summaryrefslogtreecommitdiff
path: root/Documentation
AgeCommit message (Collapse)AuthorFilesLines
2019-06-17tcp: add tcp_min_snd_mss sysctlEric Dumazet1-0/+8
commit 5f3e2bf008c2221478101ee72f5cb4654b9fc363 upstream. Some TCP peers announce a very small MSS option in their SYN and/or SYN/ACK messages. This forces the stack to send packets with a very high network/cpu overhead. Linux has enforced a minimal value of 48. Since this value includes the size of TCP options, and that the options can consume up to 40 bytes, this means that each segment can include only 8 bytes of payload. In some cases, it can be useful to increase the minimal value to a saner value. We still let the default to 48 (TCP_MIN_SND_MSS), for compatibility reasons. Note that TCP_MAXSEG socket option enforces a minimal value of (TCP_MIN_MSS). David Miller increased this minimal value in commit c39508d6f118 ("tcp: Make TCP_MAXSEG minimum more correct.") from 64 to 88. We might in the future merge TCP_MIN_SND_MSS and TCP_MIN_MSS. CVE-2019-11479 -- tcp mss hardcoded to 48 Signed-off-by: Eric Dumazet <edumazet@google.com> Suggested-by: Jonathan Looney <jtl@netflix.com> Acked-by: Neal Cardwell <ncardwell@google.com> Cc: Yuchung Cheng <ycheng@google.com> Cc: Tyler Hicks <tyhicks@canonical.com> Cc: Bruce Curtis <brucec@netflix.com> Cc: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-11docs: Fix conf.py for Sphinx 2.0Jonathan Corbet1-1/+1
commit 3bc8088464712fdcb078eefb68837ccfcc413c88 upstream. Our version check in Documentation/conf.py never envisioned a world where Sphinx moved beyond 1.x. Now that the unthinkable has happened, fix our version check to handle higher version numbers correctly. Cc: stable@vger.kernel.org Signed-off-by: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-21x86/speculation/mds: Improve CPU buffer clear documentationAndy Lutomirski1-32/+7
commit 9d8d0294e78a164d407133dea05caf4b84247d6a upstream. On x86_64, all returns to usermode go through prepare_exit_to_usermode(), with the sole exception of do_nmi(). This even includes machine checks -- this was added several years ago to support MCE recovery. Update the documentation. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@suse.de> Cc: Frederic Weisbecker <frederic@kernel.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Jon Masters <jcm@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Fixes: 04dcbdb80578 ("x86/speculation/mds: Clear CPU buffers on exit to user") Link: http://lkml.kernel.org/r/999fa9e126ba6a48e9d214d2f18dbde5c62ac55c.1557865329.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-21x86/speculation/mds: Revert CPU buffer clear on double fault exitAndy Lutomirski1-7/+0
commit 88640e1dcd089879530a49a8d212d1814678dfe7 upstream. The double fault ESPFIX path doesn't return to user mode at all -- it returns back to the kernel by simulating a #GP fault. prepare_exit_to_usermode() will run on the way out of general_protection before running user code. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@suse.de> Cc: Frederic Weisbecker <frederic@kernel.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Jon Masters <jcm@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Fixes: 04dcbdb80578 ("x86/speculation/mds: Clear CPU buffers on exit to user") Link: http://lkml.kernel.org/r/ac97612445c0a44ee10374f6ea79c222fe22a5c4.1557865329.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-14x86/speculation/mds: Fix documentation typoJosh Poimboeuf1-1/+1
commit 95310e348a321b45fb746c176961d4da72344282 upstream. Fix a minor typo in the MDS documentation: "eanbled" -> "enabled". Reported-by: Jeff Bastian <jbastian@redhat.com> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-14Documentation: Correct the possible MDS sysfs valuesTyler Hicks1-16/+13
commit ea01668f9f43021b28b3f4d5ffad50106a1e1301 upstream. Adjust the last two rows in the table that display possible values when MDS mitigation is enabled. They both were slightly innacurate. In addition, convert the table of possible values and their descriptions to a list-table. The simple table format uses the top border of equals signs to determine cell width which resulted in the first column being far too wide in comparison to the second column that contained the majority of the text. Signed-off-by: Tyler Hicks <tyhicks@canonical.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> [bwh: Backported to 4.9: adjust filename] Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-14x86/mds: Add MDSUM variant to the MDS documentationspeck for Pawan Gupta2-2/+8
commit e672f8bf71c66253197e503f75c771dd28ada4a0 upstream. Updated the documentation for a new CVE-2019-11091 Microarchitectural Data Sampling Uncacheable Memory (MDSUM) which is a variant of Microarchitectural Data Sampling (MDS). MDS is a family of side channel attacks on internal buffers in Intel CPUs. MDSUM is a special case of MSBDS, MFBDS and MLPDS. An uncacheable load from memory that takes a fault or assist can leave data in a microarchitectural structure that may later be observed using one of the same methods used by MSBDS, MFBDS or MLPDS. There are no new code changes expected for MDSUM. The existing mitigation for MDS applies to MDSUM as well. Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Tyler Hicks <tyhicks@canonical.com> Reviewed-by: Jon Masters <jcm@redhat.com> [bwh: Backported to 4.9: adjust filename] Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-14x86/speculation/mds: Add 'mitigations=' support for MDSJosh Poimboeuf1-0/+2
commit 5c14068f87d04adc73ba3f41c2a303d3c3d1fa12 upstream. Add MDS to the new 'mitigations=' cmdline option. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-14x86/speculation: Support 'mitigations=' cmdline optionJosh Poimboeuf1-5/+11
commit d68be4c4d31295ff6ae34a8ddfaa4c1a8ff42812 upstream. Configure x86 runtime CPU speculation bug mitigations in accordance with the 'mitigations=' cmdline option. This affects Meltdown, Spectre v2, Speculative Store Bypass, and L1TF. The default behavior is unchanged. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Jiri Kosina <jkosina@suse.cz> (on x86) Reviewed-by: Jiri Kosina <jkosina@suse.cz> Cc: Borislav Petkov <bp@alien8.de> Cc: "H . Peter Anvin" <hpa@zytor.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Jiri Kosina <jikos@kernel.org> Cc: Waiman Long <longman@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Jon Masters <jcm@redhat.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: linuxppc-dev@lists.ozlabs.org Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux-s390@vger.kernel.org Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-arm-kernel@lists.infradead.org Cc: linux-arch@vger.kernel.org Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Tyler Hicks <tyhicks@canonical.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Steven Price <steven.price@arm.com> Cc: Phil Auld <pauld@redhat.com> Link: https://lkml.kernel.org/r/6616d0ae169308516cfdf5216bedd169f8a8291b.1555085500.git.jpoimboe@redhat.com [bwh: Backported to 4.9: adjust filenames, context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-14cpu/speculation: Add 'mitigations=' cmdline optionJosh Poimboeuf1-0/+24
commit 98af8452945c55652de68536afdde3b520fec429 upstream. Keeping track of the number of mitigations for all the CPU speculation bugs has become overwhelming for many users. It's getting more and more complicated to decide which mitigations are needed for a given architecture. Complicating matters is the fact that each arch tends to have its own custom way to mitigate the same vulnerability. Most users fall into a few basic categories: a) they want all mitigations off; b) they want all reasonable mitigations on, with SMT enabled even if it's vulnerable; or c) they want all reasonable mitigations on, with SMT disabled if vulnerable. Define a set of curated, arch-independent options, each of which is an aggregation of existing options: - mitigations=off: Disable all mitigations. - mitigations=auto: [default] Enable all the default mitigations, but leave SMT enabled, even if it's vulnerable. - mitigations=auto,nosmt: Enable all the default mitigations, disabling SMT if needed by a mitigation. Currently, these options are placeholders which don't actually do anything. They will be fleshed out in upcoming patches. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Jiri Kosina <jkosina@suse.cz> (on x86) Reviewed-by: Jiri Kosina <jkosina@suse.cz> Cc: Borislav Petkov <bp@alien8.de> Cc: "H . Peter Anvin" <hpa@zytor.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Jiri Kosina <jikos@kernel.org> Cc: Waiman Long <longman@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Jon Masters <jcm@redhat.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: linuxppc-dev@lists.ozlabs.org Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux-s390@vger.kernel.org Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-arm-kernel@lists.infradead.org Cc: linux-arch@vger.kernel.org Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Tyler Hicks <tyhicks@canonical.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Steven Price <steven.price@arm.com> Cc: Phil Auld <pauld@redhat.com> Link: https://lkml.kernel.org/r/b07a8ef9b7c5055c3a4637c87d07c296d5016fe0.1555085500.git.jpoimboe@redhat.com [bwh: Backported to 4.9: adjust filename] Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-14x86/speculation/mds: Add mds=full,nosmt cmdline optionJosh Poimboeuf2-2/+7
commit d71eb0ce109a124b0fa714832823b9452f2762cf upstream. Add the mds=full,nosmt cmdline option. This is like mds=full, but with SMT disabled if the CPU is vulnerable. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Tyler Hicks <tyhicks@canonical.com> Acked-by: Jiri Kosina <jkosina@suse.cz> [bwh: Backported to 4.9: adjust filenames] Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-14Documentation: Add MDS vulnerability documentationThomas Gleixner5-2/+312
commit 5999bbe7a6ea3c62029532ec84dc06003a1fa258 upstream. Add the initial MDS vulnerability documentation. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Jon Masters <jcm@redhat.com> [bwh: Backported to 4.9: adjust filenames] Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-14Documentation: Move L1TF to separate directoryThomas Gleixner5-3/+21
commit 65fd4cb65b2dad97feb8330b6690445910b56d6a upstream. Move L!TF to a separate directory so the MDS stuff can be added at the side. Otherwise the all hardware vulnerabilites have their own top level entry. Should have done that right away. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Jon Masters <jcm@redhat.com> [bwh: Backported to 4.9: adjust filenames, context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-14x86/speculation/mds: Add mitigation mode VMWERVThomas Gleixner1-0/+27
commit 22dd8365088b6403630b82423cf906491859b65e upstream. In virtualized environments it can happen that the host has the microcode update which utilizes the VERW instruction to clear CPU buffers, but the hypervisor is not yet updated to expose the X86_FEATURE_MD_CLEAR CPUID bit to guests. Introduce an internal mitigation mode VMWERV which enables the invocation of the CPU buffer clearing even if X86_FEATURE_MD_CLEAR is not set. If the system has no updated microcode this results in a pointless execution of the VERW instruction wasting a few CPU cycles. If the microcode is updated, but not exposed to a guest then the CPU buffers will be cleared. That said: Virtual Machines Will Eventually Receive Vaccine Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-14x86/speculation/mds: Add sysfs reporting for MDSThomas Gleixner1-0/+1
commit 8a4b06d391b0a42a373808979b5028f5c84d9c6a upstream. Add the sysfs reporting file for MDS. It exposes the vulnerability and mitigation state similar to the existing files for the other speculative hardware vulnerabilities. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com> [bwh: Backported to 4.9: test x86_hyper instead of using hypervisor_is_type()] Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-14x86/speculation/mds: Add mitigation control for MDSThomas Gleixner1-0/+22
commit bc1241700acd82ec69fde98c5763ce51086269f8 upstream. Now that the mitigations are in place, add a command line parameter to control the mitigation, a mitigation selector function and a SMT update mechanism. This is the minimal straight forward initial implementation which just provides an always on/off mode. The command line parameter is: mds=[full|off] This is consistent with the existing mitigations for other speculative hardware vulnerabilities. The idle invocation is dynamically updated according to the SMT state of the system similar to the dynamic update of the STIBP mitigation. The idle mitigation is limited to CPUs which are only affected by MSBDS and not any other variant, because the other variants cannot be mitigated on SMT enabled systems. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com> [bwh: Backported to 4.9: adjust filename] Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-14x86/speculation/mds: Conditionally clear CPU buffers on idle entryThomas Gleixner1-0/+42
commit 07f07f55a29cb705e221eda7894dd67ab81ef343 upstream. Add a static key which controls the invocation of the CPU buffer clear mechanism on idle entry. This is independent of other MDS mitigations because the idle entry invocation to mitigate the potential leakage due to store buffer repartitioning is only necessary on SMT systems. Add the actual invocations to the different halt/mwait variants which covers all usage sites. mwaitx is not patched as it's not available on Intel CPUs. The buffer clear is only invoked before entering the C-State to prevent that stale data from the idling CPU is spilled to the Hyper-Thread sibling after the Store buffer got repartitioned and all entries are available to the non idle sibling. When coming out of idle the store buffer is partitioned again so each sibling has half of it available. Now CPU which returned from idle could be speculatively exposed to contents of the sibling, but the buffers are flushed either on exit to user space or on VMENTER. When later on conditional buffer clearing is implemented on top of this, then there is no action required either because before returning to user space the context switch will set the condition flag which causes a flush on the return to user path. Note, that the buffer clearing on idle is only sensible on CPUs which are solely affected by MSBDS and not any other variant of MDS because the other MDS variants cannot be mitigated when SMT is enabled, so the buffer clearing on idle would be a window dressing exercise. This intentionally does not handle the case in the acpi/processor_idle driver which uses the legacy IO port interface for C-State transitions for two reasons: - The acpi/processor_idle driver was replaced by the intel_idle driver almost a decade ago. Anything Nehalem upwards supports it and defaults to that new driver. - The legacy IO port interface is likely to be used on older and therefore unaffected CPUs or on systems which do not receive microcode updates anymore, so there is no point in adding that. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-14x86/speculation/mds: Clear CPU buffers on exit to userThomas Gleixner1-0/+52
commit 04dcbdb8057827b043b3c71aa397c4c63e67d086 upstream. Add a static key which controls the invocation of the CPU buffer clear mechanism on exit to user space and add the call into prepare_exit_to_usermode() and do_nmi() right before actually returning. Add documentation which kernel to user space transition this covers and explain why some corner cases are not mitigated. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com> Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-14x86/speculation/mds: Add mds_clear_cpu_buffers()Thomas Gleixner4-0/+128
commit 6a9e529272517755904b7afa639f6db59ddb793e upstream. The Microarchitectural Data Sampling (MDS) vulernabilities are mitigated by clearing the affected CPU buffers. The mechanism for clearing the buffers uses the unused and obsolete VERW instruction in combination with a microcode update which triggers a CPU buffer clear when VERW is executed. Provide a inline function with the assembly magic. The argument of the VERW instruction must be a memory operand as documented: "MD_CLEAR enumerates that the memory-operand variant of VERW (for example, VERW m16) has been extended to also overwrite buffers affected by MDS. This buffer overwriting functionality is not guaranteed for the register operand variant of VERW." Documentation also recommends to use a writable data segment selector: "The buffer overwriting occurs regardless of the result of the VERW permission check, as well as when the selector is null or causes a descriptor load segment violation. However, for lowest latency we recommend using a selector that indicates a valid writable data segment." Add x86 specific documentation about MDS and the internal workings of the mitigation. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com> [bwh: Backported to 4.9: add the "Architecture-specific documentation" section to the index] Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-14x86/speculation: Provide IBPB always command line optionsThomas Gleixner1-0/+12
commit 55a974021ec952ee460dc31ca08722158639de72 upstream. Provide the possibility to enable IBPB always in combination with 'prctl' and 'seccomp'. Add the extra command line options and rework the IBPB selection to evaluate the command instead of the mode selected by the STIPB switch case. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Link: https://lkml.kernel.org/r/20181125185006.144047038@linutronix.de [bwh: Backported to 4.9: adjust filename] Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-14x86/speculation: Add seccomp Spectre v2 user space protection modeThomas Gleixner1-1/+8
commit 6b3e64c237c072797a9ec918654a60e3a46488e2 upstream. If 'prctl' mode of user space protection from spectre v2 is selected on the kernel command-line, STIBP and IBPB are applied on tasks which restrict their indirect branch speculation via prctl. SECCOMP enables the SSBD mitigation for sandboxed tasks already, so it makes sense to prevent spectre v2 user space to user space attacks as well. The Intel mitigation guide documents how STIPB works: Setting bit 1 (STIBP) of the IA32_SPEC_CTRL MSR on a logical processor prevents the predicted targets of indirect branches on any logical processor of that core from being controlled by software that executes (or executed previously) on another logical processor of the same core. Ergo setting STIBP protects the task itself from being attacked from a task running on a different hyper-thread and protects the tasks running on different hyper-threads from being attacked. While the document suggests that the branch predictors are shielded between the logical processors, the observed performance regressions suggest that STIBP simply disables the branch predictor more or less completely. Of course the document wording is vague, but the fact that there is also no requirement for issuing IBPB when STIBP is used points clearly in that direction. The kernel still issues IBPB even when STIBP is used until Intel clarifies the whole mechanism. IBPB is issued when the task switches out, so malicious sandbox code cannot mistrain the branch predictor for the next user space task on the same logical processor. Signed-off-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Link: https://lkml.kernel.org/r/20181125185006.051663132@linutronix.de [bwh: Backported to 4.9: adjust filename] Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-14x86/speculation: Enable prctl mode for spectre_v2_userThomas Gleixner1-1/+6
commit 7cc765a67d8e04ef7d772425ca5a2a1e2b894c15 upstream. Now that all prerequisites are in place: - Add the prctl command line option - Default the 'auto' mode to 'prctl' - When SMT state changes, update the static key which controls the conditional STIBP evaluation on context switch. - At init update the static key which controls the conditional IBPB evaluation on context switch. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Link: https://lkml.kernel.org/r/20181125185005.958421388@linutronix.de [bwh: Backported to 4.9: adjust filename] Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-14x86/speculation: Add prctl() control for indirect branch speculationThomas Gleixner1-0/+9
commit 9137bb27e60e554dab694eafa4cca241fa3a694f upstream. Add the PR_SPEC_INDIRECT_BRANCH option for the PR_GET_SPECULATION_CTRL and PR_SET_SPECULATION_CTRL prctls to allow fine grained per task control of indirect branch speculation via STIBP and IBPB. Invocations: Check indirect branch speculation status with - prctl(PR_GET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, 0, 0, 0); Enable indirect branch speculation with - prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_ENABLE, 0, 0); Disable indirect branch speculation with - prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_DISABLE, 0, 0); Force disable indirect branch speculation with - prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_FORCE_DISABLE, 0, 0); See Documentation/userspace-api/spec_ctrl.rst. Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Link: https://lkml.kernel.org/r/20181125185005.866780996@linutronix.de [bwh: Backported to 4.9: - Renumber the PFA flags - Drop changes in tools/include/uapi/linux/prctl.h - Adjust filename] Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-14x86/speculation: Add command line control for indirect branch speculationThomas Gleixner1-2/+30
commit fa1202ef224391b6f5b26cdd44cc50495e8fab54 upstream. Add command line control for user space indirect branch speculation mitigations. The new option is: spectre_v2_user= The initial options are: - on: Unconditionally enabled - off: Unconditionally disabled -auto: Kernel selects mitigation (default off for now) When the spectre_v2= command line argument is either 'on' or 'off' this implies that the application to application control follows that state even if a contradicting spectre_v2_user= argument is supplied. Originally-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Link: https://lkml.kernel.org/r/20181125185005.082720373@linutronix.de [bwh: Backported to 4.9: adjust filename] Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-14x86/speculation/l1tf: Drop the swap storage limit restriction when l1tf=offMichal Hocko2-1/+8
commit 5b5e4d623ec8a34689df98e42d038a3b594d2ff9 upstream. Swap storage is restricted to max_swapfile_size (~16TB on x86_64) whenever the system is deemed affected by L1TF vulnerability. Even though the limit is quite high for most deployments it seems to be too restrictive for deployments which are willing to live with the mitigation disabled. We have a customer to deploy 8x 6,4TB PCIe/NVMe SSD swap devices which is clearly out of the limit. Drop the swap restriction when l1tf=off is specified. It also doesn't make much sense to warn about too much memory for the l1tf mitigation when it is forcefully disabled by the administrator. [ tglx: Folded the documentation delta change ] Fixes: 377eeaa8e11f ("x86/speculation/l1tf: Limit swap file size to MAX_PA/2") Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com> Reviewed-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Kosina <jkosina@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Borislav Petkov <bp@suse.de> Cc: <linux-mm@kvack.org> Link: https://lkml.kernel.org/r/20181113184910.26697-1-mhocko@kernel.org [bwh: Backported to 4.9: adjust filenames, context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-14Documentation/l1tf: Fix small spelling typoSalvatore Bonaccorso1-1/+1
commit 60ca05c3b44566b70d64fbb8e87a6e0c67725468 upstream. Fix small typo (wiil -> will) in the "3.4. Nested virtual machines" section. Fixes: 5b76a3cff011 ("KVM: VMX: Tell the nested hypervisor to skip L1D flush on vmentry") Cc: linux-kernel@vger.kernel.org Cc: Jonathan Corbet <corbet@lwn.net> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Tony Luck <tony.luck@intel.com> Cc: linux-doc@vger.kernel.org Cc: trivial@kernel.org Signed-off-by: Salvatore Bonaccorso <carnil@debian.org> Signed-off-by: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> [bwh: Backported to 4.9: adjust filename] Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-08USB: core: Fix bug caused by duplicate interface PM usage counterAlan Stern1-5/+9
commit c2b71462d294cf517a0bc6e4fd6424d7cee5596f upstream. The syzkaller fuzzer reported a bug in the USB hub driver which turned out to be caused by a negative runtime-PM usage counter. This allowed a hub to be runtime suspended at a time when the driver did not expect it. The symptom is a WARNING issued because the hub's status URB is submitted while it is already active: URB 0000000031fb463e submitted while active WARNING: CPU: 0 PID: 2917 at drivers/usb/core/urb.c:363 The negative runtime-PM usage count was caused by an unfortunate design decision made when runtime PM was first implemented for USB. At that time, USB class drivers were allowed to unbind from their interfaces without balancing the usage counter (i.e., leaving it with a positive count). The core code would take care of setting the counter back to 0 before allowing another driver to bind to the interface. Later on when runtime PM was implemented for the entire kernel, the opposite decision was made: Drivers were required to balance their runtime-PM get and put calls. In order to maintain backward compatibility, however, the USB subsystem adapted to the new implementation by keeping an independent usage counter for each interface and using it to automatically adjust the normal usage counter back to 0 whenever a driver was unbound. This approach involves duplicating information, but what is worse, it doesn't work properly in cases where a USB class driver delays decrementing the usage counter until after the driver's disconnect() routine has returned and the counter has been adjusted back to 0. Doing so would cause the usage counter to become negative. There's even a warning about this in the USB power management documentation! As it happens, this is exactly what the hub driver does. The kick_hub_wq() routine increments the runtime-PM usage counter, and the corresponding decrement is carried out by hub_event() in the context of the hub_wq work-queue thread. This work routine may sometimes run after the driver has been unbound from its interface, and when it does it causes the usage counter to go negative. It is not possible for hub_disconnect() to wait for a pending hub_event() call to finish, because hub_disconnect() is called with the device lock held and hub_event() acquires that lock. The only feasible fix is to reverse the original design decision: remove the duplicate interface-specific usage counter and require USB drivers to balance their runtime PM gets and puts. As far as I know, all existing drivers currently do this. Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Reported-and-tested-by: syzbot+7634edaea4d0b341c625@syzkaller.appspotmail.com CC: <stable@vger.kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-02Documentation: Add nospectre_v1 parameterDiana Craciun1-0/+4
commit 26cb1f36c43ee6e89d2a9f48a5a7500d5248f836 upstream. Currently only supported on powerpc. Signed-off-by: Diana Craciun <diana.craciun@nxp.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-02powerpc/fsl: Add FSL_PPC_BOOK3E as supported arch for nospectre_v2 boot argDiana Craciun1-1/+1
commit e59f5bd759b7dee57593c5b6c0441609bda5d530 upstream. Signed-off-by: Diana Craciun <diana.craciun@nxp.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-02ipv4: set the tcp_min_rtt_wlen range from 0 to one dayZhangXiaoxu1-0/+1
[ Upstream commit 19fad20d15a6494f47f85d869f00b11343ee5c78 ] There is a UBSAN report as below: UBSAN: Undefined behaviour in net/ipv4/tcp_input.c:2877:56 signed integer overflow: 2147483647 * 1000 cannot be represented in type 'int' CPU: 3 PID: 0 Comm: swapper/3 Not tainted 5.1.0-rc4-00058-g582549e #1 Call Trace: <IRQ> dump_stack+0x8c/0xba ubsan_epilogue+0x11/0x60 handle_overflow+0x12d/0x170 ? ttwu_do_wakeup+0x21/0x320 __ubsan_handle_mul_overflow+0x12/0x20 tcp_ack_update_rtt+0x76c/0x780 tcp_clean_rtx_queue+0x499/0x14d0 tcp_ack+0x69e/0x1240 ? __wake_up_sync_key+0x2c/0x50 ? update_group_capacity+0x50/0x680 tcp_rcv_established+0x4e2/0xe10 tcp_v4_do_rcv+0x22b/0x420 tcp_v4_rcv+0xfe8/0x1190 ip_protocol_deliver_rcu+0x36/0x180 ip_local_deliver+0x15b/0x1a0 ip_rcv+0xac/0xd0 __netif_receive_skb_one_core+0x7f/0xb0 __netif_receive_skb+0x33/0xc0 netif_receive_skb_internal+0x84/0x1c0 napi_gro_receive+0x2a0/0x300 receive_buf+0x3d4/0x2350 ? detach_buf_split+0x159/0x390 virtnet_poll+0x198/0x840 ? reweight_entity+0x243/0x4b0 net_rx_action+0x25c/0x770 __do_softirq+0x19b/0x66d irq_exit+0x1eb/0x230 do_IRQ+0x7a/0x150 common_interrupt+0xf/0xf </IRQ> It can be reproduced by: echo 2147483647 > /proc/sys/net/ipv4/tcp_min_rtt_wlen Fixes: f672258391b42 ("tcp: track min RTT using windowed min-filter") Signed-off-by: ZhangXiaoxu <zhangxiaoxu5@huawei.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-05ARM: 8833/1: Ensure that NEON code always compiles with ClangNathan Chancellor1-2/+2
[ Upstream commit de9c0d49d85dc563549972edc5589d195cd5e859 ] While building arm32 allyesconfig, I ran into the following errors: arch/arm/lib/xor-neon.c:17:2: error: You should compile this file with '-mfloat-abi=softfp -mfpu=neon' In file included from lib/raid6/neon1.c:27: /home/nathan/cbl/prebuilt/lib/clang/8.0.0/include/arm_neon.h:28:2: error: "NEON support not enabled" Building V=1 showed NEON_FLAGS getting passed along to Clang but __ARM_NEON__ was not getting defined. Ultimately, it boils down to Clang only defining __ARM_NEON__ when targeting armv7, rather than armv6k, which is the '-march' value for allyesconfig. >From lib/Basic/Targets/ARM.cpp in the Clang source: // This only gets set when Neon instructions are actually available, unlike // the VFP define, hence the soft float and arch check. This is subtly // different from gcc, we follow the intent which was that it should be set // when Neon instructions are actually available. if ((FPU & NeonFPU) && !SoftFloat && ArchVersion >= 7) { Builder.defineMacro("__ARM_NEON", "1"); Builder.defineMacro("__ARM_NEON__"); // current AArch32 NEON implementations do not support double-precision // floating-point even when it is present in VFP. Builder.defineMacro("__ARM_NEON_FP", "0x" + Twine::utohexstr(HW_FP & ~HW_FP_DP)); } Ard Biesheuvel recommended explicitly adding '-march=armv7-a' at the beginning of the NEON_FLAGS definitions so that __ARM_NEON__ always gets definined by Clang. This doesn't functionally change anything because that code will only run where NEON is supported, which is implicitly armv7. Link: https://github.com/ClangBuiltLinux/linux/issues/287 Suggested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Nathan Chancellor <natechancellor@gmail.com> Acked-by: Nicolas Pitre <nico@linaro.org> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com> Reviewed-by: Stefan Agner <stefan@agner.ch> Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-04-03KVM: Reject device ioctls from processes other than the VM's creatorSean Christopherson1-5/+11
commit ddba91801aeb5c160b660caed1800eb3aef403f8 upstream. KVM's API requires thats ioctls must be issued from the same process that created the VM. In other words, userspace can play games with a VM's file descriptors, e.g. fork(), SCM_RIGHTS, etc..., but only the creator can do anything useful. Explicitly reject device ioctls that are issued by a process other than the VM's creator, and update KVM's API documentation to extend its requirements to device ioctls. Fixes: 852b6d57dc7f ("kvm: add device control API") Cc: <stable@vger.kernel.org> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-02-20dt-bindings: eeprom: at24: add "atmel,24c2048" compatible stringAdrian Bunk1-2/+3
commit 6c0c5dc33ff42af49243e94842d0ebdb153189ea upstream. Add new compatible to the device tree bindings. Signed-off-by: Adrian Bunk <bunk@kernel.org> Acked-by: Rob Herring <robh@kernel.org> Signed-off-by: Bartosz Golaszewski <brgl@bgdev.pl> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-01-26mm, proc: be more verbose about unstable VMA flags in /proc/<pid>/smapsMichal Hocko1-1/+3
[ Upstream commit 7550c6079846a24f30d15ac75a941c8515dbedfb ] Patch series "THP eligibility reporting via proc". This series of three patches aims at making THP eligibility reporting much more robust and long term sustainable. The trigger for the change is a regression report [2] and the long follow up discussion. In short the specific application didn't have good API to query whether a particular mapping can be backed by THP so it has used VMA flags to workaround that. These flags represent a deep internal state of VMAs and as such they should be used by userspace with a great deal of caution. A similar has happened for [3] when users complained that VM_MIXEDMAP is no longer set on DAX mappings. Again a lack of a proper API led to an abuse. The first patch in the series tries to emphasise that that the semantic of flags might change and any application consuming those should be really careful. The remaining two patches provide a more suitable interface to address [2] and provide a consistent API to query the THP status both for each VMA and process wide as well. [1] http://lkml.kernel.org/r/20181120103515.25280-1-mhocko@kernel.org [2] http://lkml.kernel.org/r/http://lkml.kernel.org/r/alpine.DEB.2.21.1809241054050.224429@chino.kir.corp.google.com [3] http://lkml.kernel.org/r/20181002100531.GC4135@quack2.suse.cz This patch (of 3): Even though vma flags exported via /proc/<pid>/smaps are explicitly documented to be not guaranteed for future compatibility the warning doesn't go far enough because it doesn't mention semantic changes to those flags. And they are important as well because these flags are a deep implementation internal to the MM code and the semantic might change at any time. Let's consider two recent examples: http://lkml.kernel.org/r/20181002100531.GC4135@quack2.suse.cz : commit e1fb4a086495 "dax: remove VM_MIXEDMAP for fsdax and device dax" has : removed VM_MIXEDMAP flag from DAX VMAs. Now our testing shows that in the : mean time certain customer of ours started poking into /proc/<pid>/smaps : and looks at VMA flags there and if VM_MIXEDMAP is missing among the VMA : flags, the application just fails to start complaining that DAX support is : missing in the kernel. http://lkml.kernel.org/r/alpine.DEB.2.21.1809241054050.224429@chino.kir.corp.google.com : Commit 1860033237d4 ("mm: make PR_SET_THP_DISABLE immediately active") : introduced a regression in that userspace cannot always determine the set : of vmas where thp is ineligible. : Userspace relies on the "nh" flag being emitted as part of /proc/pid/smaps : to determine if a vma is eligible to be backed by hugepages. : Previous to this commit, prctl(PR_SET_THP_DISABLE, 1) would cause thp to : be disabled and emit "nh" as a flag for the corresponding vmas as part of : /proc/pid/smaps. After the commit, thp is disabled by means of an mm : flag and "nh" is not emitted. : This causes smaps parsing libraries to assume a vma is eligible for thp : and ends up puzzling the user on why its memory is not backed by thp. In both cases userspace was relying on a semantic of a specific VMA flag. The primary reason why that happened is a lack of a proper interface. While this has been worked on and it will be fixed properly, it seems that our wording could see some refinement and be more vocal about semantic aspect of these flags as well. Link: http://lkml.kernel.org/r/20181211143641.3503-2-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Jan Kara <jack@suse.cz> Acked-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Mike Rapoport <rppt@linux.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Paul Oppenheimer <bepvte@gmail.com> Cc: William Kucharski <william.kucharski@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2018-12-01namei: allow restricted O_CREAT of FIFOs and regular filesSalvatore Mesoraca1-0/+36
commit 30aba6656f61ed44cba445a3c0d38b296fa9e8f5 upstream. Disallows open of FIFOs or regular files not owned by the user in world writable sticky directories, unless the owner is the same as that of the directory or the file is opened without the O_CREAT flag. The purpose is to make data spoofing attacks harder. This protection can be turned on and off separately for FIFOs and regular files via sysctl, just like the symlinks/hardlinks protection. This patch is based on Openwall's "HARDEN_FIFO" feature by Solar Designer. This is a brief list of old vulnerabilities that could have been prevented by this feature, some of them even allow for privilege escalation: CVE-2000-1134 CVE-2007-3852 CVE-2008-0525 CVE-2009-0416 CVE-2011-4834 CVE-2015-1838 CVE-2015-7442 CVE-2016-7489 This list is not meant to be complete. It's difficult to track down all vulnerabilities of this kind because they were often reported without any mention of this particular attack vector. In fact, before hardlinks/symlinks restrictions, fifos/regular files weren't the favorite vehicle to exploit them. [s.mesoraca16@gmail.com: fix bug reported by Dan Carpenter] Link: https://lkml.kernel.org/r/20180426081456.GA7060@mwanda Link: http://lkml.kernel.org/r/1524829819-11275-1-git-send-email-s.mesoraca16@gmail.com [keescook@chromium.org: drop pr_warn_ratelimited() in favor of audit changes in the future] [keescook@chromium.org: adjust commit subjet] Link: http://lkml.kernel.org/r/20180416175918.GA13494@beast Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com> Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Solar Designer <solar@openwall.com> Suggested-by: Kees Cook <keescook@chromium.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Loic <hackurx@opensec.fr> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-11-10ACPI: sysfs: Make ACPI GPE mask kernel parameter cover all GPEsPrarit Bhargava1-1/+0
[ Upstream commit 0f27cff8597d86f881ea8274b49b63b678c14a3c ] The acpi_mask_gpe= kernel parameter documentation states that the range of mask is 128 GPEs (0x00 to 0x7F). The acpi_masked_gpes mask is a u64 so only 64 GPEs (0x00 to 0x3F) can really be masked. Use a bitmap of size 0xFF instead of a u64 for the GPE mask so 256 GPEs can be masked. Fixes: 9c4aa1eecb48 (ACPI / sysfs: Provide quirk mechanism to prevent GPE flooding) Signed-off-by: Prarit Bharava <prarit@redhat.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2018-10-18inet: frags: break the 2GB limit for frags storageEric Dumazet1-2/+2
Some users are willing to provision huge amounts of memory to be able to perform reassembly reasonnably well under pressure. Current memory tracking is using one atomic_t and integers. Switch to atomic_long_t so that 64bit arches can use more than 2GB, without any cost for 32bit arches. Note that this patch avoids an overflow error, if high_thresh was set to ~2GB, since this test in inet_frag_alloc() was never true : if (... || frag_mem_limit(nf) > nf->high_thresh) Tested: $ echo 16000000000 >/proc/sys/net/ipv4/ipfrag_high_thresh <frag DDOS> $ grep FRAG /proc/net/sockstat FRAG: inuse 14705885 memory 16000002880 $ nstat -n ; sleep 1 ; nstat | grep Reas IpReasmReqds 3317150 0.0 IpReasmFails 3317112 0.0 Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> (cherry picked from commit 3e67f106f619dcfaf6f4e2039599bdb69848c714) Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-18inet: frags: use rhashtables for reassembly unitsEric Dumazet1-5/+2
Some applications still rely on IP fragmentation, and to be fair linux reassembly unit is not working under any serious load. It uses static hash tables of 1024 buckets, and up to 128 items per bucket (!!!) A work queue is supposed to garbage collect items when host is under memory pressure, and doing a hash rebuild, changing seed used in hash computations. This work queue blocks softirqs for up to 25 ms when doing a hash rebuild, occurring every 5 seconds if host is under fire. Then there is the problem of sharing this hash table for all netns. It is time to switch to rhashtables, and allocate one of them per netns to speedup netns dismantle, since this is a critical metric these days. Lookup is now using RCU. A followup patch will even remove the refcount hold/release left from prior implementation and save a couple of atomic operations. Before this patch, 16 cpus (16 RX queue NIC) could not handle more than 1 Mpps frags DDOS. After the patch, I reach 9 Mpps without any tuning, and can use up to 2GB of storage for the fragments (exact number depends on frags being evicted after timeout) $ grep FRAG /proc/net/sockstat FRAG: inuse 1966916 memory 2140004608 A followup patch will change the limits for 64bit arches. Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Florian Westphal <fw@strlen.de> Cc: Jesper Dangaard Brouer <brouer@redhat.com> Cc: Alexander Aring <alex.aring@gmail.com> Cc: Stefan Schmidt <stefan@osg.samsung.com> Signed-off-by: David S. Miller <davem@davemloft.net> (cherry picked from commit 648700f76b03b7e8149d13cc2bdb3355035258a9) Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-18ARM: dts: at91: add new compatibility string for macb on sama5d3Nicolas Ferre1-0/+1
[ Upstream commit 321cc359d899a8e988f3725d87c18a628e1cc624 ] We need this new compatibility string as we experienced different behavior for this 10/100Mbits/s macb interface on this particular SoC. Backward compatibility is preserved as we keep the alternative strings. Signed-off-by: Nicolas Ferre <nicolas.ferre@microchip.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-13x86/fpu: Finish excising 'eagerfpu'Andy Lutomirski1-6/+0
commit e63650840e8b053aa09ad934877e87e9941ed135 upstream. Now that eagerfpu= is gone, remove it from the docs and some comments. Also sync the changes to tools/. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/cf430dd4481d41280e93ac6cf0def1007a67fc8e.1476740397.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Daniel Sangorrin <daniel.sangorrin@toshiba.co.jp> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-04hwmon: (ina2xx) fix sysfs shunt resistor read accessLothar Felten1-1/+1
[ Upstream commit 3ad867001c91657c46dcf6656d52eb6080286fd5 ] fix the sysfs shunt resistor read access: return the shunt resistor value, not the calibration register contents. update email address Signed-off-by: Lothar Felten <lothar.felten@gmail.com> Signed-off-by: Guenter Roeck <linux@roeck-us.net> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-17kbuild: verify that $DEPMOD is installedRandy Dunlap1-12/+7
commit 934193a654c1f4d0643ddbf4b2529b508cae926e upstream. Verify that 'depmod' ($DEPMOD) is installed. This is a partial revert of commit 620c231c7a7f ("kbuild: do not check for ancient modutils tools"). Also update Documentation/process/changes.rst to refer to kmod instead of module-init-tools. Fixes kernel bugzilla #198965: https://bugzilla.kernel.org/show_bug.cgi?id=198965 Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Cc: Lucas De Marchi <lucas.demarchi@profusion.mobi> Cc: Lucas De Marchi <lucas.de.marchi@gmail.com> Cc: Michal Marek <michal.lkml@markovi.net> Cc: Jessica Yu <jeyu@kernel.org> Cc: Chih-Wei Huang <cwhuang@linux.org.tw> Cc: stable@vger.kernel.org # any kernel since 2012 Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15KVM: VMX: Tell the nested hypervisor to skip L1D flush on vmentryPaolo Bonzini1-0/+21
commit 5b76a3cff011df2dcb6186c965a2e4d809a05ad4 upstream When nested virtualization is in use, VMENTER operations from the nested hypervisor into the nested guest will always be processed by the bare metal hypervisor, and KVM's "conditional cache flushes" mode in particular does a flush on nested vmentry. Therefore, include the "skip L1D flush on vmentry" bit in KVM's suggested ARCH_CAPABILITIES setting. Add the relevant Documentation. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15KVM: x86: Add a framework for supporting MSR-based featuresTom Lendacky1-12/+28
commit 801e459a6f3a63af9d447e6249088c76ae16efc4 upstream Provide a new KVM capability that allows bits within MSRs to be recognized as features. Two new ioctls are added to the /dev/kvm ioctl routine to retrieve the list of these MSRs and then retrieve their values. A kvm_x86_ops callback is used to determine support for the listed MSR-based features. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> [Tweaked documentation. - Radim] Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15Documentation/l1tf: Remove Yonah processors from not vulnerable listThomas Gleixner1-2/+0
commit 58331136136935c631c2b5f06daf4c3006416e91 upstream Dave reported, that it's not confirmed that Yonah processors are unaffected. Remove them from the list. Reported-by: ave Hansen <dave.hansen@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15Documentation/l1tf: Fix typosTony Luck1-7/+7
commit 1949f9f49792d65dba2090edddbe36a5f02e3ba3 upstream Fix spelling and other typos Signed-off-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15Documentation: Add section about CPU vulnerabilitiesThomas Gleixner2-0/+592
commit 3ec8ce5d866ec6a08a9cfab82b62acf4a830b35f upstream Add documentation for the L1TF vulnerability and the mitigation mechanisms: - Explain the problem and risks - Document the mitigation mechanisms - Document the command line controls - Document the sysfs files Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lkml.kernel.org/r/20180713142323.287429944@linutronix.de Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15x86/bugs, kvm: Introduce boot-time control of L1TF mitigationsJiri Kosina2-6/+66
commit d90a7a0ec83fb86622cd7dae23255d3c50a99ec8 upstream Introduce the 'l1tf=' kernel command line option to allow for boot-time switching of mitigation that is used on processors affected by L1TF. The possible values are: full Provides all available mitigations for the L1TF vulnerability. Disables SMT and enables all mitigations in the hypervisors. SMT control via /sys/devices/system/cpu/smt/control is still possible after boot. Hypervisors will issue a warning when the first VM is started in a potentially insecure configuration, i.e. SMT enabled or L1D flush disabled. full,force Same as 'full', but disables SMT control. Implies the 'nosmt=force' command line option. sysfs control of SMT and the hypervisor flush control is disabled. flush Leaves SMT enabled and enables the conditional hypervisor mitigation. Hypervisors will issue a warning when the first VM is started in a potentially insecure configuration, i.e. SMT enabled or L1D flush disabled. flush,nosmt Disables SMT and enables the conditional hypervisor mitigation. SMT control via /sys/devices/system/cpu/smt/control is still possible after boot. If SMT is reenabled or flushing disabled at runtime hypervisors will issue a warning. flush,nowarn Same as 'flush', but hypervisors will not warn when a VM is started in a potentially insecure configuration. off Disables hypervisor mitigations and doesn't emit any warnings. Default is 'flush'. Let KVM adhere to these semantics, which means: - 'lt1f=full,force' : Performe L1D flushes. No runtime control possible. - 'l1tf=full' - 'l1tf-flush' - 'l1tf=flush,nosmt' : Perform L1D flushes and warn on VM start if SMT has been runtime enabled or L1D flushing has been run-time enabled - 'l1tf=flush,nowarn' : Perform L1D flushes and no warnings are emitted. - 'l1tf=off' : L1D flushes are not performed and no warnings are emitted. KVM can always override the L1D flushing behavior using its 'vmentry_l1d_flush' module parameter except when lt1f=full,force is set. This makes KVM's private 'nosmt' option redundant, and as it is a bit non-systematic anyway (this is something to control globally, not on hypervisor level), remove that option. Add the missing Documentation entry for the l1tf vulnerability sysfs file while at it. Signed-off-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Jiri Kosina <jkosina@suse.cz> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lkml.kernel.org/r/20180713142323.202758176@linutronix.de Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15x86/KVM/VMX: Add module argument for L1TF mitigationKonrad Rzeszutek Wilk1-0/+12
commit a399477e52c17e148746d3ce9a483f681c2aa9a0 upstream Add a mitigation mode parameter "vmentry_l1d_flush" for CVE-2018-3620, aka L1 terminal fault. The valid arguments are: - "always" L1D cache flush on every VMENTER. - "cond" Conditional L1D cache flush, explained below - "never" Disable the L1D cache flush mitigation "cond" is trying to avoid L1D cache flushes on VMENTER if the code executed between VMEXIT and VMENTER is considered safe, i.e. is not bringing any interesting information into L1D which might exploited. [ tglx: Split out from a larger patch ] Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15x86/KVM: Warn user if KVM is loaded SMT and L1TF CPU bug being presentKonrad Rzeszutek Wilk1-0/+6
commit 26acfb666a473d960f0fd971fe68f3e3ad16c70b upstream If the L1TF CPU bug is present we allow the KVM module to be loaded as the major of users that use Linux and KVM have trusted guests and do not want a broken setup. Cloud vendors are the ones that are uncomfortable with CVE 2018-3620 and as such they are the ones that should set nosmt to one. Setting 'nosmt' means that the system administrator also needs to disable SMT (Hyper-threading) in the BIOS, or via the 'nosmt' command line parameter, or via the /sys/devices/system/cpu/smt/control. See commit 05736e4ac13c ("cpu/hotplug: Provide knobs to control SMT"). Other mitigations are to use task affinity, cpu sets, interrupt binding, etc - anything to make sure that _only_ the same guests vCPUs are running on sibling threads. Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>