Hellwig <hch@lst.de> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20201202131558.39270-7-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2020-12-02arm64: uaccess: rename privileged uaccess routinesMark Rutland2-6/+6
We currently have many uaccess_*{enable,disable}*() variants, which subsequent patches will cut down as part of removing set_fs() and friends. Once this simplification is made, most uaccess routines will only need to ensure that the user page tables are mapped in TTBR0, as is currently dealt with by uaccess_ttbr0_{enable,disable}(). The existing uaccess_{enable,disable}() routines ensure that user page tables are mapped in TTBR0, and also disable PAN protections, which is necessary to be able to use atomics on user memory, but also permit unrelated privileged accesses to access user memory. As preparatory step, let's rename uaccess_{enable,disable}() to uaccess_{enable,disable}_privileged(), highlighting this caveat and discouraging wider misuse. Subsequent patches can reuse the uaccess_{enable,disable}() naming for the common case of ensuring the user page tables are mapped in TTBR0. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Christoph Hellwig <hch@lst.de> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20201202131558.39270-5-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2020-12-02arm64: sdei: explicitly simulate PAN/UAO entryMark Rutland1-1/+14
In preparation for removing addr_limit and set_fs() we must decouple the SDEI PAN/UAO manipulation from the uaccess code, and explicitly reinitialize these as required. SDEI enters the kernel with a non-architectural exception, and prior to the most recent revision of the specification (ARM DEN 0054B), PSTATE bits (e.g. PAN, UAO) are not manipulated in the same way as for architectural exceptions. Notably, older versions of the spec can be read ambiguously as to whether PSTATE bits are inherited unchanged from the interrupted context or whether they are generated from scratch, with TF-A doing the latter. We have three cases to consider: 1) The existing TF-A implementation of SDEI will clear PAN and clear UAO (along with other bits in PSTATE) when delivering an SDEI exception. 2) In theory, implementations of SDEI prior to revision B could inherit PAN and UAO (along with other bits in PSTATE) unchanged from the interrupted context. However, in practice such implementations do not exist. 3) Going forward, new implementations of SDEI must clear UAO, and depending on SCTLR_ELx.SPAN must either inherit or set PAN. As we can ignore (2) we can assume that upon SDEI entry, UAO is always clear, though PAN may be clear, inherited, or set per SCTLR_ELx.SPAN. Therefore, we must explicitly initialize PAN, but do not need to do anything for UAO. Considering what we need to do: * When set_fs() is removed, force_uaccess_begin() will have no HW side-effects. As this only clears UAO, which we can assume has already been cleared upon entry, this is not a problem. We do not need to add code to manipulate UAO explicitly. * PAN may be cleared upon entry (in case 1 above), so where a kernel is built to use PAN and this is supported by all CPUs, the kernel must set PAN upon entry to ensure expected behaviour. * PAN may be inherited from the interrupted context (in case 3 above), and so where a kernel is not built to use PAN or where PAN support is not uniform across CPUs, the kernel must clear PAN to ensure expected behaviour. This patch reworks the SDEI code accordingly, explicitly setting PAN to the expected state in all cases. To cater for the cases where the kernel does not use PAN or this is not uniformly supported by hardware we add a new cpu_has_pan() helper which can be used regardless of whether the kernel is built to use PAN. The existing system_uses_ttbr0_pan() is redefined in terms of system_uses_hw_pan() both for clarity and as a minor optimization when HW PAN is not selected. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: James Morse <james.morse@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20201202131558.39270-3-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2020-12-02arm64: head.S: always initialize PSTATEMark Rutland1-0/+5
As with SCTLR_ELx and other control registers, some PSTATE bits are UNKNOWN out-of-reset, and we may not be able to rely on hardware or firmware to initialize them to our liking prior to entry to the kernel, e.g. in the primary/secondary boot paths and return from idle/suspend. It would be more robust (and easier to reason about) if we consistently initialized PSTATE to a default value, as we do with control registers. This will ensure that the kernel is not adversely affected by bits it is not aware of, e.g. when support for a feature such as PAN/UAO is disabled. This patch ensures that PSTATE is consistently initialized at boot time via an ERET. This is not intended to relax the existing requirements (e.g. DAIF bits must still be set prior to entering the kernel). For features detected dynamically (which may require system-wide support), it is still necessary to subsequently modify PSTATE. As ERET is not always a Context Synchronization Event, an ISB is placed before each exception return to ensure updates to control registers have taken effect. This handles the kernel being entered with SCTLR_ELx.EOS clear (or any future control bits being in an UNKNOWN state). Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Christoph Hellwig <hch@lst.de> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20201113124937.20574-6-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2020-12-02arm64: head.S: cleanup SCTLR_ELx initializationMark Rutland1-6/+12
Let's make SCTLR_ELx initialization a bit clearer by using meaningful names for the initialization values, following the same scheme for SCTLR_EL1 and SCTLR_EL2. These definitions will be used more widely in subsequent patches. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Christoph Hellwig <hch@lst.de> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20201113124937.20574-5-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2020-12-02arm64: add C wrappers for SET_PSTATE_*()Mark Rutland1-0/+4
To make callsites easier to read, add trivial C wrappers for the SET_PSTATE_*() helpers, and convert trivial uses over to these. The new wrappers will be used further in subsequent patches. There should be no functional change as a result of this patch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Christoph Hellwig <hch@lst.de> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will@kernel.org> Link: https://lore.kernel.org/r/20201113124937.20574-3-mark.rutland@arm.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2020-11-30KVM: arm64: Advertise ID_AA64PFR0_EL1.CSV3=1 if the CPUs are Meltdown-safeMarc Zyngier1-0/+1
Cores that predate the introduction of ID_AA64PFR0_EL1.CSV3 to the ARMv8 architecture have this field set to 0, even of some of them are not affected by the vulnerability. The kernel maintains a list of unaffected cores (A53, A55 and a few others) so that it doesn't impose an expensive mitigation uncessarily. As we do for CSV2, let's expose the CSV3 property to guests that run on HW that is effectively not vulnerable. This can be reset to zero by writing to the ID register from userspace, ensuring that VMs can be migrated despite the new property being set. Reported-by: Will Deacon <will@kernel.org> Signed-off-by: Marc Zyngier <maz@kernel.org>
2020-11-28arm64: Make the Meltdown mitigation state availableMarc Zyngier1-0/+2
Our Meltdown mitigation state isn't exposed outside of cpufeature.c, contrary to the rest of the Spectre mitigation state. As we are going to use it in KVM, expose a arm64_get_meltdown_state() helper which returns the same possible values as arm64_get_spectre_v?_state(). Signed-off-by: Marc Zyngier <maz@kernel.org>
2020-11-27Merge branch 'kvm-arm64/misc-5.11' into kvmarm-master/nextMarc Zyngier2-2/+8
Signed-off-by: Marc Zyngier <maz@kernel.org>
2020-11-27KVM: arm64: Remove unused __extended_idmap_trampoline() prototypeWill Deacon1-1/+0
__extended_idmap_trampoline() was removed a long time ago by 3421e9d88d7a ("arm64: KVM: Simplify HYP init/teardown") so remove the unused function prototype. Signed-off-by: Will Deacon <will@kernel.org> Signed-off-by: Marc Zyngier <maz@kernel.org> Cc: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20201118194402.2892-4-will@kernel.org
2020-11-27KVM: arm64: Remove kvm_arch_vm_ioctl_check_extension()Will Deacon2-1/+5
kvm_arch_vm_ioctl_check_extension() is only called from kvm_vm_ioctl_check_extension(), so we can inline it and remove the extra function. Signed-off-by: Will Deacon <will@kernel.org> Signed-off-by: Marc Zyngier <maz@kernel.org> Cc: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20201118194402.2892-3-will@kernel.org
2020-11-27KVM: arm64: Move 'struct kvm_arch_memory_slot' out of uapi/Will Deacon1-0/+3
'struct kvm_arch_memory_slot' isn't part of the user ABI, so move it out of the uapi/ headers in case we start using it in future and accidentally back ourselves into a corner. Signed-off-by: Will Deacon <will@kernel.org> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20201118194402.2892-2-will@kernel.org
2020-11-27Merge branch 'kvm-arm64/vector-rework' into kvmarm-master/nextMarc Zyngier5-81/+64
Signed-off-by: Marc Zyngier <maz@kernel.org>
2020-11-27Merge branch 'kvm-arm64/pmu-undef' into kvmarm-master/nextMarc Zyngier1-0/+3
Signed-off-by: Marc Zyngier <maz@kernel.org>
2020-11-27KVM: arm64: Add kvm_vcpu_has_pmu() helperMarc Zyngier1-0/+3
There are a number of places where we check for the KVM_ARM_VCPU_PMU_V3 feature. Wrap this check into a new kvm_vcpu_has_pmu(), and use it at the existing locations. No functional change. Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org>
2020-11-27Merge branch 'kvm-arm64/host-hvc-table' into kvmarm-master/nextMarc Zyngier3-2/+41
Signed-off-by: Marc Zyngier <maz@kernel.org>
2020-11-27Merge branch 'kvm-arm64/copro-no-more' into kvmarm-master/nextMarc Zyngier2-93/+18
Signed-off-by: Marc Zyngier <maz@kernel.org>
2020-11-27Merge branch 'kvm-arm64/el2-pc' into kvmarm-master/nextMarc Zyngier2-57/+131
Signed-off-by: Marc Zyngier <maz@kernel.org>
2020-11-27KVM: arm64: Simplify __kvm_enable_ssbs()Marc Zyngier2-2/+1
Move the setting of SSBS directly into the HVC handler, using the C helpers rather than the inline asssembly code. Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org>
2020-11-27KVM: arm64: Patch kimage_voffset instead of loading the EL1 valueMarc Zyngier1-0/+22
Directly using the kimage_voffset variable is fine for now, but will become more problematic as we start distrusting EL1. Instead, patch the kimage_voffset into the HYP text, ensuring we don't have to load an untrusted value later on. Signed-off-by: Marc Zyngier <maz@kernel.org>
2020-11-16KVM: arm64: Remove redundant hyp vectors entryWill Deacon1-1/+1
The hyp vectors entry corresponding to HYP_VECTOR_DIRECT (i.e. when neither Spectre-v2 nor Spectre-v3a are present) is unused, as we can simply dispatch straight to __kvm_hyp_vector in this case. Remove the redundant vector, and massage the logic for resolving a slot to a vectors entry. Reported-by: Marc Zyngier <maz@kernel.org> Signed-off-by: Will Deacon <will@kernel.org> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20201113113847.21619-11-will@kernel.org
2020-11-16arm64: spectre: Consolidate spectre-v3a detectionWill Deacon1-0/+1
The spectre-v3a mitigation is split between cpu_errata.c and spectre.c, with the former handling detection of the problem and the latter handling enabling of the workaround. Move the detection logic alongside the enabling logic, like we do for the other spectre mitigations. Signed-off-by: Will Deacon <will@kernel.org> Signed-off-by: Marc Zyngier <maz@kernel.org> Cc: Marc Zyngier <maz@kernel.org> Cc: Quentin Perret <qperret@google.com> Link: https://lore.kernel.org/r/20201113113847.21619-10-will@kernel.org
2020-11-16arm64: spectre: Rename ARM64_HARDEN_EL2_VECTORS to ARM64_SPECTRE_V3AWill Deacon2-2/+2
Since ARM64_HARDEN_EL2_VECTORS is really a mitigation for Spectre-v3a, rename it accordingly for consistency with the v2 and v4 mitigation. Signed-off-by: Will Deacon <will@kernel.org> Signed-off-by: Marc Zyngier <maz@kernel.org> Cc: Marc Zyngier <maz@kernel.org> Cc: Quentin Perret <qperret@google.com> Link: https://lore.kernel.org/r/20201113113847.21619-9-will@kernel.org
2020-11-16KVM: arm64: Allocate hyp vectors staticallyWill Deacon2-7/+34
The EL2 vectors installed when a guest is running point at one of the following configurations for a given CPU: - Straight at __kvm_hyp_vector - A trampoline containing an SMC sequence to mitigate Spectre-v2 and then a direct branch to __kvm_hyp_vector - A dynamically-allocated trampoline which has an indirect branch to __kvm_hyp_vector - A dynamically-allocated trampoline containing an SMC sequence to mitigate Spectre-v2 and then an indirect branch to __kvm_hyp_vector The indirect branches mean that VA randomization at EL2 isn't trivially bypassable using Spectre-v3a (where the vector base is readable by the guest). Rather than populate these vectors dynamically, configure everything statically and use an enumerated type to identify the vector "slot" corresponding to one of the configurations above. This both simplifies the code, but also makes it much easier to implement at EL2 later on. Signed-off-by: Will Deacon <will@kernel.org> [maz: fixed double call to kvm_init_vector_slots() on nVHE] Signed-off-by: Marc Zyngier <maz@kernel.org> Cc: Marc Zyngier <maz@kernel.org> Cc: Quentin Perret <qperret@google.com> Link: https://lore.kernel.org/r/20201113113847.21619-8-will@kernel.org
2020-11-16KVM: arm64: Move BP hardening helpers into spectre.hWill Deacon2-29/+30
The BP hardening helpers are an integral part of the Spectre-v2 mitigation, so move them into asm/spectre.h and inline the arm64_get_bp_hardening_data() function at the same time. Signed-off-by: Will Deacon <will@kernel.org> Signed-off-by: Marc Zyngier <maz@kernel.org> Cc: Marc Zyngier <maz@kernel.org> Cc: Quentin Perret <qperret@google.com> Link: https://lore.kernel.org/r/20201113113847.21619-6-will@kernel.org
2020-11-16KVM: arm64: Make BP hardening globals static insteadWill Deacon1-3/+0
Branch predictor hardening of the hyp vectors is partially driven by a couple of global variables ('__kvm_bp_vect_base' and '__kvm_harden_el2_vector_slot'). However, these are only used within a single compilation unit, so internalise them there instead. Signed-off-by: Will Deacon <will@kernel.org> Signed-off-by: Marc Zyngier <maz@kernel.org> Cc: Marc Zyngier <maz@kernel.org> Cc: Quentin Perret <qperret@google.com> Link: https://lore.kernel.org/r/20201113113847.21619-5-will@kernel.org
2020-11-16KVM: arm64: Move kvm_get_hyp_vector() out of header fileWill Deacon1-43/+0
kvm_get_hyp_vector() has only one caller, so move it out of kvm_mmu.h and inline it into a new function, cpu_set_hyp_vector(), for setting the vector. Signed-off-by: Will Deacon <will@kernel.org> Signed-off-by: Marc Zyngier <maz@kernel.org> Cc: Marc Zyngier <maz@kernel.org> Cc: Quentin Perret <qperret@google.com> Link: https://lore.kernel.org/r/20201113113847.21619-4-will@kernel.org
2020-11-15Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds2-0/+6
Pull kvm fixes from Paolo Bonzini: "Fixes for ARM and x86, the latter especially for old processors without two-dimensional paging (EPT/NPT)" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: kvm: mmu: fix is_tdp_mmu_check when the TDP MMU is not in use KVM: SVM: Update cr3_lm_rsvd_bits for AMD SEV guests KVM: x86: Introduce cr3_lm_rsvd_bits in kvm_vcpu_arch KVM: x86: clflushopt should be treated as a no-op by emulation KVM: arm64: Handle SCXTNUM_ELx traps KVM: arm64: Unify trap handlers injecting an UNDEF KVM: arm64: Allow setting of ID_AA64PFR0_EL1.CSV2 from userspace
2020-11-13Merge tag 'arm64-fixes' of ↵Linus Torvalds2-0/+6
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 fixes from Will Deacon: - Spectre/Meltdown safelisting for some Qualcomm KRYO cores - Fix RCU splat when failing to online a CPU due to a feature mismatch - Fix a recently introduced sparse warning in kexec() - Fix handling of CPU erratum 1418040 for late CPUs - Ensure hot-added memory falls within linear-mapped region * tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: arm64: cpu_errata: Apply Erratum 845719 to KRYO2XX Silver arm64: proton-pack: Add KRYO2XX silver CPUs to spectre-v2 safe-list arm64: kpti: Add KRYO2XX gold/silver CPU cores to kpti safelist arm64: Add MIDR value for KRYO2XX gold/silver CPU cores arm64/mm: Validate hotplug range before creating linear mapping arm64: smp: Tell RCU about CPUs that fail to come online arm64: psci: Avoid printing in cpu_psci_cpu_die() arm64: kexec_file: Fix sparse warning arm64: errata: Fix handling of 1418040 with late CPU onlining