Age | Commit message (Collapse) | Author | Files | Lines |
|
Previously pgattr_change_is_safe() was overly-strict and complained
(e.g. "[ 116.262743] __check_safe_pte_update: unsafe attribute change:
0x0560000043768fc3 -> 0x0160000043768fc3") if it saw any SW bits change
in a live PTE. There is no such restriction on SW bits in the Arm ARM.
Until now, no SW bits have been updated in live mappings via the
set_ptes() route. PTE_DIRTY would be updated live, but this is handled
by ptep_set_access_flags() which does not call pgattr_change_is_safe().
However, with the introduction of uffd-wp for arm64, there is core-mm
code that does ptep_get(); pte_clear_uffd_wp(); set_ptes(); which
triggers this false warning.
Silence this warning by masking out the SW bits during checks.
The bug isn't technically in the highlighted commit below, but that's
where bisecting would likely lead as its what made the bug user-visible.
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Fixes: 5b32510af77b ("arm64/mm: Add uffd write-protect support")
Link: https://lore.kernel.org/r/20240619121859.4153966-1-ryan.roberts@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
FEAT_NV has the interesting property of relying on ERET being
trapped. An added complexity is that it also traps ERETAA and
ERETAB, meaning that the Pointer Authentication aspect of these
instruction must be emulated.
Add an emulation of Pointer Authentication, limited to ERETAx
(always using SP_EL2 as the modifier and ELR_EL2 as the pointer),
using the Generic Authentication instructions.
The emulation, however small, is placed in its own compilation
unit so that it can be avoided if the configuration doesn't
include it (or the toolchan in not up to the task).
Reviewed-by: Joey Gouly <joey.gouly@arm.com>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Link: https://lore.kernel.org/r/20240419102935.1935571-13-maz@kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
Add the required types and descriptor accessors to support 5 levels of
paging in the common code. This is one of the prerequisites for
supporting 52-bit virtual addressing with 4k pages.
Note that this does not cover the code that handles kernel mappings or
the fixmap.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20240214122845.2033971-76-ardb+git@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
In preparation for enabling LPA2 support, introduce the mask values for
converting between physical addresses and their representations in a
page table descriptor.
While at it, move the pte_to_phys asm macro into its only user, so that
we can freely modify it to use its input value register as a temp
register.
For LPA2, the PTE_ADDR_MASK contains two non-adjacent sequences of zero
bits, which means it no longer fits into the immediate field of an
ordinary ALU instruction. So let's redefine it to include the bits in
between as well, and only use it when converting from physical address
to PTE representation, where the distinction does not matter. Also
update the name accordingly to emphasize this.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20240214122845.2033971-75-ardb+git@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
When LPA2 is enabled, bits 8 and 9 of page and block descriptors become
part of the output address instead of carrying shareability attributes
for the region in question.
So avoid setting these bits if TCR.DS == 1, which means LPA2 is enabled.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20240214122845.2033971-74-ardb+git@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
The encodings used in the permission indirection registers means that the
values that Linux puts in the PTEs do not need to be changed.
The E0 values are replicated in E1, with the execute permissions removed.
This is needed as the futex operations access user mappings with privileged
loads/stores.
Signed-off-by: Joey Gouly <joey.gouly@arm.com>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20230606145859.697944-16-joey.gouly@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
pte_to_phys() assembly definition does multiple bits field transformations
to derive physical address, embedded inside a page table entry. Unlike its
C counter part i.e __pte_to_phys(), pte_to_phys() is not very apparent. It
simplifies these operations via a new macro PTE_ADDR_HIGH_SHIFT indicating
how far the pte encoded higher address bits need to be left shifted. While
here, this also updates __pte_to_phys() and __phys_to_pte_val().
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Suggested-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/20221107141753.2938621-1-anshuman.khandual@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
The comment says this should be GENMASK_ULL(47, 12), so do that!
GENMASK_ULL() is available in assembly since:
95b980d62d52 ("linux/bits.h: make BIT(), GENMASK(), and friends available in assembly")
Signed-off-by: Joey Gouly <joey.gouly@arm.com>
Link: https://lore.kernel.org/all/20171221164851.edxq536yobjuagwe@armageddon.cambridge.arm.com/
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Kristina Martsenko <kristina.martsenko@arm.com>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20220708140056.10123-1-joey.gouly@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Possible page table entries (or pointers) on non-zero page table levels are
dependent on a single page size i.e PAGE_SIZE and size required for each
individual page table entry i.e 8 bytes. PTRS_PER_[PMD|PUD] as such are not
related to PTRS_PER_PTE in any manner, as being implied currently. So lets
just make this very explicit and compute these macros independently.
Cc: Will Deacon <will@kernel.org>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/20220408041009.1259701-1-anshuman.khandual@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
This renames and moves SYS_TCR_EL1_TCMA1 and SYS_TCR_EL1_TCMA0 definitions
into pgtable-hwdef.h thus consolidating all TCR fields in a single header.
This does not cause any functional change.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/1643121513-21854-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
SECTION_[SHIFT|SIZE|MASK] are essentially PMD_[SHIFT|SIZE|MASK]. But these
create confusion being similar to generic sparsemem memory sections, which
are derived from SECTION_SIZE_BITS. Section references have always implied
PMD level block mapping. Instead just use all PMD level macros which would
make it explicit and also remove confusion with sparsmem memory sections.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/1623658706-7182-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
The way the arm64 kernel virtual address space is constructed guarantees
that swapper PGD entries are never shared between the linear region on
the one hand, and the vmalloc region on the other, which is where all
kernel text, module text and BPF text mappings reside.
This means that mappings in the linear region (which never require
executable permissions) never share any table entries at any level with
mappings that do require executable permissions, and so we can set the
table-level PXN attributes for all table entries that are created while
setting up mappings in the linear region. Since swapper's PGD level page
table is mapped r/o itself, this adds another layer of robustness to the
way the kernel manages its own page tables. While at it, set the UXN
attribute as well for all kernel mappings created at boot.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/20210310104942.174584-3-ardb@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Even though level 0, 1 and 2 descriptors share the same attribute
encodings, let's be a bit more consistent about using the right one at
the right level. So add new macros for level 0/P4D definitions, and
clean up some inconsistencies involving these macros.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20210310104942.174584-2-ardb@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
On hardware supporting pointer authentication, we previously ended up
enabling TBI on instruction accesses when tag-based ASAN was enabled,
but this was costing us 8 bits of PAC entropy, which was unnecessary
since tag-based ASAN does not require TBI on instruction accesses. Get
them back by setting TCR_EL1.TBID1.
Signed-off-by: Peter Collingbourne <pcc@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@google.com>
Link: https://linux-review.googlesource.com/id/I3dded7824be2e70ea64df0aabab9598d5aebfcc4
Link: https://lore.kernel.org/r/20f64e26fc8a1309caa446fffcb1b4e2fe9e229f.1605952129.git.pcc@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Pull KVM updates from Paolo Bonzini:
"For x86, there is a new alternative and (in the future) more scalable
implementation of extended page tables that does not need a reverse
map from guest physical addresses to host physical addresses.
For now it is disabled by default because it is still lacking a few of
the existing MMU's bells and whistles. However it is a very solid
piece of work and it is already available for people to hammer on it.
Other updates:
ARM:
- New page table code for both hypervisor and guest stage-2
- Introduction of a new EL2-private host context
- Allow EL2 to have its own private per-CPU variables
- Support of PMU event filtering
- Complete rework of the Spectre mitigation
PPC:
- Fix for running nested guests with in-kernel IRQ chip
- Fix race condition causing occasional host hard lockup
- Minor cleanups and bugfixes
x86:
- allow trapping unknown MSRs to userspace
- allow userspace to force #GP on specific MSRs
- INVPCID support on AMD
- nested AMD cleanup, on demand allocation of nested SVM state
- hide PV MSRs and hypercalls for features not enabled in CPUID
- new test for MSR_IA32_TSC writes from host and guest
- cleanups: MMU, CPUID, shared MSRs
- LAPIC latency optimizations ad bugfixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (232 commits)
kvm: x86/mmu: NX largepage recovery for TDP MMU
kvm: x86/mmu: Don't clear write flooding count for direct roots
kvm: x86/mmu: Support MMIO in the TDP MMU
kvm: x86/mmu: Support write protection for nesting in tdp MMU
kvm: x86/mmu: Support disabling dirty logging for the tdp MMU
kvm: x86/mmu: Support dirty logging for the TDP MMU
kvm: x86/mmu: Support changed pte notifier in tdp MMU
kvm: x86/mmu: Add access tracking for tdp_mmu
kvm: x86/mmu: Support invalidate range MMU notifier for TDP MMU
kvm: x86/mmu: Allocate struct kvm_mmu_pages for all pages in TDP MMU
kvm: x86/mmu: Add TDP MMU PF handler
kvm: x86/mmu: Remove disallowed_hugepage_adjust shadow_walk_iterator arg
kvm: x86/mmu: Support zapping SPTEs in the TDP MMU
KVM: Cache as_id in kvm_memory_slot
kvm: x86/mmu: Add functions to handle changed TDP SPTEs
kvm: x86/mmu: Allocate and free TDP MMU roots
kvm: x86/mmu: Init / Uninit the TDP MMU
kvm: x86/mmu: Introduce tdp_iter
KVM: mmu: extract spte.h and spte.c
KVM: mmu: Separate updating a PTE from kvm_set_pte_rmapp
...
|
|
Similar to how CONT_PTE_SHIFT is determined, this introduces a new
kernel option (CONFIG_CONT_PMD_SHIFT) to determine CONT_PMD_SHIFT.
Signed-off-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20200910095936.20307-3-gshan@redhat.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
CONT_PTE_SHIFT actually depends on CONFIG_ARM64_CONT_SHIFT. It's
reasonable to reflect the dependency:
* This renames CONFIG_ARM64_CONT_SHIFT to CONFIG_ARM64_CONT_PTE_SHIFT,
so that we can introduce CONFIG_ARM64_CONT_PMD_SHIFT later.
* CONT_{SHIFT, SIZE, MASK}, defined in page-def.h are removed as they
are not used by anyone.
* CONT_PTE_SHIFT is determined by CONFIG_ARM64_CONT_PTE_SHIFT.
Signed-off-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20200910095936.20307-2-gshan@redhat.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
The macro was introduced by commit <ecf35a237a85> ("arm64: PTE/PMD
contiguous bit definition") at the beginning. It's only used by
commit <348a65cdcbbf> ("arm64: Mark kernel page ranges contiguous"),
which was reverted later by commit <667c27597ca8>. This makes the
macro unused.
This removes the unused macro (CONT_RANGE_OFFSET).
Signed-off-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20200910095936.20307-1-gshan@redhat.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Now that KVM is using the generic page-table code to manage the guest
stage-2 page-tables, we can remove a bunch of unused macros, #defines
and static inline functions from the old implementation.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Quentin Perret <qperret@google.com>
Link: https://lore.kernel.org/r/20200911132529.19844-20-will@kernel.org
|
|
Now that we have a shiny new page-table allocator, replace the hyp
page-table code with calls into the new API. This also allows us to
remove the extended idmap code, as we can now simply ensure that the
VA size is large enough to map everything we need.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Quentin Perret <qperret@google.com>
Link: https://lore.kernel.org/r/20200911132529.19844-5-will@kernel.org
|
|
* for-next/tlbi:
: Support for TTL (translation table level) hint in the TLB operations
arm64: tlb: Use the TLBI RANGE feature in arm64
arm64: enable tlbi range instructions
arm64: tlb: Detect the ARMv8.4 TLBI RANGE feature
arm64: tlb: don't set the ttl value in flush_tlb_page_nosync
arm64: Shift the __tlbi_level() indentation left
arm64: tlb: Set the TTL field in flush_*_tlb_range
arm64: tlb: Set the TTL field in flush_tlb_range
tlb: mmu_gather: add tlb_flush_*_range APIs
arm64: Add tlbi_user_level TLB invalidation helper
arm64: Add level-hinted TLB invalidation helper
arm64: Document SW reserved PTE/PMD bits in Stage-2 descriptors
arm64: Detect the ARMv8.4 TTL feature
|
|
'for-next/cpufeature', 'for-next/acpi', 'for-next/perf', 'for-next/timens', 'for-next/msi-iommu' and 'for-next/trivial' into for-next/core
* for-next/misc:
: Miscellaneous fixes and cleanups
arm64: use IRQ_STACK_SIZE instead of THREAD_SIZE for irq stack
arm64/mm: save memory access in check_and_switch_context() fast switch path
recordmcount: only record relocation of type R_AARCH64_CALL26 on arm64.
arm64: Reserve HWCAP2_MTE as (1 << 18)
arm64/entry: deduplicate SW PAN entry/exit routines
arm64: s/AMEVTYPE/AMEVTYPER
arm64/hugetlb: Reserve CMA areas for gigantic pages on 16K and 64K configs
arm64: stacktrace: Move export for save_stack_trace_tsk()
smccc: Make constants available to assembly
arm64/mm: Redefine CONT_{PTE, PMD}_SHIFT
arm64/defconfig: Enable CONFIG_KEXEC_FILE
arm64: Document sysctls for emulated deprecated instructions
arm64/panic: Unify all three existing notifier blocks
arm64/module: Optimize module load time by optimizing PLT counting
* for-next/vmcoreinfo:
: Export the virtual and physical address sizes in vmcoreinfo
arm64/crash_core: Export TCR_EL1.T1SZ in vmcoreinfo
crash_core, vmcoreinfo: Append 'MAX_PHYSMEM_BITS' to vmcoreinfo
* for-next/cpufeature:
: CPU feature handling cleanups
arm64/cpufeature: Validate feature bits spacing in arm64_ftr_regs[]
arm64/cpufeature: Replace all open bits shift encodings with macros
arm64/cpufeature: Add remaining feature bits in ID_AA64MMFR2 register
arm64/cpufeature: Add remaining feature bits in ID_AA64MMFR1 register
arm64/cpufeature: Add remaining feature bits in ID_AA64MMFR0 register
* for-next/acpi:
: ACPI updates for arm64
arm64/acpi: disallow writeable AML opregion mapping for EFI code regions
arm64/acpi: disallow AML memory opregions to access kernel memory
* for-next/perf:
: perf updates for arm64
arm64: perf: Expose some new events via sysfs
tools headers UAPI: Update tools's copy of linux/perf_event.h
arm64: perf: Add cap_user_time_short
perf: Add perf_event_mmap_page::cap_user_time_short ABI
arm64: perf: Only advertise cap_user_time for arch_timer
arm64: perf: Implement correct cap_user_time
time/sched_clock: Use raw_read_seqcount_latch()
sched_clock: Expose struct clock_read_data
arm64: perf: Correct the event index in sysfs
perf/smmuv3: To simplify code for ioremap page in pmcg
* for-next/timens:
: Time namespace support for arm64
arm64: enable time namespace support
arm64/vdso: Restrict splitting VVAR VMA
arm64/vdso: Handle faults on timens page
arm64/vdso: Add time namespace page
arm64/vdso: Zap vvar pages when switching to a time namespace
arm64/vdso: use the fault callback to map vvar pages
* for-next/msi-iommu:
: Make the MSI/IOMMU input/output ID translation PCI agnostic, augment the
: MSI/IOMMU ACPI/OF ID mapping APIs to accept an input ID bus-specific parameter
: and apply the resulting changes to the device ID space provided by the
: Freescale FSL bus
bus: fsl-mc: Add ACPI support for fsl-mc
bus/fsl-mc: Refactor the MSI domain creation in the DPRC driver
of/irq: Make of_msi_map_rid() PCI bus agnostic
of/irq: make of_msi_map_get_device_domain() bus agnostic
dt-bindings: arm: fsl: Add msi-map device-tree binding for fsl-mc bus
of/device: Add input id to of_dma_configure()
of/iommu: Make of_map_rid() PCI agnostic
ACPI/IORT: Add an input ID to acpi_dma_configure()
ACPI/IORT: Remove useless PCI bus walk
ACPI/IORT: Make iort_msi_map_rid() PCI agnostic
ACPI/IORT: Make iort_get_device_domain IRQ domain agnostic
ACPI/IORT: Make iort_match_node_callback walk the ACPI namespace for NC
* for-next/trivial:
: Trivial fixes
arm64: sigcontext.h: delete duplicated word
arm64: ptrace.h: delete duplicated word
arm64: pgtable-hwdef.h: delete duplicated words
|
|
Drop the repeated words "at" and "the".
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Will Deacon <will@kernel.org>
Cc: linux-arm-kernel@lists.infradead.org
Link: https://lore.kernel.org/r/20200726003207.20253-2-rdunlap@infradead.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Advertise bits [58:55] as reserved for SW in the S2 descriptors.
Reviewed-by: Andrew Scull <ascull@google.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
|
|
Currently, the value of CONT_{PTE, PMD}_SHIFT is off from standard
{PAGE, PMD}_SHIFT. In turn, we have to consider adding {PAGE, PMD}_SHIFT
when using CONT_{PTE, PMD}_SHIFT in the function hugetlbpage_init().
It's a bit confusing.
This redefines CONT_{PTE, PMD}_SHIFT with {PAGE, PMD}_SHIFT included
so that the later values needn't be added when using the former ones
in function hugetlbpage_init(). Note that the values of CONT_{PTES, PMDS}
are unchanged.
Suggested-by: Will Deacon <will@kernel.org>
Signed-off-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lkml.org/lkml/2020/5/6/190
Link: https://lore.kernel.org/r/20200630062428.194235-1-gshan@redhat.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
TCR_EL1.TxSZ, which controls the VA space size, is configured by a
single kernel image to support either 48-bit or 52-bit VA space.
If the ARMv8.2-LVA optional feature is present and we are running
with a 64KB page size, then it is possible to use 52-bits of address
space for both userspace and kernel addresses. However, any kernel
binary that supports 52-bit must also be able to fall back to 48-bit
at early boot time if the hardware feature is not present.
Since TCR_EL1.T1SZ indicates the size of the memory region addressed by
TTBR1_EL1, export the same in vmcoreinfo. User-space utilities like
makedumpfile and crash-utility need to read this value from vmcoreinfo
for determining if a virtual address lies in the linear map range.
While at it also add documentation for TCR_EL1.T1SZ variable being
added to vmcoreinfo.
It indicates the size offset of the memory region addressed by
TTBR1_EL1.
Signed-off-by: Bhupesh Sharma <bhsharma@redhat.com>
Tested-by: John Donnelly <john.p.donnelly@oracle.com>
Tested-by: Kamlakant Patel <kamlakantp@marvell.com>
Tested-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Reviewed-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Steve Capper <steve.capper@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Dave Anderson <anderson@redhat.com>
Cc: Kazuhito Hagio <k-hagio@ab.jp.nec.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Cc: kexec@lists.infradead.org
Link: https://lore.kernel.org/r/1589395957-24628-3-git-send-email-bhsharma@redhat.com
[catalin.marinas@arm.com: removed vabits_actual from the commit log]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Support for Branch Target Identification (BTI) in user and kernel
(Mark Brown and others)
* for-next/bti: (39 commits)
arm64: vdso: Fix CFI directives in sigreturn trampoline
arm64: vdso: Don't prefix sigreturn trampoline with a BTI C instruction
arm64: bti: Fix support for userspace only BTI
arm64: kconfig: Update and comment GCC version check for kernel BTI
arm64: vdso: Map the vDSO text with guarded pages when built for BTI
arm64: vdso: Force the vDSO to be linked as BTI when built for BTI
arm64: vdso: Annotate for BTI
arm64: asm: Provide a mechanism for generating ELF note for BTI
arm64: bti: Provide Kconfig for kernel mode BTI
arm64: mm: Mark executable text as guarded pages
arm64: bpf: Annotate JITed code for BTI
arm64: Set GP bit in kernel page tables to enable BTI for the kernel
arm64: asm: Override SYM_FUNC_START when building the kernel with BTI
arm64: bti: Support building kernel C code using BTI
arm64: Document why we enable PAC support for leaf functions
arm64: insn: Report PAC and BTI instructions as skippable
arm64: insn: Don't assume unrecognized HINTs are skippable
arm64: insn: Provide a better name for aarch64_insn_is_nop()
arm64: insn: Add constants for new HINT instruction decode
arm64: Disable old style assembly annotations
...
|
|
The only user of PTE_S2_MEMATTR_MASK macro had been removed since
commit a501e32430d4 ("arm64: Clean up the default pgprot setting").
It has been about six years and no one has used it again.
Let's drop it.
Signed-off-by: Zenghui Yu <yuzenghui@huawei.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20200415105746.314-1-yuzenghui@huawei.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
This patch adds the bare minimum required to expose the ARMv8.5
Branch Target Identification feature to userspace.
By itself, this does _not_ automatically enable BTI for any initial
executable pages mapped by execve(). This will come later, but for
now it should be possible to enable BTI manually on those pages by
using mprotect() from within the target process.
Other arches already using the generic mman.h are already using
0x10 for arch-specific prot flags, so we use that for PROT_BTI
here.
For consistency, signal handler entry points in BTI guarded pages
are required to be annotated as such, just like any other function.
This blocks a relatively minor attack vector, but comforming
userspace will have the annotations anyway, so we may as well
enforce them.
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
'for-next/e0pd', 'for-next/entry', 'for-next/kbuild', 'for-next/kexec/cleanup', 'for-next/kexec/file-kdump', 'for-next/misc', 'for-next/nofpsimd', 'for-next/perf' and 'for-next/scs' into for-next/core
* for-next/acpi:
ACPI/IORT: Fix 'Number of IDs' handling in iort_id_map()
* for-next/cpufeatures: (2 commits)
arm64: Introduce ID_ISAR6 CPU register
...
* for-next/csum: (2 commits)
arm64: csum: Fix pathological zero-length calls
...
* for-next/e0pd: (7 commits)
arm64: kconfig: Fix alignment of E0PD help text
...
* for-next/entry: (5 commits)
arm64: entry: cleanup sp_el0 manipulation
...
* for-next/kbuild: (4 commits)
arm64: kbuild: remove compressed images on 'make ARCH=arm64 (dist)clean'
...
* for-next/kexec/cleanup: (11 commits)
Revert "arm64: kexec: make dtb_mem always enabled"
...
* for-next/kexec/file-kdump: (2 commits)
arm64: kexec_file: add crash dump support
...
* for-next/misc: (12 commits)
arm64: entry: Avoid empty alternatives entries
...
* for-next/nofpsimd: (7 commits)
arm64: nofpsmid: Handle TIF_FOREIGN_FPSTATE flag cleanly
...
* for-next/perf: (2 commits)
perf/imx_ddr: Fix cpu hotplug state cleanup
...
* for-next/scs: (6 commits)
arm64: kernel: avoid x18 in __cpu_soft_restart
...
|
|
Kernel Page Table Isolation (KPTI) is used to mitigate some speculation
based security issues by ensuring that the kernel is not mapped when
userspace is running but this approach is expensive and is incompatible
with SPE. E0PD, introduced in the ARMv8.5 extensions, provides an
alternative to this which ensures that accesses from userspace to the
kernel's half of the memory map to always fault with constant time,
preventing timing attacks without requiring constant unmapping and
remapping or preventing legitimate accesses.
Currently this feature will only be enabled if all CPUs in the system
support E0PD, if some CPUs do not support the feature at boot time then
the feature will not be enabled and in the unlikely event that a late
CPU is the first CPU to lack the feature then we will reject that CPU.
This initial patch does not yet integrate with KPTI, this will be dealt
with in followup patches. Ideally we could ensure that by default we
don't use KPTI on CPUs where E0PD is present.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
[will: Fixed typo in Kconfig text]
Signed-off-by: Will Deacon <will@kernel.org>
|
|
There is PMD_SECT_RDONLY that is used in pud_* function which is confusing.
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Acked-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
|
|
commit 9b31cf493ffa ("arm64: mm: Introduce MAX_USER_VA_BITS definition")
introduced the MAX_USER_VA_BITS definition, which was used to support
the arm64 mm use-cases where the user-space could use 52-bit virtual
addresses whereas the kernel-space would still could a maximum of 48-bit
virtual addressing.
But, now with commit b6d00d47e81a ("arm64: mm: Introduce 52-bit Kernel
VAs"), we removed the 52-bit user/48-bit kernel kconfig option and hence
there is no longer any scenario where user VA != kernel VA size
(even with CONFIG_ARM64_FORCE_52BIT enabled, the same is true).
Hence we can do away with the MAX_USER_VA_BITS macro as it is equal to
VA_BITS (maximum VA space size) in all possible use-cases. Note that
even though the 'vabits_actual' value would be 48 for arm64 hardware
which don't support LVA-8.2 extension (even when CONFIG_ARM64_VA_BITS_52
is enabled), VA_BITS would still be set to a value 52. Hence this change
would be safe in all possible VA address space combinations.
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Steve Capper <steve.capper@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: linux-kernel@vger.kernel.org
Cc: kexec@lists.infradead.org
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Bhupesh Sharma <bhsharma@redhat.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Most of the machinery is now in place to enable 52-bit kernel VAs that
are detectable at boot time.
This patch adds a Kconfig option for 52-bit user and kernel addresses
and plumbs in the requisite CONFIG_ macros as well as sets TCR.T1SZ,
physvirt_offset and vmemmap at early boot.
To simplify things this patch also removes the 52-bit user/48-bit kernel
kconfig option.
Signed-off-by: Steve Capper <steve.capper@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- arm64 support for syscall emulation via PTRACE_SYSEMU{,_SINGLESTEP}
- Wire up VM_FLUSH_RESET_PERMS for arm64, allowing the core code to
manage the permissions of executable vmalloc regions more strictly
- Slight performance improvement by keeping softirqs enabled while
touching the FPSIMD/SVE state (kernel_neon_begin/end)
- Expose a couple of ARMv8.5 features to user (HWCAP): CondM (new
XAFLAG and AXFLAG instructions for floating point comparison flags
manipulation) and FRINT (rounding floating point numbers to integers)
- Re-instate ARM64_PSEUDO_NMI support which was previously marked as
BROKEN due to some bugs (now fixed)
- Improve parking of stopped CPUs and implement an arm64-specific
panic_smp_self_stop() to avoid warning on not being able to stop
secondary CPUs during panic
- perf: enable the ARM Statistical Profiling Extensions (SPE) on ACPI
platforms
- perf: DDR performance monitor support for iMX8QXP
- cache_line_size() can now be set from DT or ACPI/PPTT if provided to
cope with a system cache info not exposed via the CPUID registers
- Avoid warning on hardware cache line size greater than
ARCH_DMA_MINALIGN if the system is fully coherent
- arm64 do_page_fault() and hugetlb cleanups
- Refactor set_pte_at() to avoid redundant READ_ONCE(*ptep)
- Ignore ACPI 5.1 FADTs reported as 5.0 (infer from the
'arm_boot_flags' introduced in 5.1)
- CONFIG_RANDOMIZE_BASE now enabled in defconfig
- Allow the selection of ARM64_MODULE_PLTS, currently only done via
RANDOMIZE_BASE (and an erratum workaround), allowing modules to spill
over into the vmalloc area
- Make ZONE_DMA32 configurable
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (54 commits)
perf: arm_spe: Enable ACPI/Platform automatic module loading
arm_pmu: acpi: spe: Add initial MADT/SPE probing
ACPI/PPTT: Add function to return ACPI 6.3 Identical tokens
ACPI/PPTT: Modify node flag detection to find last IDENTICAL
x86/entry: Simplify _TIF_SYSCALL_EMU handling
arm64: rename dump_instr as dump_kernel_instr
arm64/mm: Drop [PTE|PMD]_TYPE_FAULT
arm64: Implement panic_smp_self_stop()
arm64: Improve parking of stopped CPUs
arm64: Expose FRINT capabilities to userspace
arm64: Expose ARMv8.5 CondM capability to userspace
arm64: defconfig: enable CONFIG_RANDOMIZE_BASE
arm64: ARM64_MODULES_PLTS must depend on MODULES
arm64: bpf: do not allocate executable memory
arm64/kprobes: set VM_FLUSH_RESET_PERMS on kprobe instruction pages
arm64/mm: wire up CONFIG_ARCH_HAS_SET_DIRECT_MAP
arm64: module: create module allocations without exec permissions
arm64: Allow user selection of ARM64_MODULE_PLTS
acpi/arm64: ignore 5.1 FADTs that are reported as 5.0
arm64: Allow selecting Pseudo-NMI again
...
|
|
This was added part of the original commit which added MMU definitions.
commit 4f04d8f00545 ("arm64: MMU definitions").
These symbols never got used as confirmed from a git log search.
git log -p arch/arm64/ | grep PTE_TYPE_FAULT
git log -p arch/arm64/ | grep PMD_TYPE_FAULT
These probably meant to identify non present entries which can now be
achieved with PMD_SECT_VALID or PTE_VALID bits. Hence just drop these
unused symbols which are not required anymore.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Steve Capper <steve.capper@arm.com>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation this program is
distributed in the hope that it will be useful but without any
warranty without even the implied warranty of merchantability or
fitness for a particular purpose see the gnu general public license
for more details you should have received a copy of the gnu general
public license along with this program if not see http www gnu org
licenses
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 503 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Enrico Weigelt <info@metux.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190602204653.811534538@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
PTE_VALID signifies that the last level page table entry is valid and it is
MMU recognized while walking the page table. This is not a software defined
PTE bit and should not be listed like one. Just move it to appropriate
header file.
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Steve Capper <steve.capper@arm.com>
Cc: Suzuki Poulose <suzuki.poulose@arm.com>
Cc: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
On the Fujitsu-A64FX cores ver(1.0, 1.1), memory access may cause
an undefined fault (Data abort, DFSC=0b111111). This fault occurs under
a specific hardware condition when a load/store instruction performs an
address translation. Any load/store instruction, except non-fault access
including Armv8 and SVE might cause this undefined fault.
The TCR_ELx.NFD1 bit is used by the kernel when CONFIG_RANDOMIZE_BASE
is enabled to mitigate timing attacks against KASLR where the kernel
address space could be probed using the FFR and suppressed fault on
SVE loads.
Since this erratum causes spurious exceptions, which may corrupt
the exception registers, we clear the TCR_ELx.NFDx=1 bits when
booting on an affected CPU.
Signed-off-by: Zhang Lei <zhang.lei@jp.fujitsu.com>
[Generated MIDR value/mask for __cpu_setup(), removed spurious-fault handler
and always disabled the NFDx bits on affected CPUs]
Signed-off-by: James Morse <james.morse@arm.com>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Tag-based KASAN uses the Top Byte Ignore feature of arm64 CPUs to store a
pointer tag in the top byte of each pointer. This commit enables the
TCR_TBI1 bit, which enables Top Byte Ignore for the kernel, when tag-based
KASAN is used.
Link: http://lkml.kernel.org/r/f51eca084c8cdb2f3a55195fe342dc8953b7aead.1544099024.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Pull KVM updates from Paolo Bonzini:
"ARM:
- selftests improvements
- large PUD support for HugeTLB
- single-stepping fixes
- improved tracing
- various timer and vGIC fixes
x86:
- Processor Tracing virtualization
- STIBP support
- some correctness fixes
- refactorings and splitting of vmx.c
- use the Hyper-V range TLB flush hypercall
- reduce order of vcpu struct
- WBNOINVD support
- do not use -ftrace for __noclone functions
- nested guest support for PAUSE filtering on AMD
- more Hyper-V enlightenments (direct mode for synthetic timers)
PPC:
- nested VFIO
s390:
- bugfixes only this time"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (171 commits)
KVM: x86: Add CPUID support for new instruction WBNOINVD
kvm: selftests: ucall: fix exit mmio address guessing
Revert "compiler-gcc: disable -ftracer for __noclone functions"
KVM: VMX: Move VM-Enter + VM-Exit handling to non-inline sub-routines
KVM: VMX: Explicitly reference RCX as the vmx_vcpu pointer in asm blobs
KVM: x86: Use jmp to invoke kvm_spurious_fault() from .fixup
MAINTAINERS: Add arch/x86/kvm sub-directories to existing KVM/x86 entry
KVM/x86: Use SVM assembly instruction mnemonics instead of .byte streams
KVM/MMU: Flush tlb directly in the kvm_zap_gfn_range()
KVM/MMU: Flush tlb directly in kvm_set_pte_rmapp()
KVM/MMU: Move tlb flush in kvm_set_pte_rmapp() to kvm_mmu_notifier_change_pte()
KVM: Make kvm_set_spte_hva() return int
KVM: Replace old tlb flush function with new one to flush a specified range.
KVM/MMU: Add tlb flush with range helper function
KVM/VMX: Add hv tlb range flush support
x86/hyper-v: Add HvFlushGuestAddressList hypercall support
KVM: Add tlb_remote_flush_with_range callback in kvm_x86_ops
KVM: x86: Disable Intel PT when VMXON in L1 guest
KVM: x86: Set intercept for Intel PT MSRs read/write
KVM: x86: Implement Intel PT MSRs read/write emulation
...
|
|
KVM only supports PMD hugepages at stage 2. Now that the various page
handling routines are updated, extend the stage 2 fault handling to
map in PUD hugepages.
Addition of PUD hugepage support enables additional page sizes (e.g.,
1G with 4K granule) which can be useful on cores that support mapping
larger block sizes in the TLB entries.
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
[ Replace BUG() => WARN_ON(1) for arm32 PUD helpers ]
Signed-off-by: Suzuki Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
In preparation for creating PUD hugepages at stage 2, add support for
detecting execute permissions on PUD page table entries. Faults due to
lack of execute permissions on page table entries is used to perform
i-cache invalidation on first execute.
Provide trivial implementations of arm32 helpers to allow sharing of
code.
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
[ Replaced BUG() => WARN_ON(1) in arm32 PUD helpers ]
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
With the introduction of 52-bit virtual addressing for userspace, we are
now in a position where the virtual addressing capability of userspace
may exceed that of the kernel. Consequently, the VA_BITS definition
cannot be used blindly, since it reflects only the size of kernel
virtual addresses.
This patch introduces MAX_USER_VA_BITS which is either VA_BITS or 52
depending on whether 52-bit virtual addressing has been configured at
build time, removing a few places where the 52 is open-coded based on
explicit CONFIG_ guards.
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
Pull in KVM workaround for A76 erratum #116522.
Conflicts:
arch/arm64/include/asm/cpucaps.h
|
|
Enabling 52-bit VAs for userspace is pretty confusing, since it requires
you to select "48-bit" virtual addressing in the Kconfig.
Rework the logic so that 52-bit user virtual addressing is advertised in
the "Virtual address space size" choice, along with some help text to
describe its interaction with Pointer Authentication. The EXPERT-only
option to force all user mappings to the 52-bit range is then made
available immediately below the VA size selection.
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
Enabling 52-bit VAs on arm64 requires that the PGD table expands from 64
entries (for the 48-bit case) to 1024 entries. This quantity,
PTRS_PER_PGD is used as follows to compute which PGD entry corresponds
to a given virtual address, addr:
pgd_index(addr) -> (addr >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)
Userspace addresses are prefixed by 0's, so for a 48-bit userspace
address, uva, the following is true:
(uva >> PGDIR_SHIFT) & (1024 - 1) == (uva >> PGDIR_SHIFT) & (64 - 1)
In other words, a 48-bit userspace address will have the same pgd_index
when using PTRS_PER_PGD = 64 and 1024.
Kernel addresses are prefixed by 1's so, given a 48-bit kernel address,
kva, we have the following inequality:
(kva >> PGDIR_SHIFT) & (1024 - 1) != (kva >> PGDIR_SHIFT) & (64 - 1)
In other words a 48-bit kernel virtual address will have a different
pgd_index when using PTRS_PER_PGD = 64 and 1024.
If, however, we note that:
kva = 0xFFFF << 48 + lower (where lower[63:48] == 0b)
and, PGDIR_SHIFT = 42 (as we are dealing with 64KB PAGE_SIZE)
We can consider:
(kva >> PGDIR_SHIFT) & (1024 - 1) - (kva >> PGDIR_SHIFT) & (64 - 1)
= (0xFFFF << 6) & 0x3FF - (0xFFFF << 6) & 0x3F // "lower" cancels out
= 0x3C0
In other words, one can switch PTRS_PER_PGD to the 52-bit value globally
provided that they increment ttbr1_el1 by 0x3C0 * 8 = 0x1E00 bytes when
running with 48-bit kernel VAs (TCR_EL1.T1SZ = 16).
For kernel configuration where 52-bit userspace VAs are possible, this
patch offsets ttbr1_el1 and sets PTRS_PER_PGD corresponding to the
52-bit value.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Suggested-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Steve Capper <steve.capper@arm.com>
[will: added comment to TTBR1_BADDR_4852_OFFSET calculation]
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
We are soon going to play with TCR_EL1.EPD{0,1}, so let's add the
relevant definitions.
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
Common Not Private (CNP) is a feature of ARMv8.2 extension which
allows translation table entries to be shared between different PEs in
the same inner shareable domain, so the hardware can use this fact to
optimise the caching of such entries in the TLB.
CNP occupies one bit in TTBRx_ELy and VTTBR_EL2, which advertises to
the hardware that the translation table entries pointed to by this
TTBR are the same as every PE in the same inner shareable domain for
which the equivalent TTBR also has CNP bit set. In case CNP bit is set
but TTBR does not point at the same translation table entries for a
given ASID and VMID, then the system is mis-configured, so the results
of translations are UNPREDICTABLE.
For kernel we postpone setting CNP till all cpus are up and rely on
cpufeature framework to 1) patch the code which is sensitive to CNP
and 2) update TTBR1_EL1 with CNP bit set. TTBR1_EL1 can be
reprogrammed as result of hibernation or cpuidle (via __enable_mmu).
For these two cases we restore CnP bit via __cpu_suspend_exit().
There are a few cases we need to care of changes in TTBR0_EL1:
- a switch to idmap
- software emulated PAN
we rule out latter via Kconfig options and for the former we make
sure that CNP is set for non-zero ASIDs only.
Reviewed-by: James Morse <james.morse@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
[catalin.marinas@arm.com: default y for CONFIG_ARM64_CNP]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
TCR_EL1.NFD1 was allocated by SVE and ensures that fault-surpressing SVE
memory accesses (e.g. speculative accesses from a first-fault gather load)
which translate via TTBR1_EL1 result in a translation fault if they
miss in the TLB when executed from EL0. This mitigates some timing attacks
against KASLR, where the kernel address space could otherwise be probed
efficiently using the FFR in conjunction with suppressed faults on SVE
loads.
Cc: Dave Martin <Dave.Martin@arm.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|