Age | Commit message (Collapse) | Author | Files | Lines |
|
commit 3798cc4d106e91382bfe016caa2edada27c2bb3f upstream.
Make the docs match the code.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 7222a1b5b87417f22265c92deea76a6aecd0fb0f upstream.
Add documentation for the SRBDS vulnerability and its mitigation.
[ bp: Massage.
jpoimboe: sysfs table strings. ]
Signed-off-by: Mark Gross <mgross@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 7e5b3c267d256822407a22fdce6afdf9cd13f9fb upstream.
SRBDS is an MDS-like speculative side channel that can leak bits from the
random number generator (RNG) across cores and threads. New microcode
serializes the processor access during the execution of RDRAND and
RDSEED. This ensures that the shared buffer is overwritten before it is
released for reuse.
While it is present on all affected CPU models, the microcode mitigation
is not needed on models that enumerate ARCH_CAPABILITIES[MDS_NO] in the
cases where TSX is not supported or has been disabled with TSX_CTRL.
The mitigation is activated by default on affected processors and it
increases latency for RDRAND and RDSEED instructions. Among other
effects this will reduce throughput from /dev/urandom.
* Enable administrator to configure the mitigation off when desired using
either mitigations=off or srbds=off.
* Export vulnerability status via sysfs
* Rename file-scoped macros to apply for non-whitelist table initializations.
[ bp: Massage,
- s/VULNBL_INTEL_STEPPING/VULNBL_INTEL_STEPPINGS/g,
- do not read arch cap MSR a second time in tsx_fused_off() - just pass it in,
- flip check in cpu_set_bug_bits() to save an indentation level,
- reflow comments.
jpoimboe: s/Mitigated/Mitigation/ in user-visible strings
tglx: Dropped the fused off magic for now
]
Signed-off-by: Mark Gross <mgross@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Tested-by: Neelima Krishnan <neelima.krishnan@intel.com>
[bwh: Backported to 3.16:
- CPU feature words and bugs are numbered differently
- Adjust filename for <asm/msr-index.h>]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 30aba6656f61ed44cba445a3c0d38b296fa9e8f5 upstream.
Disallows open of FIFOs or regular files not owned by the user in world
writable sticky directories, unless the owner is the same as that of the
directory or the file is opened without the O_CREAT flag. The purpose
is to make data spoofing attacks harder. This protection can be turned
on and off separately for FIFOs and regular files via sysctl, just like
the symlinks/hardlinks protection. This patch is based on Openwall's
"HARDEN_FIFO" feature by Solar Designer.
This is a brief list of old vulnerabilities that could have been prevented
by this feature, some of them even allow for privilege escalation:
CVE-2000-1134
CVE-2007-3852
CVE-2008-0525
CVE-2009-0416
CVE-2011-4834
CVE-2015-1838
CVE-2015-7442
CVE-2016-7489
This list is not meant to be complete. It's difficult to track down all
vulnerabilities of this kind because they were often reported without any
mention of this particular attack vector. In fact, before
hardlinks/symlinks restrictions, fifos/regular files weren't the favorite
vehicle to exploit them.
[s.mesoraca16@gmail.com: fix bug reported by Dan Carpenter]
Link: https://lkml.kernel.org/r/20180426081456.GA7060@mwanda
Link: http://lkml.kernel.org/r/1524829819-11275-1-git-send-email-s.mesoraca16@gmail.com
[keescook@chromium.org: drop pr_warn_ratelimited() in favor of audit changes in the future]
[keescook@chromium.org: adjust commit subjet]
Link: http://lkml.kernel.org/r/20180416175918.GA13494@beast
Signed-off-by: Salvatore Mesoraca <s.mesoraca16@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Suggested-by: Solar Designer <solar@openwall.com>
Suggested-by: Kees Cook <keescook@chromium.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[bwh: Backported to 3.16: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 65cc8bf99349f651a0a2cee69333525fe581f306 upstream.
Document which flags work storage, UAS or both
Signed-off-by: Oliver Neukum <oneukum@suse.com>
Link: https://lore.kernel.org/r/20191114112758.32747-4-oneukum@suse.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[bwh: Backported to 3.16: Drop change relating to ALWAYS_SYNC]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 64870ed1b12e235cfca3f6c6da75b542c973ff78 upstream.
For MDS vulnerable processors with TSX support, enabling either MDS or
TAA mitigations will enable the use of VERW to flush internal processor
buffers at the right code path. IOW, they are either both mitigated
or both not. However, if the command line options are inconsistent,
the vulnerabilites sysfs files may not report the mitigation status
correctly.
For example, with only the "mds=off" option:
vulnerabilities/mds:Vulnerable; SMT vulnerable
vulnerabilities/tsx_async_abort:Mitigation: Clear CPU buffers; SMT vulnerable
The mds vulnerabilities file has wrong status in this case. Similarly,
the taa vulnerability file will be wrong with mds mitigation on, but
taa off.
Change taa_select_mitigation() to sync up the two mitigation status
and have them turned off if both "mds=off" and "tsx_async_abort=off"
are present.
Update documentation to emphasize the fact that both "mds=off" and
"tsx_async_abort=off" have to be specified together for processors that
are affected by both TAA and MDS to be effective.
[ bp: Massage and add kernel-parameters.txt change too. ]
Fixes: 1b42f017415b ("x86/speculation/taa: Add mitigation for TSX Async Abort")
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: linux-doc@vger.kernel.org
Cc: Mark Gross <mgross@linux.intel.com>
Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Tyler Hicks <tyhicks@canonical.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191115161445.30809-2-longman@redhat.com
[bwh: Backported to 3.16: adjust filenames]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 015664d15270a112c2371d812f03f7c579b35a73 upstream.
The Rio500 kernel driver has not been used by Rio500 owners since 2001
not long after the rio500 project added support for a user-space USB stack
through the very first versions of usbdevfs and then libusb.
Support for the kernel driver was removed from the upstream utilities
in 2008:
https://gitlab.freedesktop.org/hadess/rio500/commit/943f624ab721eb8281c287650fcc9e2026f6f5db
Cc: Cesar Miquel <miquel@df.uba.ar>
Signed-off-by: Bastien Nocera <hadess@hadess.net>
Link: https://lore.kernel.org/r/6251c17584d220472ce882a3d9c199c401a51a71.camel@hadess.net
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[bwh: Backported to 3.16:
- Also delete CONFIG_USB_RIO500 from arch/powerpc/configs/c2k_defconfig
- Drop change to arch/arm/configs/pxa_defconfig
- Adjust filename, content]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit db4d30fbb71b47e4ecb11c4efa5d8aad4b03dfae upstream.
Some processors may incur a machine check error possibly resulting in an
unrecoverable CPU lockup when an instruction fetch encounters a TLB
multi-hit in the instruction TLB. This can occur when the page size is
changed along with either the physical address or cache type. The relevant
erratum can be found here:
https://bugzilla.kernel.org/show_bug.cgi?id=205195
There are other processors affected for which the erratum does not fully
disclose the impact.
This issue affects both bare-metal x86 page tables and EPT.
It can be mitigated by either eliminating the use of large pages or by
using careful TLB invalidations when changing the page size in the page
tables.
Just like Spectre, Meltdown, L1TF and MDS, a new bit has been allocated in
MSR_IA32_ARCH_CAPABILITIES (PSCHANGE_MC_NO) and will be set on CPUs which
are mitigated against this issue.
Signed-off-by: Vineela Tummalapalli <vineela.tummalapalli@intel.com>
Co-developed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[bwh: Backported to 3.16:
- Use next available X86_BUG bit
- Don't use BIT() in msr-index.h because it's a UAPI header
- No support for X86_VENDOR_HYGON, ATOM_AIRMONT_NP
- Adjust filename, context, indentation]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit a7a248c593e4fd7a67c50b5f5318fe42a0db335e upstream.
Add the documenation for TSX Async Abort. Include the description of
the issue, how to check the mitigation state, control the mitigation,
guidance for system administrators.
[ bp: Add proper SPDX tags, touch ups by Josh and me. ]
Co-developed-by: Antonio Gomez Iglesias <antonio.gomez.iglesias@intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Antonio Gomez Iglesias <antonio.gomez.iglesias@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Mark Gross <mgross@linux.intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
[bwh: Backported to 4.4:
- Drop changes to ReST index files
- Drop "nosmt" documentation
- Adjust filenames, context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 7531a3596e3272d1f6841e0d601a614555dc6b65 upstream.
Platforms which are not affected by X86_BUG_TAA may want the TSX feature
enabled. Add "auto" option to the TSX cmdline parameter. When tsx=auto
disable TSX when X86_BUG_TAA is present, otherwise enable TSX.
More details on X86_BUG_TAA can be found here:
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html
[ bp: Extend the arg buffer to accommodate "auto\0". ]
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
[bwh: Backported to 4.4: adjust filename]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 95c5824f75f3ba4c9e8e5a4b1a623c95390ac266 upstream.
Add a kernel cmdline parameter "tsx" to control the Transactional
Synchronization Extensions (TSX) feature. On CPUs that support TSX
control, use "tsx=on|off" to enable or disable TSX. Not specifying this
option is equivalent to "tsx=off". This is because on certain processors
TSX may be used as a part of a speculative side channel attack.
Carve out the TSX controlling functionality into a separate compilation
unit because TSX is a CPU feature while the TSX async abort control
machinery will go to cpu/bugs.c.
[ bp: - Massage, shorten and clear the arg buffer.
- Clarifications of the tsx= possible options - Josh.
- Expand on TSX_CTRL availability - Pawan. ]
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
[bwh: Backported to 3.16:
- Drop __ro_after_init attribute
- Adjust filenames, context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 9d8d0294e78a164d407133dea05caf4b84247d6a upstream.
On x86_64, all returns to usermode go through
prepare_exit_to_usermode(), with the sole exception of do_nmi().
This even includes machine checks -- this was added several years
ago to support MCE recovery. Update the documentation.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jon Masters <jcm@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 04dcbdb80578 ("x86/speculation/mds: Clear CPU buffers on exit to user")
Link: http://lkml.kernel.org/r/999fa9e126ba6a48e9d214d2f18dbde5c62ac55c.1557865329.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 88640e1dcd089879530a49a8d212d1814678dfe7 upstream.
The double fault ESPFIX path doesn't return to user mode at all --
it returns back to the kernel by simulating a #GP fault.
prepare_exit_to_usermode() will run on the way out of
general_protection before running user code.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jon Masters <jcm@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 04dcbdb80578 ("x86/speculation/mds: Clear CPU buffers on exit to user")
Link: http://lkml.kernel.org/r/ac97612445c0a44ee10374f6ea79c222fe22a5c4.1557865329.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
[bwh: Backported to 3.16: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 1ae2324f732c9c4e2fa4ebd885fa1001b70d52e1 upstream.
HalfSipHash, or hsiphash, is a shortened version of SipHash, which
generates 32-bit outputs using a weaker 64-bit key. It has *much* lower
security margins, and shouldn't be used for anything too sensitive, but
it could be used as a hashtable key function replacement, if the output
is never exposed, and if the security requirement is not too high.
The goal is to make this something that performance-critical jhash users
would be willing to use.
On 64-bit machines, HalfSipHash1-3 is slower than SipHash1-3, so we alias
SipHash1-3 to HalfSipHash1-3 on those systems.
64-bit x86_64:
[ 0.509409] test_siphash: SipHash2-4 cycles: 4049181
[ 0.510650] test_siphash: SipHash1-3 cycles: 2512884
[ 0.512205] test_siphash: HalfSipHash1-3 cycles: 3429920
[ 0.512904] test_siphash: JenkinsHash cycles: 978267
So, we map hsiphash() -> SipHash1-3
32-bit x86:
[ 0.509868] test_siphash: SipHash2-4 cycles: 14812892
[ 0.513601] test_siphash: SipHash1-3 cycles: 9510710
[ 0.515263] test_siphash: HalfSipHash1-3 cycles: 3856157
[ 0.515952] test_siphash: JenkinsHash cycles: 1148567
So, we map hsiphash() -> HalfSipHash1-3
hsiphash() is roughly 3 times slower than jhash(), but comes with a
considerable security improvement.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: Jean-Philippe Aumasson <jeanphilippe.aumasson@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
[bwh: Backported to 3.16 to avoid a build regression for WireGuard with
only part of the siphash API available]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 2c956a60778cbb6a27e0c7a8a52a91378c90e1d1 upstream.
SipHash is a 64-bit keyed hash function that is actually a
cryptographically secure PRF, like HMAC. Except SipHash is super fast,
and is meant to be used as a hashtable keyed lookup function, or as a
general PRF for short input use cases, such as sequence numbers or RNG
chaining.
For the first usage:
There are a variety of attacks known as "hashtable poisoning" in which an
attacker forms some data such that the hash of that data will be the
same, and then preceeds to fill up all entries of a hashbucket. This is
a realistic and well-known denial-of-service vector. Currently
hashtables use jhash, which is fast but not secure, and some kind of
rotating key scheme (or none at all, which isn't good). SipHash is meant
as a replacement for jhash in these cases.
There are a modicum of places in the kernel that are vulnerable to
hashtable poisoning attacks, either via userspace vectors or network
vectors, and there's not a reliable mechanism inside the kernel at the
moment to fix it. The first step toward fixing these issues is actually
getting a secure primitive into the kernel for developers to use. Then
we can, bit by bit, port things over to it as deemed appropriate.
While SipHash is extremely fast for a cryptographically secure function,
it is likely a bit slower than the insecure jhash, and so replacements
will be evaluated on a case-by-case basis based on whether or not the
difference in speed is negligible and whether or not the current jhash usage
poses a real security risk.
For the second usage:
A few places in the kernel are using MD5 or SHA1 for creating secure
sequence numbers, syn cookies, port numbers, or fast random numbers.
SipHash is a faster and more fitting, and more secure replacement for MD5
in those situations. Replacing MD5 and SHA1 with SipHash for these uses is
obvious and straight-forward, and so is submitted along with this patch
series. There shouldn't be much of a debate over its efficacy.
Dozens of languages are already using this internally for their hash
tables and PRFs. Some of the BSDs already use this in their kernels.
SipHash is a widely known high-speed solution to a widely known set of
problems, and it's time we catch-up.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: Jean-Philippe Aumasson <jeanphilippe.aumasson@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Eric Biggers <ebiggers3@gmail.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit a2059825986a1c8143fd6698774fa9d83733bb11 upstream.
The previous commit added macro calls in the entry code which mitigate the
Spectre v1 swapgs issue if the X86_FEATURE_FENCE_SWAPGS_* features are
enabled. Enable those features where applicable.
The mitigations may be disabled with "nospectre_v1" or "mitigations=off".
There are different features which can affect the risk of attack:
- When FSGSBASE is enabled, unprivileged users are able to place any
value in GS, using the wrgsbase instruction. This means they can
write a GS value which points to any value in kernel space, which can
be useful with the following gadget in an interrupt/exception/NMI
handler:
if (coming from user space)
swapgs
mov %gs:<percpu_offset>, %reg1
// dependent load or store based on the value of %reg
// for example: mov %(reg1), %reg2
If an interrupt is coming from user space, and the entry code
speculatively skips the swapgs (due to user branch mistraining), it
may speculatively execute the GS-based load and a subsequent dependent
load or store, exposing the kernel data to an L1 side channel leak.
Note that, on Intel, a similar attack exists in the above gadget when
coming from kernel space, if the swapgs gets speculatively executed to
switch back to the user GS. On AMD, this variant isn't possible
because swapgs is serializing with respect to future GS-based
accesses.
NOTE: The FSGSBASE patch set hasn't been merged yet, so the above case
doesn't exist quite yet.
- When FSGSBASE is disabled, the issue is mitigated somewhat because
unprivileged users must use prctl(ARCH_SET_GS) to set GS, which
restricts GS values to user space addresses only. That means the
gadget would need an additional step, since the target kernel address
needs to be read from user space first. Something like:
if (coming from user space)
swapgs
mov %gs:<percpu_offset>, %reg1
mov (%reg1), %reg2
// dependent load or store based on the value of %reg2
// for example: mov %(reg2), %reg3
It's difficult to audit for this gadget in all the handlers, so while
there are no known instances of it, it's entirely possible that it
exists somewhere (or could be introduced in the future). Without
tooling to analyze all such code paths, consider it vulnerable.
Effects of SMAP on the !FSGSBASE case:
- If SMAP is enabled, and the CPU reports RDCL_NO (i.e., not
susceptible to Meltdown), the kernel is prevented from speculatively
reading user space memory, even L1 cached values. This effectively
disables the !FSGSBASE attack vector.
- If SMAP is enabled, but the CPU *is* susceptible to Meltdown, SMAP
still prevents the kernel from speculatively reading user space
memory. But it does *not* prevent the kernel from reading the
user value from L1, if it has already been cached. This is probably
only a small hurdle for an attacker to overcome.
Thanks to Dave Hansen for contributing the speculative_smap() function.
Thanks to Andrew Cooper for providing the inside scoop on whether swapgs
is serializing on AMD.
[ tglx: Fixed the USER fence decision and polished the comment as suggested
by Dave Hansen ]
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
[bwh: Backported to 3.16:
- Check for X86_FEATURE_KAISER instead of X86_FEATURE_PTI
- mitigations= parameter is x86-only here
- powerpc doesn't have Spectre mitigations
- Don't use __ro_after_init
- Adjust filename, context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit c2b71462d294cf517a0bc6e4fd6424d7cee5596f upstream.
The syzkaller fuzzer reported a bug in the USB hub driver which turned
out to be caused by a negative runtime-PM usage counter. This allowed
a hub to be runtime suspended at a time when the driver did not expect
it. The symptom is a WARNING issued because the hub's status URB is
submitted while it is already active:
URB 0000000031fb463e submitted while active
WARNING: CPU: 0 PID: 2917 at drivers/usb/core/urb.c:363
The negative runtime-PM usage count was caused by an unfortunate
design decision made when runtime PM was first implemented for USB.
At that time, USB class drivers were allowed to unbind from their
interfaces without balancing the usage counter (i.e., leaving it with
a positive count). The core code would take care of setting the
counter back to 0 before allowing another driver to bind to the
interface.
Later on when runtime PM was implemented for the entire kernel, the
opposite decision was made: Drivers were required to balance their
runtime-PM get and put calls. In order to maintain backward
compatibility, however, the USB subsystem adapted to the new
implementation by keeping an independent usage counter for each
interface and using it to automatically adjust the normal usage
counter back to 0 whenever a driver was unbound.
This approach involves duplicating information, but what is worse, it
doesn't work properly in cases where a USB class driver delays
decrementing the usage counter until after the driver's disconnect()
routine has returned and the counter has been adjusted back to 0.
Doing so would cause the usage counter to become negative. There's
even a warning about this in the USB power management documentation!
As it happens, this is exactly what the hub driver does. The
kick_hub_wq() routine increments the runtime-PM usage counter, and the
corresponding decrement is carried out by hub_event() in the context
of the hub_wq work-queue thread. This work routine may sometimes run
after the driver has been unbound from its interface, and when it does
it causes the usage counter to go negative.
It is not possible for hub_disconnect() to wait for a pending
hub_event() call to finish, because hub_disconnect() is called with
the device lock held and hub_event() acquires that lock. The only
feasible fix is to reverse the original design decision: remove the
duplicate interface-specific usage counter and require USB drivers to
balance their runtime PM gets and puts. As far as I know, all
existing drivers currently do this.
Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Reported-and-tested-by: syzbot+7634edaea4d0b341c625@syzkaller.appspotmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[bwh: Backported to 3.16:
- Adjust documentation filename
- Don't add ReST markup in documentation
- Update use of pm_usage_cnt in poseidon driver, which has been
removed upstream]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit ddba91801aeb5c160b660caed1800eb3aef403f8 upstream.
KVM's API requires thats ioctls must be issued from the same process
that created the VM. In other words, userspace can play games with a
VM's file descriptors, e.g. fork(), SCM_RIGHTS, etc..., but only the
creator can do anything useful. Explicitly reject device ioctls that
are issued by a process other than the VM's creator, and update KVM's
API documentation to extend its requirements to device ioctls.
Fixes: 852b6d57dc7f ("kvm: add device control API")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 5f3e2bf008c2221478101ee72f5cb4654b9fc363 upstream.
Some TCP peers announce a very small MSS option in their SYN and/or
SYN/ACK messages.
This forces the stack to send packets with a very high network/cpu
overhead.
Linux has enforced a minimal value of 48. Since this value includes
the size of TCP options, and that the options can consume up to 40
bytes, this means that each segment can include only 8 bytes of payload.
In some cases, it can be useful to increase the minimal value
to a saner value.
We still let the default to 48 (TCP_MIN_SND_MSS), for compatibility
reasons.
Note that TCP_MAXSEG socket option enforces a minimal value
of (TCP_MIN_MSS). David Miller increased this minimal value
in commit c39508d6f118 ("tcp: Make TCP_MAXSEG minimum more correct.")
from 64 to 88.
We might in the future merge TCP_MIN_SND_MSS and TCP_MIN_MSS.
CVE-2019-11479 -- tcp mss hardcoded to 48
Signed-off-by: Eric Dumazet <edumazet@google.com>
Suggested-by: Jonathan Looney <jtl@netflix.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Tyler Hicks <tyhicks@canonical.com>
Cc: Bruce Curtis <brucec@netflix.com>
Cc: Jonathan Lemon <jonathan.lemon@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
[Salvatore Bonaccorso: Backport for context changes in 4.9.168]
[bwh: Backported to 3.16: Make the sysctl global, consistent with
net.ipv4.tcp_base_mss]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 95310e348a321b45fb746c176961d4da72344282 upstream.
Fix a minor typo in the MDS documentation: "eanbled" -> "enabled".
Reported-by: Jeff Bastian <jbastian@redhat.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit ea01668f9f43021b28b3f4d5ffad50106a1e1301 upstream.
Adjust the last two rows in the table that display possible values when
MDS mitigation is enabled. They both were slightly innacurate.
In addition, convert the table of possible values and their descriptions
to a list-table. The simple table format uses the top border of equals
signs to determine cell width which resulted in the first column being
far too wide in comparison to the second column that contained the
majority of the text.
Signed-off-by: Tyler Hicks <tyhicks@canonical.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[bwh: Backported to 3.16: adjust filename]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit e672f8bf71c66253197e503f75c771dd28ada4a0 upstream.
Updated the documentation for a new CVE-2019-11091 Microarchitectural Data
Sampling Uncacheable Memory (MDSUM) which is a variant of
Microarchitectural Data Sampling (MDS). MDS is a family of side channel
attacks on internal buffers in Intel CPUs.
MDSUM is a special case of MSBDS, MFBDS and MLPDS. An uncacheable load from
memory that takes a fault or assist can leave data in a microarchitectural
structure that may later be observed using one of the same methods used by
MSBDS, MFBDS or MLPDS. There are no new code changes expected for MDSUM.
The existing mitigation for MDS applies to MDSUM as well.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tyler Hicks <tyhicks@canonical.com>
Reviewed-by: Jon Masters <jcm@redhat.com>
[bwh: Backported to 3.16: adjust filename]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 5c14068f87d04adc73ba3f41c2a303d3c3d1fa12 upstream.
Add MDS to the new 'mitigations=' cmdline option.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[bwh: Backported to 3.16:
- Drop the auto,nosmt option, which we can't support
- Adjust filenames, context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit d68be4c4d31295ff6ae34a8ddfaa4c1a8ff42812 upstream.
Configure x86 runtime CPU speculation bug mitigations in accordance with
the 'mitigations=' cmdline option. This affects Meltdown, Spectre v2,
Speculative Store Bypass, and L1TF.
The default behavior is unchanged.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jiri Kosina <jkosina@suse.cz> (on x86)
Reviewed-by: Jiri Kosina <jkosina@suse.cz>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Waiman Long <longman@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Jon Masters <jcm@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: linux-s390@vger.kernel.org
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-arch@vger.kernel.org
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Tyler Hicks <tyhicks@canonical.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Steven Price <steven.price@arm.com>
Cc: Phil Auld <pauld@redhat.com>
Link: https://lkml.kernel.org/r/6616d0ae169308516cfdf5216bedd169f8a8291b.1555085500.git.jpoimboe@redhat.com
[bwh: Backported to 3.16:
- Drop the auto,nosmt option and the l1tf mitigation selection, which we can't
support
- Adjust filenames, context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 98af8452945c55652de68536afdde3b520fec429 upstream.
Keeping track of the number of mitigations for all the CPU speculation
bugs has become overwhelming for many users. It's getting more and more
complicated to decide which mitigations are needed for a given
architecture. Complicating matters is the fact that each arch tends to
have its own custom way to mitigate the same vulnerability.
Most users fall into a few basic categories:
a) they want all mitigations off;
b) they want all reasonable mitigations on, with SMT enabled even if
it's vulnerable; or
c) they want all reasonable mitigations on, with SMT disabled if
vulnerable.
Define a set of curated, arch-independent options, each of which is an
aggregation of existing options:
- mitigations=off: Disable all mitigations.
- mitigations=auto: [default] Enable all the default mitigations, but
leave SMT enabled, even if it's vulnerable.
- mitigations=auto,nosmt: Enable all the default mitigations, disabling
SMT if needed by a mitigation.
Currently, these options are placeholders which don't actually do
anything. They will be fleshed out in upcoming patches.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jiri Kosina <jkosina@suse.cz> (on x86)
Reviewed-by: Jiri Kosina <jkosina@suse.cz>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Waiman Long <longman@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Jon Masters <jcm@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: linux-s390@vger.kernel.org
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-arch@vger.kernel.org
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Tyler Hicks <tyhicks@canonical.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Steven Price <steven.price@arm.com>
Cc: Phil Auld <pauld@redhat.com>
Link: https://lkml.kernel.org/r/b07a8ef9b7c5055c3a4637c87d07c296d5016fe0.1555085500.git.jpoimboe@redhat.com
[bwh: Backported to 3.16:
- Drop the auto,nosmt option which we can't support
- Adjust filename]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 5999bbe7a6ea3c62029532ec84dc06003a1fa258 upstream.
Add the initial MDS vulnerability documentation.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Jon Masters <jcm@redhat.com>
[bwh: Backported to 3.16:
- Drop the index updates
- Adjust filename]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 22dd8365088b6403630b82423cf906491859b65e upstream.
In virtualized environments it can happen that the host has the microcode
update which utilizes the VERW instruction to clear CPU buffers, but the
hypervisor is not yet updated to expose the X86_FEATURE_MD_CLEAR CPUID bit
to guests.
Introduce an internal mitigation mode VMWERV which enables the invocation
of the CPU buffer clearing even if X86_FEATURE_MD_CLEAR is not set. If the
system has no updated microcode this results in a pointless execution of
the VERW instruction wasting a few CPU cycles. If the microcode is updated,
but not exposed to a guest then the CPU buffers will be cleared.
That said: Virtual Machines Will Eventually Receive Vaccine
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 8a4b06d391b0a42a373808979b5028f5c84d9c6a upstream.
Add the sysfs reporting file for MDS. It exposes the vulnerability and
mitigation state similar to the existing files for the other speculative
hardware vulnerabilities.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
[bwh: Backported to 3.16:
- Test x86_hyper instead of using hypervisor_is_type()
- Adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
The vulnerabilties/l1tf attribute was added by commit 17dbca119312
"x86/speculation/l1tf: Add sysfs reporting for l1tf", which has
already been backported to 3.16, but only documented in commit
d90a7a0ec83f "x86/bugs, kvm: Introduce boot-time control of L1TF
mitigations", which has not and probbaly won't be.
Add just that line of documentation for now.
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit bc1241700acd82ec69fde98c5763ce51086269f8 upstream.
Now that the mitigations are in place, add a command line parameter to
control the mitigation, a mitigation selector function and a SMT update
mechanism.
This is the minimal straight forward initial implementation which just
provides an always on/off mode. The command line parameter is:
mds=[full|off]
This is consistent with the existing mitigations for other speculative
hardware vulnerabilities.
The idle invocation is dynamically updated according to the SMT state of
the system similar to the dynamic update of the STIBP mitigation. The idle
mitigation is limited to CPUs which are only affected by MSBDS and not any
other variant, because the other variants cannot be mitigated on SMT
enabled systems.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
[bwh: Backported to 3.16:
- Drop " __ro_after_init"
- Adjust filename, context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 07f07f55a29cb705e221eda7894dd67ab81ef343 upstream.
Add a static key which controls the invocation of the CPU buffer clear
mechanism on idle entry. This is independent of other MDS mitigations
because the idle entry invocation to mitigate the potential leakage due to
store buffer repartitioning is only necessary on SMT systems.
Add the actual invocations to the different halt/mwait variants which
covers all usage sites. mwaitx is not patched as it's not available on
Intel CPUs.
The buffer clear is only invoked before entering the C-State to prevent
that stale data from the idling CPU is spilled to the Hyper-Thread sibling
after the Store buffer got repartitioned and all entries are available to
the non idle sibling.
When coming out of idle the store buffer is partitioned again so each
sibling has half of it available. Now CPU which returned from idle could be
speculatively exposed to contents of the sibling, but the buffers are
flushed either on exit to user space or on VMENTER.
When later on conditional buffer clearing is implemented on top of this,
then there is no action required either because before returning to user
space the context switch will set the condition flag which causes a flush
on the return to user path.
Note, that the buffer clearing on idle is only sensible on CPUs which are
solely affected by MSBDS and not any other variant of MDS because the other
MDS variants cannot be mitigated when SMT is enabled, so the buffer
clearing on idle would be a window dressing exercise.
This intentionally does not handle the case in the acpi/processor_idle
driver which uses the legacy IO port interface for C-State transitions for
two reasons:
- The acpi/processor_idle driver was replaced by the intel_idle driver
almost a decade ago. Anything Nehalem upwards supports it and defaults
to that new driver.
- The legacy IO port interface is likely to be used on older and therefore
unaffected CPUs or on systems which do not receive microcode updates
anymore, so there is no point in adding that.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
[bwh: Backported to 3.16:
- Drop change in _mwaitx()
- Adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 04dcbdb8057827b043b3c71aa397c4c63e67d086 upstream.
Add a static key which controls the invocation of the CPU buffer clear
mechanism on exit to user space and add the call into
prepare_exit_to_usermode() and do_nmi() right before actually returning.
Add documentation which kernel to user space transition this covers and
explain why some corner cases are not mitigated.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
[bwh: Backported to 3.16: Add an assembly macro equivalent to
mds_user_clear_cpu_buffers() and use this in the system call exit path,
as we don't have prepare_exit_to_usermode()]
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: x86@kernel.org
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 6a9e529272517755904b7afa639f6db59ddb793e upstream.
The Microarchitectural Data Sampling (MDS) vulernabilities are mitigated by
clearing the affected CPU buffers. The mechanism for clearing the buffers
uses the unused and obsolete VERW instruction in combination with a
microcode update which triggers a CPU buffer clear when VERW is executed.
Provide a inline function with the assembly magic. The argument of the VERW
instruction must be a memory operand as documented:
"MD_CLEAR enumerates that the memory-operand variant of VERW (for
example, VERW m16) has been extended to also overwrite buffers affected
by MDS. This buffer overwriting functionality is not guaranteed for the
register operand variant of VERW."
Documentation also recommends to use a writable data segment selector:
"The buffer overwriting occurs regardless of the result of the VERW
permission check, as well as when the selector is null or causes a
descriptor load segment violation. However, for lowest latency we
recommend using a selector that indicates a valid writable data
segment."
Add x86 specific documentation about MDS and the internal workings of the
mitigation.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
[bwh: Backported to 3.16: drop changes to doc index and configuration]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 55a974021ec952ee460dc31ca08722158639de72 upstream.
Provide the possibility to enable IBPB always in combination with 'prctl'
and 'seccomp'.
Add the extra command line options and rework the IBPB selection to
evaluate the command instead of the mode selected by the STIPB switch case.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Casey Schaufler <casey.schaufler@intel.com>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Jon Masters <jcm@redhat.com>
Cc: Waiman Long <longman9394@gmail.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Dave Stewart <david.c.stewart@intel.com>
Cc: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/20181125185006.144047038@linutronix.de
[bwh: Backported to 3.16: adjust filename]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 6b3e64c237c072797a9ec918654a60e3a46488e2 upstream.
If 'prctl' mode of user space protection from spectre v2 is selected
on the kernel command-line, STIBP and IBPB are applied on tasks which
restrict their indirect branch speculation via prctl.
SECCOMP enables the SSBD mitigation for sandboxed tasks already, so it
makes sense to prevent spectre v2 user space to user space attacks as
well.
The Intel mitigation guide documents how STIPB works:
Setting bit 1 (STIBP) of the IA32_SPEC_CTRL MSR on a logical processor
prevents the predicted targets of indirect branches on any logical
processor of that core from being controlled by software that executes
(or executed previously) on another logical processor of the same core.
Ergo setting STIBP protects the task itself from being attacked from a task
running on a different hyper-thread and protects the tasks running on
different hyper-threads from being attacked.
While the document suggests that the branch predictors are shielded between
the logical processors, the observed performance regressions suggest that
STIBP simply disables the branch predictor more or less completely. Of
course the document wording is vague, but the fact that there is also no
requirement for issuing IBPB when STIBP is used points clearly in that
direction. The kernel still issues IBPB even when STIBP is used until Intel
clarifies the whole mechanism.
IBPB is issued when the task switches out, so malicious sandbox code cannot
mistrain the branch predictor for the next user space task on the same
logical processor.
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Casey Schaufler <casey.schaufler@intel.com>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Jon Masters <jcm@redhat.com>
Cc: Waiman Long <longman9394@gmail.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Dave Stewart <david.c.stewart@intel.com>
Cc: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/20181125185006.051663132@linutronix.de
[bwh: Backported to 3.16: adjust filename]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 7cc765a67d8e04ef7d772425ca5a2a1e2b894c15 upstream.
Now that all prerequisites are in place:
- Add the prctl command line option
- Default the 'auto' mode to 'prctl'
- When SMT state changes, update the static key which controls the
conditional STIBP evaluation on context switch.
- At init update the static key which controls the conditional IBPB
evaluation on context switch.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Casey Schaufler <casey.schaufler@intel.com>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Jon Masters <jcm@redhat.com>
Cc: Waiman Long <longman9394@gmail.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Dave Stewart <david.c.stewart@intel.com>
Cc: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/20181125185005.958421388@linutronix.de
[bwh: Backported to 3.16: adjust filename]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 9137bb27e60e554dab694eafa4cca241fa3a694f upstream.
Add the PR_SPEC_INDIRECT_BRANCH option for the PR_GET_SPECULATION_CTRL and
PR_SET_SPECULATION_CTRL prctls to allow fine grained per task control of
indirect branch speculation via STIBP and IBPB.
Invocations:
Check indirect branch speculation status with
- prctl(PR_GET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, 0, 0, 0);
Enable indirect branch speculation with
- prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_ENABLE, 0, 0);
Disable indirect branch speculation with
- prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_DISABLE, 0, 0);
Force disable indirect branch speculation with
- prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_FORCE_DISABLE, 0, 0);
See Documentation/userspace-api/spec_ctrl.rst.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Casey Schaufler <casey.schaufler@intel.com>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Jon Masters <jcm@redhat.com>
Cc: Waiman Long <longman9394@gmail.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Dave Stewart <david.c.stewart@intel.com>
Cc: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/20181125185005.866780996@linutronix.de
[bwh: Backported to 3.16:
- Drop changes in tools/include/uapi/linux/prctl.h
- Adjust filename, context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit fa1202ef224391b6f5b26cdd44cc50495e8fab54 upstream.
Add command line control for user space indirect branch speculation
mitigations. The new option is: spectre_v2_user=
The initial options are:
- on: Unconditionally enabled
- off: Unconditionally disabled
-auto: Kernel selects mitigation (default off for now)
When the spectre_v2= command line argument is either 'on' or 'off' this
implies that the application to application control follows that state even
if a contradicting spectre_v2_user= argument is supplied.
Originally-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Casey Schaufler <casey.schaufler@intel.com>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Jon Masters <jcm@redhat.com>
Cc: Waiman Long <longman9394@gmail.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Dave Stewart <david.c.stewart@intel.com>
Cc: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/20181125185005.082720373@linutronix.de
[bwh: Backported to 3.16:
- Don't use __ro_after_init or cpu_smt_control
- Adjust filename]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit cd4d09ec6f6c12a2cc3db5b7d8876a325a53545b upstream.
Move them to a separate header and have the following
dependency:
x86/cpufeatures.h <- x86/processor.h <- x86/cpufeature.h
This makes it easier to use the header in asm code and not
include the whole cpufeature.h and add guards for asm.
Suggested-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1453842730-28463-5-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
[bwh: Backported to 3.16 to avoid a dependency loop:
- Drop some inapplicable changes
- Move all the previously backported feature and bug flags across
- Also change <asm/nospec-branch.h> and lib/retpoline.S to use
<asm/cpufeatures.h>
- Also include <asm/cpufeatures.h> in <asm/barrier.h>, as the vdso fails to
build without that
- Adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 1975dbc276c6ab62230cf4f9df5ddc9ff0e0e473 upstream.
Fix a few small mistakes in the static key documentation and
delete an unneeded sentence.
Suggested-by: Jason Baron <jbaron@akamai.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20150914171105.511e1e21@lwn.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit edcd591c77a48da753456f92daf8bb50fe9bac93 upstream.
Commit:
412758cb2670 ("jump label, locking/static_keys: Update docs")
introduced a typo that might as well get fixed.
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jason Baron <jbaron@akamai.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20150907131803.54c027e1@lwn.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 412758cb26704e5087ca2976ec3b28fb2bdbfad4 upstream.
Signed-off-by: Jason Baron <jbaron@akamai.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: benh@kernel.crashing.org
Cc: bp@alien8.de
Cc: davem@davemloft.net
Cc: ddaney@caviumnetworks.com
Cc: heiko.carstens@de.ibm.com
Cc: linux-kernel@vger.kernel.org
Cc: liuj97@gmail.com
Cc: luto@amacapital.net
Cc: michael@ellerman.id.au
Cc: rabin@rab.in
Cc: ralf@linux-mips.org
Cc: rostedt@goodmis.org
Cc: vbabka@suse.cz
Cc: will.deacon@arm.com
Link: http://lkml.kernel.org/r/6b50f2f6423a2244f37f4b1d2d6c211b9dcdf4f8.1438227999.git.jbaron@akamai.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit b87537d9e2feb30f6a962f27eb32768682698d3b upstream.
KernelThreadSanitizer (ktsan) has shown that the down_read_trylock() of
mmap_sem in try_to_unmap_one() (when going to set PageMlocked on a page
found mapped in a VM_LOCKED vma) is ineffective against races with
exit_mmap()'s munlock_vma_pages_all(), because mmap_sem is not held when
tearing down an mm.
But that's okay, those races are benign; and although we've believed for
years in that ugly down_read_trylock(), it's unsuitable for the job, and
frustrates the good intention of setting PageMlocked when it fails.
It just doesn't matter if here we read vm_flags an instant before or after
a racing mlock() or munlock() or exit_mmap() sets or clears VM_LOCKED: the
syscalls (or exit) work their way up the address space (taking pt locks
after updating vm_flags) to establish the final state.
We do still need to be careful never to mark a page Mlocked (hence
unevictable) by any race that will not be corrected shortly after. The
page lock protects from many of the races, but not all (a page is not
necessarily locked when it's unmapped). But the pte lock we just dropped
is good to cover the rest (and serializes even with
munlock_vma_pages_all(), so no special barriers required): now hold on to
the pte lock while calling mlock_vma_page(). Is that lock ordering safe?
Yes, that's how follow_page_pte() calls it, and how page_remove_rmap()
calls the complementary clear_page_mlock().
This fixes the following case (though not a case which anyone has
complained of), which mmap_sem did not: truncation's preliminary
unmap_mapping_range() is supposed to remove even the anonymous COWs of
filecache pages, and that might race with try_to_unmap_one() on a
VM_LOCKED vma, so that mlock_vma_page() sets PageMlocked just after
zap_pte_range() unmaps the page, causing "Bad page state (mlocked)" when
freed. The pte lock protects against this.
You could say that it also protects against the more ordinary case, racing
with the preliminary unmapping of a filecache page itself: but in our
current tree, that's independently protected by i_mmap_rwsem; and that
race would be why "Bad page state (mlocked)" was seen before commit
48ec833b7851 ("Revert mm/memory.c: share the i_mmap_rwsem").
Vlastimil Babka points out another race which this patch protects against.
try_to_unmap_one() might reach its mlock_vma_page() TestSetPageMlocked a
moment after munlock_vma_pages_all() did its Phase 1 TestClearPageMlocked:
leaving PageMlocked and unevictable when it should be evictable. mmap_sem
is ineffective because exit_mmap() does not hold it; page lock ineffective
because __munlock_pagevec() only takes it afterwards, in Phase 2; pte lock
is effective because __munlock_pagevec_fill() takes it to get the page,
after VM_LOCKED was cleared from vm_flags, so visible to try_to_unmap_one.
Kirill Shutemov points out that if the compiler chooses to implement a
"vma->vm_flags &= VM_WHATEVER" or "vma->vm_flags |= VM_WHATEVER" operation
with an intermediate store of unrelated bits set, since I'm here foregoing
its usual protection by mmap_sem, try_to_unmap_one() might catch sight of
a spurious VM_LOCKED in vm_flags, and make the wrong decision. This does
not appear to be an immediate problem, but we may want to define vm_flags
accessors in future, to guard against such a possibility.
While we're here, make a related optimization in try_to_munmap_one(): if
it's doing TTU_MUNLOCK, then there's no point at all in descending the
page tables and getting the pt lock, unless the vma is VM_LOCKED. Yes,
that can change racily, but it can change racily even without the
optimization: it's not critical. Far better not to waste time here.
Stopped short of separating try_to_munlock_one() from try_to_munmap_one()
on this occasion, but that's probably the sensible next step - with a
rename, given that try_to_munlock()'s business is to try to set Mlocked.
Updated the unevictable-lru Documentation, to remove its reference to mmap
semaphore, but found a few more updates needed in just that area.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[bwh: Backported to 3.16 in preparation for commit 017b1660df89
"mm: migration: fix migration of huge PMD shared pages". Adjusted context.]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 7a14239a8fff45a241b6943a3ac444d5b67fcbed upstream.
While updating some mm Documentation, I came across a few straggling
references to the non-linear vmas which were happily removed in v4.0.
Delete them.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[bwh: Backported to 3.16 in preparation for commit 017b1660df89
"mm: migration: fix migration of huge PMD shared pages"]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit b18cb64ead400c01bf1580eeba330ace51f8087d upstream.
This reverts more of:
b76437579d13 ("procfs: mark thread stack correctly in proc/<pid>/maps")
... which was partially reverted by:
65376df58217 ("proc: revert /proc/<pid>/maps [stack:TID] annotation")
Originally, /proc/PID/task/TID/maps was the same as /proc/TID/maps.
In current kernels, /proc/PID/maps (or /proc/TID/maps even for
threads) shows "[stack]" for VMAs in the mm's stack address range.
In contrast, /proc/PID/task/TID/maps uses KSTK_ESP to guess the
target thread's stack's VMA. This is racy, probably returns garbage
and, on arches with CONFIG_TASK_INFO_IN_THREAD=y, is also crash-prone:
KSTK_ESP is not safe to use on tasks that aren't known to be running
ordinary process-context kernel code.
This patch removes the difference and just shows "[stack]" for VMAs
in the mm's stack range. This is IMO much more sensible -- the
actual "stack" address really is treated specially by the VM code,
and the current thread stack isn't even well-defined for programs
that frequently switch stacks on their own.
Reported-by: Jann Horn <jann@thejh.net>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Linux API <linux-api@vger.kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tycho Andersen <tycho.andersen@canonical.com>
Link: http://lkml.kernel.org/r/3e678474ec14e0a0ec34c611016753eea2e1b8ba.1475257877.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
[bwh: Backported to 3.16: Squash in the earlier commits 58cb65487e92
"proc/maps: make vm_is_stack() logic namespace-friendly" and
65376df58217 "proc: revert /proc/<pid>/maps [stack:TID] annotation",
which would introduce build failures if applied separately.]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit af8d3c7c001ae7df1ed2b2715f058113efc86187 upstream.
The PPPIOCDETACH ioctl effectively tries to "close" the given ppp file
before f_count has reached 0, which is fundamentally a bad idea. It
does check 'f_count < 2', which excludes concurrent operations on the
file since they would only be possible with a shared fd table, in which
case each fdget() would take a file reference. However, it fails to
account for the fact that even with 'f_count == 1' the file can still be
linked into epoll instances. As reported by syzbot, this can trivially
be used to cause a use-after-free.
Yet, the only known user of PPPIOCDETACH is pppd versions older than
ppp-2.4.2, which was released almost 15 years ago (November 2003).
Also, PPPIOCDETACH apparently stopped working reliably at around the
same time, when the f_count check was added to the kernel, e.g. see
https://lkml.org/lkml/2002/12/31/83. Also, the current 'f_count < 2'
check makes PPPIOCDETACH only work in single-threaded applications; it
always fails if called from a multithreaded application.
All pppd versions released in the last 15 years just close() the file
descriptor instead.
Therefore, instead of hacking around this bug by exporting epoll
internals to modules, and probably missing other related bugs, just
remove the PPPIOCDETACH ioctl and see if anyone actually notices. Leave
a stub in place that prints a one-time warning and returns EINVAL.
Reported-by: syzbot+16363c99d4134717c05b@syzkaller.appspotmail.com
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: Guillaume Nault <g.nault@alphalink.fr>
Tested-by: Guillaume Nault <g.nault@alphalink.fr>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit 27ba0644ea9dfe6e7693abc85837b60e40583b96 upstream.
We don't create non-linear mappings anymore. Let's drop code which
handles them in rmap.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[bwh: Backported to 3.16:
- Deleted code is slightly different
- Adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit c8d78c1823f46519473949d33f0d1d33fe21ea16 upstream.
remap_file_pages(2) was invented to be able efficiently map parts of
huge file into limited 32-bit virtual address space such as in database
workloads.
Nonlinear mappings are pain to support and it seems there's no
legitimate use-cases nowadays since 64-bit systems are widely available.
Let's drop it and get rid of all these special-cased code.
The patch replaces the syscall with emulation which creates new VMA on
each remap_file_pages(), unless they it can be merged with an adjacent
one.
I didn't find *any* real code that uses remap_file_pages(2) to test
emulation impact on. I've checked Debian code search and source of all
packages in ALT Linux. No real users: libc wrappers, mentions in
strace, gdb, valgrind and this kind of stuff.
There are few basic tests in LTP for the syscall. They work just fine
with emulation.
To test performance impact, I've written small test case which
demonstrate pretty much worst case scenario: map 4G shmfs file, write to
begin of every page pgoff of the page, remap pages in reverse order,
read every page.
The test creates 1 million of VMAs if emulation is in use, so I had to
set vm.max_map_count to 1100000 to avoid -ENOMEM.
Before: 23.3 ( +- 4.31% ) seconds
After: 43.9 ( +- 0.85% ) seconds
Slowdown: 1.88x
I believe we can live with that.
Test case:
#define _GNU_SOURCE
#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/mman.h>
#define MB (1024UL * 1024)
#define SIZE (4096 * MB)
int main(int argc, char **argv)
{
unsigned long *p;
long i, pass;
for (pass = 0; pass < 10; pass++) {
p = mmap(NULL, SIZE, PROT_READ|PROT_WRITE,
MAP_SHARED | MAP_ANONYMOUS, -1, 0);
if (p == MAP_FAILED) {
perror("mmap");
return -1;
}
for (i = 0; i < SIZE / 4096; i++)
p[i * 4096 / sizeof(*p)] = i;
for (i = 0; i < SIZE / 4096; i++) {
if (remap_file_pages(p + i * 4096 / sizeof(*p), 4096,
0, (SIZE - 4096 * (i + 1)) >> 12, 0)) {
perror("remap_file_pages");
return -1;
}
}
for (i = SIZE / 4096 - 1; i >= 0; i--)
assert(p[i * 4096 / sizeof(*p)] == SIZE / 4096 - i - 1);
munmap(p, SIZE);
}
return 0;
}
[akpm@linux-foundation.org: fix spello]
[sasha.levin@oracle.com: initialize populate before usage]
[sasha.levin@oracle.com: grab file ref to prevent race while mmaping]
Signed-off-by: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Dave Jones <davej@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Armin Rigo <arigo@tunes.org>
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[bwh: Backported to 3.16:
- Deleted code is slightly different
- Adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit dd0792699c4058e63c0715d9a7c2d40226fcdddc upstream.
Fix some typos, improve formulations, end sentences with a fullstop.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[bwh: Backported to 3.16: adjust filename]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|
|
commit f21b53b20c754021935ea43364dbf53778eeba32 upstream.
Unless explicitly opted out of, anything running under seccomp will have
SSB mitigations enabled. Choosing the "prctl" mode will disable this.
[ tglx: Adjusted it to the new arch_seccomp_spec_mitigate() mechanism ]
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[bwh: Backported to 3.16: adjust filename]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
|