Age | Commit message (Collapse) | Author | Files | Lines |
|
[ Upstream commit bc45a516fa90b43b1898758d8b53b74c24b954e4 ]
On ARM64 register index of 31 corresponds to both zero register and SP.
However, all memory access instructions, use ZR as transfer register. SP
is used only as a base register in indirect memory addressing, or by
register-register arithmetics, which cannot be trapped here.
Correct emulation is achieved by introducing new register accessor
functions, which can do special handling for reg_num == 31. These new
accessors intentionally do not rely on old vcpu_reg() on ARM64, because
it is to be removed. Since the affected code is shared by both ARM
flavours, implementations of these accessors are also added to ARM32 code.
This patch fixes setting MMIO register to a random value (actually SP)
instead of zero by something like:
*((volatile int *)reg) = 0;
compilers tend to generate "str wzr, [xx]" here
[Marc: Fixed 32bit splat]
Signed-off-by: Pavel Fedin <p.fedin@samsung.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
|
|
[ Upstream commit 20e8175d246e9f9deb377f2784b3e7dfb2ad3e86 ]
KVM doesn't follow the SMCCC when it comes to unimplemented calls,
and inject an UNDEF instead of returning an error. Since firmware
calls are now used for security mitigation, they are becoming more
common, and the undef is counter productive.
Instead, let's follow the SMCCC which states that -1 must be returned
to the caller when getting an unknown function number.
Cc: <stable@vger.kernel.org>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
|
|
[ Upstream commit e39d200fa5bf5b94a0948db0dae44c1b73b84a56 ]
Reported by syzkaller:
BUG: KASAN: stack-out-of-bounds in write_mmio+0x11e/0x270 [kvm]
Read of size 8 at addr ffff8803259df7f8 by task syz-executor/32298
CPU: 6 PID: 32298 Comm: syz-executor Tainted: G OE 4.15.0-rc2+ #18
Hardware name: LENOVO ThinkCentre M8500t-N000/SHARKBAY, BIOS FBKTC1AUS 02/16/2016
Call Trace:
dump_stack+0xab/0xe1
print_address_description+0x6b/0x290
kasan_report+0x28a/0x370
write_mmio+0x11e/0x270 [kvm]
emulator_read_write_onepage+0x311/0x600 [kvm]
emulator_read_write+0xef/0x240 [kvm]
emulator_fix_hypercall+0x105/0x150 [kvm]
em_hypercall+0x2b/0x80 [kvm]
x86_emulate_insn+0x2b1/0x1640 [kvm]
x86_emulate_instruction+0x39a/0xb90 [kvm]
handle_exception+0x1b4/0x4d0 [kvm_intel]
vcpu_enter_guest+0x15a0/0x2640 [kvm]
kvm_arch_vcpu_ioctl_run+0x549/0x7d0 [kvm]
kvm_vcpu_ioctl+0x479/0x880 [kvm]
do_vfs_ioctl+0x142/0x9a0
SyS_ioctl+0x74/0x80
entry_SYSCALL_64_fastpath+0x23/0x9a
The path of patched vmmcall will patch 3 bytes opcode 0F 01 C1(vmcall)
to the guest memory, however, write_mmio tracepoint always prints 8 bytes
through *(u64 *)val since kvm splits the mmio access into 8 bytes. This
leaks 5 bytes from the kernel stack (CVE-2017-17741). This patch fixes
it by just accessing the bytes which we operate on.
Before patch:
syz-executor-5567 [007] .... 51370.561696: kvm_mmio: mmio write len 3 gpa 0x10 val 0x1ffff10077c1010f
After patch:
syz-executor-13416 [002] .... 51302.299573: kvm_mmio: mmio write len 3 gpa 0x10 val 0xc1010f
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
|
|
[ Upstream commit f050fe7a9164945dd1c28be05bf00e8cfb082ccf ]
Currently we BUG() if we see a HSR.EC value we don't recognise. As
configurable disables/enables are added to the architecture (controlled
by RES1/RES0 bits respectively), with associated synchronous exceptions,
it may be possible for a guest to trigger exceptions with classes that
we don't recognise.
While we can't service these exceptions in a manner useful to the guest,
we can avoid bringing down the host. Per ARM DDI 0406C.c, all currently
unallocated HSR EC encodings are reserved, and per ARM DDI
0487A.k_iss10775, page G6-4395, EC values within the range 0x00 - 0x2c
are reserved for future use with synchronous exceptions, and EC values
within the range 0x2d - 0x3f may be used for either synchronous or
asynchronous exceptions.
The patch makes KVM handle any unknown EC by injecting an UNDEFINED
exception into the guest, with a corresponding (ratelimited) warning in
the host dmesg. We could later improve on this with with a new (opt-in)
exit to the host userspace.
Cc: Dave Martin <dave.martin@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
|
|
[ Upstream commit 7e5a672289c9754d07e1c3b33649786d3d70f5e4 ]
The mmu_notifier_release() callback of KVM triggers cleaning up
the stage2 page table on kvm-arm. However there could be other
notifier callbacks in parallel with the mmu_notifier_release(),
which could cause the call backs ending up in an empty stage2
page table. Make sure we check it for all the notifier callbacks.
Cc: stable@vger.kernel.org
Fixes: commit 293f29363 ("kvm-arm: Unmap shadow pagetables properly")
Reported-by: Alex Graf <agraf@suse.de>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
|
|
[ Upstream commit d6dbdd3c8558cad3b6d74cc357b408622d122331 ]
Under memory pressure, we start ageing pages, which amounts to parsing
the page tables. Since we don't want to allocate any extra level,
we pass NULL for our private allocation cache. Which means that
stage2_get_pud() is allowed to fail. This results in the following
splat:
[ 1520.409577] Unable to handle kernel NULL pointer dereference at virtual address 00000008
[ 1520.417741] pgd = ffff810f52fef000
[ 1520.421201] [00000008] *pgd=0000010f636c5003, *pud=0000010f56f48003, *pmd=0000000000000000
[ 1520.429546] Internal error: Oops: 96000006 [#1] PREEMPT SMP
[ 1520.435156] Modules linked in:
[ 1520.438246] CPU: 15 PID: 53550 Comm: qemu-system-aar Tainted: G W 4.12.0-rc4-00027-g1885c397eaec #7205
[ 1520.448705] Hardware name: FOXCONN R2-1221R-A4/C2U4N_MB, BIOS G31FB12A 10/26/2016
[ 1520.463726] task: ffff800ac5fb4e00 task.stack: ffff800ce04e0000
[ 1520.469666] PC is at stage2_get_pmd+0x34/0x110
[ 1520.474119] LR is at kvm_age_hva_handler+0x44/0xf0
[ 1520.478917] pc : [<ffff0000080b137c>] lr : [<ffff0000080b149c>] pstate: 40000145
[ 1520.486325] sp : ffff800ce04e33d0
[ 1520.489644] x29: ffff800ce04e33d0 x28: 0000000ffff40064
[ 1520.494967] x27: 0000ffff27e00000 x26: 0000000000000000
[ 1520.500289] x25: ffff81051ba65008 x24: 0000ffff40065000
[ 1520.505618] x23: 0000ffff40064000 x22: 0000000000000000
[ 1520.510947] x21: ffff810f52b20000 x20: 0000000000000000
[ 1520.516274] x19: 0000000058264000 x18: 0000000000000000
[ 1520.521603] x17: 0000ffffa6fe7438 x16: ffff000008278b70
[ 1520.526940] x15: 000028ccd8000000 x14: 0000000000000008
[ 1520.532264] x13: ffff7e0018298000 x12: 0000000000000002
[ 1520.537582] x11: ffff000009241b93 x10: 0000000000000940
[ 1520.542908] x9 : ffff0000092ef800 x8 : 0000000000000200
[ 1520.548229] x7 : ffff800ce04e36a8 x6 : 0000000000000000
[ 1520.553552] x5 : 0000000000000001 x4 : 0000000000000000
[ 1520.558873] x3 : 0000000000000000 x2 : 0000000000000008
[ 1520.571696] x1 : ffff000008fd5000 x0 : ffff0000080b149c
[ 1520.577039] Process qemu-system-aar (pid: 53550, stack limit = 0xffff800ce04e0000)
[...]
[ 1521.510735] [<ffff0000080b137c>] stage2_get_pmd+0x34/0x110
[ 1521.516221] [<ffff0000080b149c>] kvm_age_hva_handler+0x44/0xf0
[ 1521.522054] [<ffff0000080b0610>] handle_hva_to_gpa+0xb8/0xe8
[ 1521.527716] [<ffff0000080b3434>] kvm_age_hva+0x44/0xf0
[ 1521.532854] [<ffff0000080a58b0>] kvm_mmu_notifier_clear_flush_young+0x70/0xc0
[ 1521.539992] [<ffff000008238378>] __mmu_notifier_clear_flush_young+0x88/0xd0
[ 1521.546958] [<ffff00000821eca0>] page_referenced_one+0xf0/0x188
[ 1521.552881] [<ffff00000821f36c>] rmap_walk_anon+0xec/0x250
[ 1521.558370] [<ffff000008220f78>] rmap_walk+0x78/0xa0
[ 1521.563337] [<ffff000008221104>] page_referenced+0x164/0x180
[ 1521.569002] [<ffff0000081f1af0>] shrink_active_list+0x178/0x3b8
[ 1521.574922] [<ffff0000081f2058>] shrink_node_memcg+0x328/0x600
[ 1521.580758] [<ffff0000081f23f4>] shrink_node+0xc4/0x328
[ 1521.585986] [<ffff0000081f2718>] do_try_to_free_pages+0xc0/0x340
[ 1521.592000] [<ffff0000081f2a64>] try_to_free_pages+0xcc/0x240
[...]
The trivial fix is to handle this NULL pud value early, rather than
dereferencing it blindly.
Cc: stable@vger.kernel.org
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
|
|
[ Upstream commit 33b5c38852b29736f3b472dd095c9a18ec22746f ]
We currently have the HSCTLR.A bit set, trapping unaligned accesses
at HYP, but we're not really prepared to deal with it.
Since the rest of the kernel is pretty happy about that, let's follow
its example and set HSCTLR.A to zero. Modern CPUs don't really care.
Cc: stable@vger.kernel.org
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
|
|
[ Upstream commit 120f0779c3ed89c25ef1db943feac8ed73a0d7f9 ]
Rearrange the code for fake pgd handling, which is applicable
only for arm64. This will later be removed once we introduce
the stage2 page table walker macros.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
|
|
[ Upstream commit a5f56ba3b4ec8d2ad80da4c447d47e37e2b504fb ]
No need to cast the void pointer returned by kmalloc() in
arch/arm/kvm/mmu.c::kvm_alloc_stage2_pgd().
Signed-off-by: Firo Yang <firogm@gmail.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
|
|
[ Upstream commit 8b3405e345b5a098101b0c31b264c812bba045d9 ]
In kvm_free_stage2_pgd() we don't hold the kvm->mmu_lock while calling
unmap_stage2_range() on the entire memory range for the guest. This could
cause problems with other callers (e.g, munmap on a memslot) trying to
unmap a range. And since we have to unmap the entire Guest memory range
holding a spinlock, make sure we yield the lock if necessary, after we
unmap each PUD range.
Fixes: commit d5d8184d35c9 ("KVM: ARM: Memory virtualization setup")
Cc: stable@vger.kernel.org # v3.10+
Cc: Paolo Bonzini <pbonzin@redhat.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
[ Avoid vCPU starvation and lockup detector warnings ]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
|
|
[ Upstream commit 72f310481a08db821b614e7b5d00febcc9064b36 ]
We don't hold the mmap_sem while searching for VMAs (via find_vma), in
kvm_arch_prepare_memory_region, which can end up in expected failures.
Fixes: commit 8eef91239e57 ("arm/arm64: KVM: map MMIO regions at creation time")
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Eric Auger <eric.auger@rehat.com>
Cc: stable@vger.kernel.org # v3.18+
Reviewed-by: Christoffer Dall <cdall@linaro.org>
[ Handle dirty page logging failure case ]
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
|
|
[ Upstream commit 90f6e150e44a0dc3883110eeb3ab35d1be42b6bb ]
We don't hold the mmap_sem while searching for the VMAs when
we try to unmap each memslot for a VM. Fix this properly to
avoid unexpected results.
Fixes: commit 957db105c997 ("arm/arm64: KVM: Introduce stage2_unmap_vm")
Cc: stable@vger.kernel.org # v3.19+
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
|
|
[ Upstream commit 57c841f131ef295b583365d2fddd6b0d16e82c10 ]
So far, our handling of cache maintenance by VA has been pretty
simple: Either the access is in the guest RAM and generates a S2
fault, which results in the page being mapped RW, or we go down
the io_mem_abort() path, and nuke the guest.
The first one is fine, but the second one is extremely weird.
Treating the CM as an I/O is wrong, and nothing in the ARM ARM
indicates that we should generate a fault for something that
cannot end-up in the cache anyway (even if the guest maps it,
it will keep on faulting at stage-2 for emulation).
So let's just skip this instruction, and let the guest get away
with it.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
|
|
[ Upstream commit 293f293637b55db4f9f522a5a72514e98a541076 ]
On arm/arm64, we depend on the kvm_unmap_hva* callbacks (via
mmu_notifiers::invalidate_*) to unmap the stage2 pagetables when
the userspace buffer gets unmapped. However, when the Hypervisor
process exits without explicit unmap of the guest buffers, the only
notifier we get is kvm_arch_flush_shadow_all() (via mmu_notifier::release
) which does nothing on arm. Later this causes us to access pages that
were already released [via exit_mmap() -> unmap_vmas()] when we actually
get to unmap the stage2 pagetable [via kvm_arch_destroy_vm() ->
kvm_free_stage2_pgd()]. This triggers crashes with CONFIG_DEBUG_PAGEALLOC,
which unmaps any free'd pages from the linear map.
[ 757.644120] Unable to handle kernel paging request at virtual address
ffff800661e00000
[ 757.652046] pgd = ffff20000b1a2000
[ 757.655471] [ffff800661e00000] *pgd=00000047fffe3003, *pud=00000047fcd8c003,
*pmd=00000047fcc7c003, *pte=00e8004661e00712
[ 757.666492] Internal error: Oops: 96000147 [#3] PREEMPT SMP
[ 757.672041] Modules linked in:
[ 757.675100] CPU: 7 PID: 3630 Comm: qemu-system-aar Tainted: G D
4.8.0-rc1 #3
[ 757.683240] Hardware name: AppliedMicro X-Gene Mustang Board/X-Gene Mustang Board,
BIOS 3.06.15 Aug 19 2016
[ 757.692938] task: ffff80069cdd3580 task.stack: ffff8006adb7c000
[ 757.698840] PC is at __flush_dcache_area+0x1c/0x40
[ 757.703613] LR is at kvm_flush_dcache_pmd+0x60/0x70
[ 757.708469] pc : [<ffff20000809dbdc>] lr : [<ffff2000080b4a70>] pstate: 20000145
...
[ 758.357249] [<ffff20000809dbdc>] __flush_dcache_area+0x1c/0x40
[ 758.363059] [<ffff2000080b6748>] unmap_stage2_range+0x458/0x5f0
[ 758.368954] [<ffff2000080b708c>] kvm_free_stage2_pgd+0x34/0x60
[ 758.374761] [<ffff2000080b2280>] kvm_arch_destroy_vm+0x20/0x68
[ 758.380570] [<ffff2000080aa330>] kvm_put_kvm+0x210/0x358
[ 758.385860] [<ffff2000080aa524>] kvm_vm_release+0x2c/0x40
[ 758.391239] [<ffff2000082ad234>] __fput+0x114/0x2e8
[ 758.396096] [<ffff2000082ad46c>] ____fput+0xc/0x18
[ 758.400869] [<ffff200008104658>] task_work_run+0x108/0x138
[ 758.406332] [<ffff2000080dc8ec>] do_exit+0x48c/0x10e8
[ 758.411363] [<ffff2000080dd5fc>] do_group_exit+0x6c/0x130
[ 758.416739] [<ffff2000080ed924>] get_signal+0x284/0xa18
[ 758.421943] [<ffff20000808a098>] do_signal+0x158/0x860
[ 758.427060] [<ffff20000808aad4>] do_notify_resume+0x6c/0x88
[ 758.432608] [<ffff200008083624>] work_pending+0x10/0x14
[ 758.437812] Code: 9ac32042 8b010001 d1000443 8a230000 (d50b7e20)
This patch fixes the issue by moving the kvm_free_stage2_pgd() to
kvm_arch_flush_shadow_all().
Cc: <stable@vger.kernel.org> # 3.9+
Tested-by: Itaru Kitayama <itaru.kitayama@riken.jp>
Reported-by: Itaru Kitayama <itaru.kitayama@riken.jp>
Reported-by: James Morse <james.morse@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
|
|
[ Upstream commit 591d215afcc2f94e8e2c69a63c924c044677eb31 ]
kvm provides kvm_vcpu_uninit(), which amongst other things, releases the
last reference to the struct pid of the task that was last running the vcpu.
On arm64 built with CONFIG_DEBUG_KMEMLEAK, starting a guest with kvmtool,
then killing it with SIGKILL results (after some considerable time) in:
> cat /sys/kernel/debug/kmemleak
> unreferenced object 0xffff80007d5ea080 (size 128):
> comm "lkvm", pid 2025, jiffies 4294942645 (age 1107.776s)
> hex dump (first 32 bytes):
> 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
> 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
> backtrace:
> [<ffff8000001b30ec>] create_object+0xfc/0x278
> [<ffff80000071da34>] kmemleak_alloc+0x34/0x70
> [<ffff80000019fa2c>] kmem_cache_alloc+0x16c/0x1d8
> [<ffff8000000d0474>] alloc_pid+0x34/0x4d0
> [<ffff8000000b5674>] copy_process.isra.6+0x79c/0x1338
> [<ffff8000000b633c>] _do_fork+0x74/0x320
> [<ffff8000000b66b0>] SyS_clone+0x18/0x20
> [<ffff800000085cb0>] el0_svc_naked+0x24/0x28
> [<ffffffffffffffff>] 0xffffffffffffffff
On x86 kvm_vcpu_uninit() is called on the path from kvm_arch_destroy_vm(),
on arm no equivalent call is made. Add the call to kvm_arch_vcpu_free().
Signed-off-by: James Morse <james.morse@arm.com>
Fixes: 749cf76c5a36 ("KVM: ARM: Initial skeleton to compile KVM support")
Cc: <stable@vger.kernel.org> # 3.10+
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
|
|
[ Upstream commit d4b9e0790aa764c0b01e18d4e8d33e93ba36d51f ]
The ARM architecture mandates that when changing a page table entry
from a valid entry to another valid entry, an invalid entry is first
written, TLB invalidated, and only then the new entry being written.
The current code doesn't respect this, directly writing the new
entry and only then invalidating TLBs. Let's fix it up.
Cc: <stable@vger.kernel.org>
Reported-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
|
|
[ Upstream commit 4cad67fca3fc952d6f2ed9e799621f07666a560f ]
Calling return copy_to_user(...) in an ioctl will not
do the right thing if there's a pagefault:
copy_to_user returns the number of bytes not copied
in this case.
Fix up kvm to do
return copy_to_user(...)) ? -EFAULT : 0;
everywhere.
Cc: stable@vger.kernel.org
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
|
|
commit 0de58f852875a0f0dcfb120bb8433e4e73c7803b upstream.
Commit e6fab5442345 ("ARM/arm64: KVM: test properly for a PTE's
uncachedness") modified the logic to test whether a HYP or stage-2
mapping needs flushing, from [incorrectly] interpreting the page table
attributes to [incorrectly] checking whether the PFN that backs the
mapping is covered by host system RAM. The PFN number is part of the
output of the translation, not the input, so we have to use pte_pfn()
on the contents of the PTE, not __phys_to_pfn() on the HYP virtual
address or stage-2 intermediate physical address.
Fixes: e6fab5442345 ("ARM/arm64: KVM: test properly for a PTE's uncachedness")
Tested-by: Pavel Fedin <p.fedin@samsung.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e6fab54423450d699a09ec2b899473a541f61971 upstream.
The open coded tests for checking whether a PTE maps a page as
uncached use a flawed '(pte_val(xxx) & CONST) != CONST' pattern,
which is not guaranteed to work since the type of a mapping is
not a set of mutually exclusive bits
For HYP mappings, the type is an index into the MAIR table (i.e, the
index itself does not contain any information whatsoever about the
type of the mapping), and for stage-2 mappings it is a bit field where
normal memory and device types are defined as follows:
#define MT_S2_NORMAL 0xf
#define MT_S2_DEVICE_nGnRE 0x1
I.e., masking *and* comparing with the latter matches on the former,
and we have been getting lucky merely because the S2 device mappings
also have the PTE_UXN bit set, or we would misidentify memory mappings
as device mappings.
Since the unmap_range() code path (which contains one instance of the
flawed test) is used both for HYP mappings and stage-2 mappings, and
considering the difference between the two, it is non-trivial to fix
this by rewriting the tests in place, as it would involve passing
down the type of mapping through all the functions.
However, since HYP mappings and stage-2 mappings both deal with host
physical addresses, we can simply check whether the mapping is backed
by memory that is managed by the host kernel, and only perform the
D-cache maintenance if this is the case.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Pavel Fedin <p.fedin@samsung.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 4a5d69b73948d0e03cd38d77dc11edb2e707165f upstream.
The vgic code on ARM is built for all configurations that enable KVM,
but the parent_data field that it references is only present when
CONFIG_IRQ_DOMAIN_HIERARCHY is set:
virt/kvm/arm/vgic.c: In function 'kvm_vgic_map_phys_irq':
virt/kvm/arm/vgic.c:1781:13: error: 'struct irq_data' has no member named 'parent_data'
This flag is implied by the GIC driver, and indeed the VGIC code only
makes sense if a GIC is present. This changes the CONFIG_KVM symbol
to always select GIC, which avoids the issue.
Fixes: 662d9715840 ("arm/arm64: KVM: Kill CONFIG_KVM_ARM_{VGIC,TIMER}")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 688bc577ac42ae3d07c889a1f0a72f0b23763d58 upstream.
When running a guest with the architected timer disabled (with QEMU and
the kernel_irqchip=off option, for example), it is important to make
sure the timer gets turned off. Otherwise, the guest may try to
enable it anyway, leading to a screaming HW interrupt.
The fix is to unconditionally turn off the virtual timer on guest
exit.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ca09f02f122b2ecb0f5ddfc5fd47b29ed657d4fd upstream.
A critical bug has been found in device memory stage1 translation for
VMs with more then 4GB of address space. Once vm_pgoff size is smaller
then pa (which is true for LPAE case, u32 and u64 respectively) some
more significant bits of pa may be lost as a shift operation is performed
on u32 and later cast onto u64.
Example: vm_pgoff(u32)=0x00210030, PAGE_SHIFT=12
expected pa(u64): 0x0000002010030000
produced pa(u64): 0x0000000010030000
The fix is to change the order of operations (casting first onto phys_addr_t
and then shifting).
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
[maz: fixed changelog and patch formatting]
Signed-off-by: Marek Majtyka <marek.majtyka@tieto.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c2f58514cfb374d5368c9da945f1765cd48eb0da upstream.
Until b26e5fdac43c ("arm/arm64: KVM: introduce per-VM ops"),
kvm_vgic_map_resources() used to include a check on irqchip_in_kernel(),
and vgic_v2_map_resources() still has it.
But now vm_ops are not initialized until we call kvm_vgic_create().
Therefore kvm_vgic_map_resources() can being called without a VGIC,
and we die because vm_ops.map_resources is NULL.
Fixing this restores QEMU's kernel-irqchip=off option to a working state,
allowing to use GIC emulation in userspace.
Fixes: b26e5fdac43c ("arm/arm64: KVM: introduce per-VM ops")
Signed-off-by: Pavel Fedin <p.fedin@samsung.com>
[maz: reworked commit message]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e2d997366dc5b6c9d14035867f73957f93e7578c upstream.
According to the PSCI specification and the SMC/HVC calling
convention, PSCI function_ids that are not implemented must
return NOT_SUPPORTED as return value.
Current KVM implementation takes an unhandled PSCI function_id
as an error and injects an undefined instruction into the guest
if PSCI implementation is called with a function_id that is not
handled by the resident PSCI version (ie it is not implemented),
which is not the behaviour expected by a guest when calling a
PSCI function_id that is not implemented.
This patch fixes this issue by returning NOT_SUPPORTED whenever
the kvm PSCI call is executed for a function_id that is not
implemented by the PSCI kvm layer.
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 85e84ba31039595995dae80b277378213602891b upstream.
On VM entry, we disable access to the VFP registers in order to
perform a lazy save/restore of these registers.
On VM exit, we restore access, test if we did enable them before,
and save/restore the guest/host registers if necessary. In this
sequence, the FPEXC register is always accessed, irrespective
of the trapping configuration.
If the guest didn't touch the VFP registers, then the HCPTR access
has now enabled such access, but we're missing a barrier to ensure
architectural execution of the new HCPTR configuration. If the HCPTR
access has been delayed/reordered, the subsequent access to FPEXC
will cause a trap, which we aren't prepared to handle at all.
The same condition exists when trapping to enable VFP for the guest.
The fix is to introduce a barrier after enabling VFP access. In the
vmexit case, it can be relaxed to only takes place if the guest hasn't
accessed its view of the VFP registers, making the access to FPEXC safe.
The set_hcptr macro is modified to deal with both vmenter/vmexit and
vmtrap operations, and now takes an optional label that is branched to
when the guest hasn't touched the VFP registers.
Reported-by: Vikram Sethi <vikrams@codeaurora.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Pull second batch of KVM changes from Paolo Bonzini:
"This mostly includes the PPC changes for 4.1, which this time cover
Book3S HV only (debugging aids, minor performance improvements and
some cleanups). But there are also bug fixes and small cleanups for
ARM, x86 and s390.
The task_migration_notifier revert and real fix is still pending
review, but I'll send it as soon as possible after -rc1"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (29 commits)
KVM: arm/arm64: check IRQ number on userland injection
KVM: arm: irqfd: fix value returned by kvm_irq_map_gsi
KVM: VMX: Preserve host CR4.MCE value while in guest mode.
KVM: PPC: Book3S HV: Use msgsnd for signalling threads on POWER8
KVM: PPC: Book3S HV: Translate kvmhv_commence_exit to C
KVM: PPC: Book3S HV: Streamline guest entry and exit
KVM: PPC: Book3S HV: Use bitmap of active threads rather than count
KVM: PPC: Book3S HV: Use decrementer to wake napping threads
KVM: PPC: Book3S HV: Don't wake thread with no vcpu on guest IPI
KVM: PPC: Book3S HV: Get rid of vcore nap_count and n_woken
KVM: PPC: Book3S HV: Move vcore preemption point up into kvmppc_run_vcpu
KVM: PPC: Book3S HV: Minor cleanups
KVM: PPC: Book3S HV: Simplify handling of VCPUs that need a VPA update
KVM: PPC: Book3S HV: Accumulate timing information for real-mode code
KVM: PPC: Book3S HV: Create debugfs file for each guest's HPT
KVM: PPC: Book3S HV: Add ICP real mode counters
KVM: PPC: Book3S HV: Move virtual mode ICP functions to real-mode
KVM: PPC: Book3S HV: Convert ICS mutex lock to spin lock
KVM: PPC: Book3S HV: Add guest->host real mode completion counters
KVM: PPC: Book3S HV: Add helpers for lock/unlock hpte
...
|
|
When userland injects a SPI via the KVM_IRQ_LINE ioctl we currently
only check it against a fixed limit, which historically is set
to 127. With the new dynamic IRQ allocation the effective limit may
actually be smaller (64).
So when now a malicious or buggy userland injects a SPI in that
range, we spill over on our VGIC bitmaps and bytemaps memory.
I could trigger a host kernel NULL pointer dereference with current
mainline by injecting some bogus IRQ number from a hacked kvmtool:
-----------------
....
DEBUG: kvm_vgic_inject_irq(kvm, cpu=0, irq=114, level=1)
DEBUG: vgic_update_irq_pending(kvm, cpu=0, irq=114, level=1)
DEBUG: IRQ #114 still in the game, writing to bytemap now...
Unable to handle kernel NULL pointer dereference at virtual address 00000000
pgd = ffffffc07652e000
[00000000] *pgd=00000000f658b003, *pud=00000000f658b003, *pmd=0000000000000000
Internal error: Oops: 96000006 [#1] PREEMPT SMP
Modules linked in:
CPU: 1 PID: 1053 Comm: lkvm-msi-irqinj Not tainted 4.0.0-rc7+ #3027
Hardware name: FVP Base (DT)
task: ffffffc0774e9680 ti: ffffffc0765a8000 task.ti: ffffffc0765a8000
PC is at kvm_vgic_inject_irq+0x234/0x310
LR is at kvm_vgic_inject_irq+0x30c/0x310
pc : [<ffffffc0000ae0a8>] lr : [<ffffffc0000ae180>] pstate: 80000145
.....
So this patch fixes this by checking the SPI number against the
actual limit. Also we remove the former legacy hard limit of
127 in the ioctl code.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
CC: <stable@vger.kernel.org> # 4.0, 3.19, 3.18
[maz: wrap KVM_ARM_IRQ_GIC_MAX with #ifndef __KERNEL__,
as suggested by Christopher Covington]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"Here are the core arm64 updates for 4.1.
Highlights include a significant rework to head.S (allowing us to boot
on machines with physical memory at a really high address), an AES
performance boost on Cortex-A57 and the ability to run a 32-bit
userspace with 64k pages (although this requires said userspace to be
built with a recent binutils).
The head.S rework spilt over into KVM, so there are some changes under
arch/arm/ which have been acked by Marc Zyngier (KVM co-maintainer).
In particular, the linker script changes caused us some issues in
-next, so there are a few merge commits where we had to apply fixes on
top of a stable branch.
Other changes include:
- AES performance boost for Cortex-A57
- AArch32 (compat) userspace with 64k pages
- Cortex-A53 erratum workaround for #845719
- defconfig updates (new platforms, PCI, ...)"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (39 commits)
arm64: fix midr range for Cortex-A57 erratum 832075
arm64: errata: add workaround for cortex-a53 erratum #845719
arm64: Use bool function return values of true/false not 1/0
arm64: defconfig: updates for 4.1
arm64: Extract feature parsing code from cpu_errata.c
arm64: alternative: Allow immediate branch as alternative instruction
arm64: insn: Add aarch64_insn_decode_immediate
ARM: kvm: round HYP section to page size instead of log2 upper bound
ARM: kvm: assert on HYP section boundaries not actual code size
arm64: head.S: ensure idmap_t0sz is visible
arm64: pmu: add support for interrupt-affinity property
dt: pmu: extend ARM PMU binding to allow for explicit interrupt affinity
arm64: head.S: ensure visibility of page tables
arm64: KVM: use ID map with increased VA range if required
arm64: mm: increase VA range of identity map
ARM: kvm: implement replacement for ld's LOG2CEIL()
arm64: proc: remove unused cpu_get_pgd macro
arm64: enforce x1|x2|x3 == 0 upon kernel entry as per boot protocol
arm64: remove __calc_phys_offset
arm64: merge __enable_mmu and __turn_mmu_on
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into 'kvm-next'
KVM/ARM changes for v4.1:
- fixes for live migration
- irqfd support
- kvm-io-bus & vgic rework to enable ioeventfd
- page ageing for stage-2 translation
- various cleanups
|
|
As the infrastructure for eventfd has now been merged, report the
ioeventfd capability as being supported.
Signed-off-by: Nikolay Nikolaev <n.nikolaev@virtualopensystems.com>
[maz: grouped the case entry with the others, fixed commit log]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
Currently we have struct kvm_exit_mmio for encapsulating MMIO abort
data to be passed on from syndrome decoding all the way down to the
VGIC register handlers. Now as we switch the MMIO handling to be
routed through the KVM MMIO bus, it does not make sense anymore to
use that structure already from the beginning. So we keep the data in
local variables until we put them into the kvm_io_bus framework.
Then we fill kvm_exit_mmio in the VGIC only, making it a VGIC private
structure. On that way we replace the data buffer in that structure
with a pointer pointing to a single location in a local variable, so
we get rid of some copying on the way.
With all of the virtual GIC emulation code now being registered with
the kvm_io_bus, we can remove all of the old MMIO handling code and
its dispatching functionality.
I didn't bother to rename kvm_exit_mmio (to vgic_mmio or something),
because that touches a lot of code lines without any good reason.
This is based on an original patch by Nikolay.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Cc: Nikolay Nikolaev <n.nikolaev@virtualopensystems.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
Just as we thought we'd fixed this, another old linker reared its ugly
head trying to build linux-next. Unfortunately, it's the linker binary
provided on kernel.org, so give up trying to be clever and align the
hyp page to 4k.
|
|
Older binutils do not support expressions involving the values of
external symbols so just round up the HYP region to the page size.
Tested-by: Simon Horman <horms+renesas@verge.net.au>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
[will: when will this ever end?!]
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
virt/kvm was never really a good include directory for anything else
than locally included headers.
With the move of iodev.h there is no need anymore to add this
directory the compiler's include path, so remove it from the arm and
arm64 kvm Makefile.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
This patch modifies the HYP init code so it can deal with system
RAM residing at an offset which exceeds the reach of VA_BITS.
Like for EL1, this involves configuring an additional level of
translation for the ID map. However, in case of EL2, this implies
that all translations use the extra level, as we cannot seamlessly
switch between translation tables with different numbers of
translation levels.
So add an extra translation table at the root level. Since the
ID map and the runtime HYP map are guaranteed not to overlap, they
can share this root level, and we can essentially merge these two
tables into one.
Tested-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
The HYP init bounce page is a runtime construct that ensures that the
HYP init code does not cross a page boundary. However, this is something
we can do perfectly well at build time, by aligning the code appropriately.
For arm64, we just align to 4 KB, and enforce that the code size is less
than 4 KB, regardless of the chosen page size.
For ARM, the whole code is less than 256 bytes, so we tweak the linker
script to align at a power of 2 upper bound of the code size
Note that this also fixes a benign off-by-one error in the original bounce
page code, where a bounce page would be allocated unnecessarily if the code
was exactly 1 page in size.
On ARM, it also fixes an issue with very large kernels reported by Arnd
Bergmann, where stub sections with linker emitted veneers could erroneously
trigger the size/alignment ASSERT() in the linker script.
Tested-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
When a VCPU is no longer running, we currently check to see if it has a
timer scheduled in the future, and if it does, we schedule a host
hrtimer to notify is in case the timer expires while the VCPU is still
not running. When the hrtimer fires, we mask the guest's timer and
inject the timer IRQ (still relying on the guest unmasking the time when
it receives the IRQ).
This is all good and fine, but when migration a VM (checkpoint/restore)
this introduces a race. It is unlikely, but possible, for the following
sequence of events to happen:
1. Userspace stops the VM
2. Hrtimer for VCPU is scheduled
3. Userspace checkpoints the VGIC state (no pending timer interrupts)
4. The hrtimer fires, schedules work in a workqueue
5. Workqueue function runs, masks the timer and injects timer interrupt
6. Userspace checkpoints the timer state (timer masked)
At restore time, you end up with a masked timer without any timer
interrupts and your guest halts never receiving timer interrupts.
Fix this by only kicking the VCPU in the workqueue function, and sample
the expired state of the timer when entering the guest again and inject
the interrupt and mask the timer only then.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
|
To cleanly restore an SMP VM we need to ensure that the current pause
state of each vcpu is correctly recorded. Things could get confused if
the CPU starts running after migration restore completes when it was
paused before it state was captured.
We use the existing KVM_GET/SET_MP_STATE ioctl to do this. The arm/arm64
interface is a lot simpler as the only valid states are
KVM_MP_STATE_RUNNABLE and KVM_MP_STATE_STOPPED.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
|
Now that we have page aging in Stage-2, it becomes obvious that
we're doing way too much work handling the fault.
The page is not going anywhere (it is still mapped), the page
tables are already allocated, and all we want is to flip a bit
in the PMD or PTE. Also, we can avoid any form of TLB invalidation,
since a page with the AF bit off is not allowed to be cached.
An obvious solution is to have a separate handler for FSC_ACCESS,
where we pride ourselves to only do the very minimum amount of
work.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
|
Until now, KVM/arm didn't care much for page aging (who was swapping
anyway?), and simply provided empty hooks to the core KVM code. With
server-type systems now being available, things are quite different.
This patch implements very simple support for page aging, by clearing
the Access flag in the Stage-2 page tables. On access fault, the current
fault handling will write the PTE or PMD again, putting the Access flag
back on.
It should be possible to implement a much faster handling for Access
faults, but that's left for a later patch.
With this in place, performance in VMs is degraded much more gracefully.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
|
So far, handle_hva_to_gpa was never required to return a value.
As we prepare to age pages at Stage-2, we need to be able to
return a value from the iterator (kvm_test_age_hva).
Adapt the code to handle this situation. No semantic change.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
|
This patch enables irqfd on arm/arm64.
Both irqfd and resamplefd are supported. Injection is implemented
in vgic.c without routing.
This patch enables CONFIG_HAVE_KVM_EVENTFD and CONFIG_HAVE_KVM_IRQFD.
KVM_CAP_IRQFD is now advertised. KVM_CAP_IRQFD_RESAMPLE capability
automatically is advertised as soon as CONFIG_HAVE_KVM_IRQFD is set.
Irqfd injection is restricted to SPI. The rationale behind not
supporting PPI irqfd injection is that any device using a PPI would
be a private-to-the-CPU device (timer for instance), so its state
would have to be context-switched along with the VCPU and would
require in-kernel wiring anyhow. It is not a relevant use case for
irqfds.
Signed-off-by: Eric Auger <eric.auger@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
|
On arm/arm64 the VGIC is dynamically instantiated and it is useful
to expose its state, especially for irqfd setup.
This patch defines __KVM_HAVE_ARCH_INTC_INITIALIZED and
implements kvm_arch_intc_initialized.
Signed-off-by: Eric Auger <eric.auger@linaro.org>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
|
CONFIG_HAVE_KVM_IRQCHIP is needed to support IRQ routing (along
with irq_comm.c and irqchip.c usage). This is not the case for
arm/arm64 currently.
This patch unsets the flag for both arm and arm64.
Signed-off-by: Eric Auger <eric.auger@linaro.org>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
|
We can definitely decide at run-time whether to use the GIC and timers
or not, and the extra code and data structures that we allocate space
for is really negligable with this config option, so I don't think it's
worth the extra complexity of always having to define stub static
inlines. The !CONFIG_KVM_ARM_VGIC/TIMER case is pretty much an untested
code path anyway, so we're better off just getting rid of it.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
IS_ENABLED gives compile-time checking and keeps the code clearer.
The one exception is inside kvm_vm_ioctl_check_extension, where
the established idiom is to wrap the case labels with an #ifdef.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The kernel's pgd_index macro is designed to index a normal, page
sized array. KVM is a bit diffferent, as we can use concatenated
pages to have a bigger address space (for example 40bit IPA with
4kB pages gives us an 8kB PGD.
In the above case, the use of pgd_index will always return an index
inside the first 4kB, which makes a guest that has memory above
0x8000000000 rather unhappy, as it spins forever in a page fault,
whist the host happilly corrupts the lower pgd.
The obvious fix is to get our own kvm_pgd_index that does the right
thing(tm).
Tested on X-Gene with a hacked kvmtool that put memory at a stupidly
high address.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
|
We're using __get_free_pages with to allocate the guest's stage-2
PGD. The standard behaviour of this function is to return a set of
pages where only the head page has a valid refcount.
This behaviour gets us into trouble when we're trying to increment
the refcount on a non-head page:
page:ffff7c00cfb693c0 count:0 mapcount:0 mapping: (null) index:0x0
flags: 0x4000000000000000()
page dumped because: VM_BUG_ON_PAGE((*({ __attribute__((unused)) typeof((&page->_count)->counter) __var = ( typeof((&page->_count)->counter)) 0; (volatile typeof((&page->_count)->counter) *)&((&page->_count)->counter); })) <= 0)
BUG: failure at include/linux/mm.h:548/get_page()!
Kernel panic - not syncing: BUG!
CPU: 1 PID: 1695 Comm: kvm-vcpu-0 Not tainted 4.0.0-rc1+ #3825
Hardware name: APM X-Gene Mustang board (DT)
Call trace:
[<ffff80000008a09c>] dump_backtrace+0x0/0x13c
[<ffff80000008a1e8>] show_stack+0x10/0x1c
[<ffff800000691da8>] dump_stack+0x74/0x94
[<ffff800000690d78>] panic+0x100/0x240
[<ffff8000000a0bc4>] stage2_get_pmd+0x17c/0x2bc
[<ffff8000000a1dc4>] kvm_handle_guest_abort+0x4b4/0x6b0
[<ffff8000000a420c>] handle_exit+0x58/0x180
[<ffff80000009e7a4>] kvm_arch_vcpu_ioctl_run+0x114/0x45c
[<ffff800000099df4>] kvm_vcpu_ioctl+0x2e0/0x754
[<ffff8000001c0a18>] do_vfs_ioctl+0x424/0x5c8
[<ffff8000001c0bfc>] SyS_ioctl+0x40/0x78
CPU0: stopping
A possible approach for this is to split the compound page using
split_page() at allocation time, and change the teardown path to
free one page at a time. It turns out that alloc_pages_exact() and
free_pages_exact() does exactly that.
While we're at it, the PGD allocation code is reworked to reduce
duplication.
This has been tested on an X-Gene platform with a 4kB/48bit-VA host
kernel, and kvmtool hacked to place memory in the second page of
the hardware PGD (PUD for the host kernel). Also regression-tested
on a Cubietruck (Cortex-A7).
[ Reworked to use alloc_pages_exact() and free_pages_exact() and to
return pointers directly instead of by reference as arguments
- Christoffer ]
Reported-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
|
This patch extends trace_kvm_exit() to include KVM exit reasons
(i.e. EC of HSR). The tracing function then dumps both exit reason
and PC of vCPU, shown as the following. Tracing tools can use this
new exit_reason field to better understand the behavior of guest VMs.
886.301252: kvm_exit: HSR_EC: 0x0024, PC: 0xfffffe0000506b28
Signed-off-by: Wei Huang <wei@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
|
Pull KVM update from Paolo Bonzini:
"Fairly small update, but there are some interesting new features.
Common:
Optional support for adding a small amount of polling on each HLT
instruction executed in the guest (or equivalent for other
architectures). This can improve latency up to 50% on some
scenarios (e.g. O_DSYNC writes or TCP_RR netperf tests). This
also has to be enabled manually for now, but the plan is to
auto-tune this in the future.
ARM/ARM64:
The highlights are support for GICv3 emulation and dirty page
tracking
s390:
Several optimizations and bugfixes. Also a first: a feature
exposed by KVM (UUID and long guest name in /proc/sysinfo) before
it is available in IBM's hypervisor! :)
MIPS:
Bugfixes.
x86:
Support for PML (page modification logging, a new feature in
Broadwell Xeons that speeds up dirty page tracking), nested
virtualization improvements (nested APICv---a nice optimization),
usual round of emulation fixes.
There is also a new option to reduce latency of the TSC deadline
timer in the guest; this needs to be tuned manually.
Some commits are common between this pull and Catalin's; I see you
have already included his tree.
Powerpc:
Nothing yet.
The KVM/PPC changes will come in through the PPC maintainers,
because I haven't received them yet and I might end up being
offline for some part of next week"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (130 commits)
KVM: ia64: drop kvm.h from installed user headers
KVM: x86: fix build with !CONFIG_SMP
KVM: x86: emulate: correct page fault error code for NoWrite instructions
KVM: Disable compat ioctl for s390
KVM: s390: add cpu model support
KVM: s390: use facilities and cpu_id per KVM
KVM: s390/CPACF: Choose crypto control block format
s390/kernel: Update /proc/sysinfo file with Extended Name and UUID
KVM: s390: reenable LPP facility
KVM: s390: floating irqs: fix user triggerable endless loop
kvm: add halt_poll_ns module parameter
kvm: remove KVM_MMIO_SIZE
KVM: MIPS: Don't leak FPU/DSP to guest
KVM: MIPS: Disable HTW while in guest
KVM: nVMX: Enable nested posted interrupt processing
KVM: nVMX: Enable nested virtual interrupt delivery
KVM: nVMX: Enable nested apic register virtualization
KVM: nVMX: Make nested control MSRs per-cpu
KVM: nVMX: Enable nested virtualize x2apic mode
KVM: nVMX: Prepare for using hardware MSR bitmap
...
|