summaryrefslogtreecommitdiff
AgeCommit message (Collapse)AuthorFilesLines
2023-01-24kvm_host.h: fix spelling typo in function declarationWang Liang1-1/+1
Make parameters in function declaration consistent with those in function definition for better cscope-ability Signed-off-by: Wang Liang <wangliangzz@inspur.com> Reviewed-by: Sean Christopherson <seanjc@google.com> Link: https://lore.kernel.org/r/20220920060210.4842-1-wangliangzz@126.com Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-01-24KVM: account allocation in generic version of kvm_arch_alloc_vm()Alexey Dobriyan1-1/+1
Account the allocation of VMs in the generic version of kvm_arch_alloc_vm(), the VM is tied to the current task/process. Note, x86 already accounts its allocation. Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com> Reviewed-by: Sean Christopherson <seanjc@google.com> Link: https://lore.kernel.org/r/Y3aay2u2KQgiR0un@p183 [sean: reworded changelog] Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-01-24KVM: PPC: Fix refactoring goof in kvmppc_e500mc_init()Sean Christopherson2-3/+3
Fix a build error due to a mixup during a recent refactoring. The error was reported during code review, but the fixed up patch didn't make it into the final commit. Fixes: 474856bad921 ("KVM: PPC: Move processor compatibility check to module init") Link: https://lore.kernel.org/all/87cz93snqc.fsf@mpe.ellerman.id.au Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20230119182158.4026656-1-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-24Merge branch 'kvm-lapic-fix-and-cleanup' into HEADPaolo Bonzini11-356/+523
The first half or so patches fix semi-urgent, real-world relevant APICv and AVIC bugs. The second half fixes a variety of AVIC and optimized APIC map bugs where KVM doesn't play nice with various edge cases that are architecturally legal(ish), but are unlikely to occur in most real world scenarios Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-24Merge branch 'kvm-v6.2-rc4-fixes' into HEADPaolo Bonzini367-1920/+7290
ARM: * Fix the PMCR_EL0 reset value after the PMU rework * Correctly handle S2 fault triggered by a S1 page table walk by not always classifying it as a write, as this breaks on R/O memslots * Document why we cannot exit with KVM_EXIT_MMIO when taking a write fault from a S1 PTW on a R/O memslot * Put the Apple M2 on the naughty list for not being able to correctly implement the vgic SEIS feature, just like the M1 before it * Reviewer updates: Alex is stepping down, replaced by Zenghui x86: * Fix various rare locking issues in Xen emulation and teach lockdep to detect them * Documentation improvements * Do not return host topology information from KVM_GET_SUPPORTED_CPUID
2023-01-24Merge branch 'kvm-hw-enable-refactor' into HEADPaolo Bonzini82-816/+861
The main theme of this series is to kill off kvm_arch_init(), kvm_arch_hardware_(un)setup(), and kvm_arch_check_processor_compat(), which all originated in x86 code from way back when, and needlessly complicate both common KVM code and architecture code. E.g. many architectures don't mark functions/data as __init/__ro_after_init purely because kvm_init() isn't marked __init to support x86's separate vendor modules. The idea/hope is that with those hooks gone (moved to arch code), it will be easier for x86 (and other architectures) to modify their module init sequences as needed without having to fight common KVM code. E.g. I'm hoping that ARM can build on this to simplify its hardware enabling logic, especially the pKVM side of things. There are bug fixes throughout this series. They are more scattered than I would usually prefer, but getting the sequencing correct was a gigantic pain for many of the x86 fixes due to needing to fix common code in order for the x86 fix to have any meaning. And while the bugs are often fatal, they aren't all that interesting for most users as they either require a malicious admin or broken hardware, i.e. aren't likely to be encountered by the vast majority of KVM users. So unless someone _really_ wants a particular fix isolated for backporting, I'm not planning on shuffling patches. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13KVM: x86: Add helpers to recalc physical vs. logical optimized APIC mapsSean Christopherson1-117/+133
Move the guts of kvm_recalculate_apic_map()'s main loop to two separate helpers to handle recalculating the physical and logical pieces of the optimized map. Having 100+ lines of code in the for-loop makes it hard to understand what is being calculated where. No functional change intended. Suggested-by: Maxim Levitsky <mlevitsk@redhat.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20230106011306.85230-34-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13KVM: x86: Allow APICv APIC ID inhibit to be clearedGreg Edwards1-26/+15
Legacy kernels prior to commit 4399c03c6780 ("x86/apic: Remove verify_local_APIC()") write the APIC ID of the boot CPU twice to verify a functioning local APIC. This results in APIC acceleration inhibited on these kernels for reason APICV_INHIBIT_REASON_APIC_ID_MODIFIED. Allow the APICV_INHIBIT_REASON_APIC_ID_MODIFIED inhibit reason to be cleared if/when all APICs in xAPIC mode set their APIC ID back to the expected vcpu_id value. Fold the functionality previously in kvm_lapic_xapic_id_updated() into kvm_recalculate_apic_map(), as this allows examining all APICs in one pass. Fixes: 3743c2f02517 ("KVM: x86: inhibit APICv/AVIC on changes to APIC ID or APIC base") Signed-off-by: Greg Edwards <gedwards@ddn.com> Link: https://lore.kernel.org/r/20221117183247.94314-1-gedwards@ddn.com Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20230106011306.85230-33-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13KVM: x86: Track required APICv inhibits with variable, not callbackSean Christopherson7-36/+29
Track the per-vendor required APICv inhibits with a variable instead of calling into vendor code every time KVM wants to query the set of required inhibits. The required inhibits are a property of the vendor's virtualization architecture, i.e. are 100% static. Using a variable allows the compiler to inline the check, e.g. generate a single-uop TEST+Jcc, and thus eliminates any desire to avoid checking inhibits for performance reasons. No functional change intended. Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20230106011306.85230-32-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13Revert "KVM: SVM: Do not throw warning when calling avic_vcpu_load on a ↵Sean Christopherson1-0/+1
running vcpu" Turns out that some warnings exist for good reasons. Restore the warning in avic_vcpu_load() that guards against calling avic_vcpu_load() on a running vCPU now that KVM avoids doing so when switching between x2APIC and xAPIC. The entire point of the WARN is to highlight that KVM should not be reloading an AVIC. Opportunistically convert the WARN_ON() to WARN_ON_ONCE() to avoid spamming the kernel if it does fire. This reverts commit c0caeee65af3944b7b8abbf566e7cc1fae15c775. Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20230106011306.85230-31-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13KVM: SVM: Ignore writes to Remote Read Data on AVIC write trapsSean Christopherson1-0/+3
Drop writes to APIC_RRR, a.k.a. Remote Read Data Register, on AVIC unaccelerated write traps. The register is read-only and isn't emulated by KVM. Sending the register through kvm_apic_write_nodecode() will result in screaming when x2APIC is enabled due to the unexpected failure to retrieve the MSR (KVM expects that only "legal" accesses will trap). Fixes: 4d1d7942e36a ("KVM: SVM: Introduce logic to (de)activate x2AVIC mode") Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20230106011306.85230-30-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13KVM: SVM: Handle multiple logical targets in AVIC kick fastpathSean Christopherson1-48/+62
Iterate over all target logical IDs in the AVIC kick fastpath instead of bailing if there is more than one target. Now that KVM inhibits AVIC if vCPUs aren't mapped 1:1 with logical IDs, each bit in the destination is guaranteed to match to at most one vCPU, i.e. iterating over the bitmap is guaranteed to kick each valid target exactly once. Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20230106011306.85230-29-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13KVM: SVM: Require logical ID to be power-of-2 for AVIC entrySean Christopherson1-15/+15
Do not modify AVIC's logical ID table if the logical ID portion of the LDR is not a power-of-2, i.e. if the LDR has multiple bits set. Taking only the first bit means that KVM will fail to match MDAs that intersect with "higher" bits in the "ID" The "ID" acts as a bitmap, but is referred to as an ID because there's an implicit, unenforced "requirement" that software only set one bit. This edge case is arguably out-of-spec behavior, but KVM cleanly handles it in all other cases, e.g. the optimized logical map (and AVIC!) is also disabled in this scenario. Refactor the code to consolidate the checks, and so that the code looks more like avic_kick_target_vcpus_fast(). Fixes: 18f40c53e10f ("svm: Add VMEXIT handlers for AVIC") Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Cc: Maxim Levitsky <mlevitsk@redhat.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20230106011306.85230-28-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13KVM: SVM: Update svm->ldr_reg cache even if LDR is "bad"Sean Christopherson1-10/+4
Update SVM's cache of the LDR even if the new value is "bad". Leaving stale information in the cache can result in KVM missing updates and/or invalidating the wrong entry, e.g. if avic_invalidate_logical_id_entry() is triggered after a different vCPU has "claimed" the old LDR. Fixes: 18f40c53e10f ("svm: Add VMEXIT handlers for AVIC") Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20230106011306.85230-27-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13KVM: SVM: Always update local APIC on writes to logical dest registerSean Christopherson1-7/+4
Update the vCPU's local (virtual) APIC on LDR writes even if the write "fails". The APIC needs to recalc the optimized logical map even if the LDR is invalid or zero, e.g. if the guest clears its LDR, the optimized map will be left as is and the vCPU will receive interrupts using its old LDR. Fixes: 18f40c53e10f ("svm: Add VMEXIT handlers for AVIC") Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20230106011306.85230-26-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13KVM: SVM: Inhibit AVIC if vCPUs are aliased in logical modeSean Christopherson3-1/+13
Inhibit SVM's AVIC if multiple vCPUs are aliased to the same logical ID. Architecturally, all CPUs whose logical ID matches the MDA are supposed to receive the interrupt; overwriting existing entries in AVIC's logical=>physical map can result in missed IPIs. Fixes: 18f40c53e10f ("svm: Add VMEXIT handlers for AVIC") Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20230106011306.85230-25-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13KVM: x86: Inhibit APICv/AVIC if the optimized physical map is disabledSean Christopherson4-1/+20
Inhibit APICv/AVIC if the optimized physical map is disabled so that KVM KVM provides consistent APIC behavior if xAPIC IDs are aliased due to vcpu_id being truncated and the x2APIC hotplug hack isn't enabled. If the hotplug hack is disabled, events that are emulated by KVM will follow architectural behavior (all matching vCPUs receive events, even if the "match" is due to truncation), whereas APICv and AVIC will deliver events only to the first matching vCPU, i.e. the vCPU that matches without truncation. Note, the "extra" inhibit is needed because KVM deliberately ignores mismatches due to truncation when applying the APIC_ID_MODIFIED inhibit so that large VMs (>255 vCPUs) can run with APICv/AVIC. Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20230106011306.85230-24-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13KVM: x86: Honor architectural behavior for aliased 8-bit APIC IDsSean Christopherson2-9/+52
Apply KVM's hotplug hack if and only if userspace has enabled 32-bit IDs for x2APIC. If 32-bit IDs are not enabled, disable the optimized map to honor x86 architectural behavior if multiple vCPUs shared a physical APIC ID. As called out in the changelog that added the hack, all CPUs whose (possibly truncated) APIC ID matches the target are supposed to receive the IPI. KVM intentionally differs from real hardware, because real hardware (Knights Landing) does just "x2apic_id & 0xff" to decide whether to accept the interrupt in xAPIC mode and it can deliver one interrupt to more than one physical destination, e.g. 0x123 to 0x123 and 0x23. Applying the hack even when x2APIC is not fully enabled means KVM doesn't correctly handle scenarios where the guest has aliased xAPIC IDs across multiple vCPUs, as only the vCPU with the lowest vCPU ID will receive any interrupts. It's extremely unlikely any real world guest aliases APIC IDs, or even modifies APIC IDs, but KVM's behavior is arbitrary, e.g. the lowest vCPU ID "wins" regardless of which vCPU is "aliasing" and which vCPU is "normal". Furthermore, the hack is _not_ guaranteed to work! The hack works if and only if the optimized APIC map is successfully allocated. If the map allocation fails (unlikely), KVM will fall back to its unoptimized behavior, which _does_ honor the architectural behavior. Pivot on 32-bit x2APIC IDs being enabled as that is required to take advantage of the hotplug hack (see kvm_apic_state_fixup()), i.e. won't break existing setups unless they are way, way off in the weeds. And an entry in KVM's errata to document the hack. Alternatively, KVM could provide an actual x2APIC quirk and document the hack that way, but there's unlikely to ever be a use case for disabling the quirk. Go the errata route to avoid having to validate a quirk no one cares about. Fixes: 5bd5db385b3e ("KVM: x86: allow hotplug of VCPU with APIC ID over 0xff") Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20230106011306.85230-23-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13KVM: x86: Disable APIC logical map if vCPUs are aliased in logical modeSean Christopherson1-2/+3
Disable the optimized APIC logical map if multiple vCPUs are aliased to the same logical ID. Architecturally, all CPUs whose logical ID matches the MDA are supposed to receive the interrupt; overwriting existing map entries can result in missed IPIs. Fixes: 1e08ec4a130e ("KVM: optimize apic interrupt delivery") Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20230106011306.85230-22-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13KVM: x86: Disable APIC logical map if logical ID covers multiple MDAsSean Christopherson1-2/+8
Disable the optimized APIC logical map if a logical ID covers multiple MDAs, i.e. if a vCPU has multiple bits set in its ID. In logical mode, events match if "ID & MDA != 0", i.e. creating an entry for only the first bit can cause interrupts to be missed. Note, creating an entry for every bit is also wrong as KVM would generate IPIs for every matching bit. It would be possible to teach KVM to play nice with this edge case, but it is very much an edge case and probably not used in any real world OS, i.e. it's not worth optimizing. Fixes: 1e08ec4a130e ("KVM: optimize apic interrupt delivery") Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20230106011306.85230-21-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13KVM: x86: Skip redundant x2APIC logical mode optimized cluster setupSean Christopherson1-5/+17
Skip the optimized cluster[] setup for x2APIC logical mode, as KVM reuses the optimized map's phys_map[] and doesn't actually need to insert the target apic into the cluster[]. The LDR is derived from the x2APIC ID, and both are read-only in KVM, thus the vCPU's cluster[ldr] is guaranteed to be the same entry as the vCPU's phys_map[x2apic_id] entry. Skipping the unnecessary setup will allow a future fix for aliased xAPIC logical IDs to simply require that cluster[ldr] is non-NULL, i.e. won't have to special case x2APIC. Alternatively, the future check could allow "cluster[ldr] == apic", but that ends up being terribly confusing because cluster[ldr] is only set at the very end, i.e. it's only possible due to x2APIC's shenanigans. Another alternative would be to send x2APIC down a separate path _after_ the calculation and then assert that all of the above, but the resulting code is rather messy, and it's arguably unnecessary since asserting that the actual LDR matches the expected LDR means that simply testing that interrupts are delivered correctly provides the same guarantees. Reported-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20230106011306.85230-20-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13KVM: x86: Explicitly track all possibilities for APIC map's logical modesSean Christopherson2-17/+52
Track all possibilities for the optimized APIC map's logical modes instead of overloading the pseudo-bitmap and treating any "unknown" value as "invalid". As documented by the now-stale comment above the mode values, the values did have meaning when the optimized map was originally added. That dependent logical was removed by commit e45115b62f9a ("KVM: x86: use physical LAPIC array for logical x2APIC"), but the obfuscated behavior and its comment were left behind. Opportunistically rename "mode" to "logical_mode", partly to make it clear that the "disabled" case applies only to the logical map, but also to prove that there is no lurking code that expects "mode" to be a bitmap. Functionally, this is a glorified nop. Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20230106011306.85230-19-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13KVM: x86: Explicitly skip optimized logical map setup if vCPU's LDR==0Sean Christopherson1-1/+3
Explicitly skip the optimized map setup if the vCPU's LDR is '0', i.e. if the vCPU will never respond to logical mode interrupts. KVM already skips setup in this case, but relies on kvm_apic_map_get_logical_dest() to generate mask==0. KVM still needs the mask=0 check as a non-zero LDR can yield mask==0 depending on the mode, but explicitly handling the LDR will make it simpler to clean up the logical mode tracking in the future. No functional change intended. Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20230106011306.85230-18-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13KVM: SVM: Add helper to perform final AVIC "kick" of single vCPUSean Christopherson1-12/+13
Add a helper to perform the final kick, two instances of the ICR decoding is one too many. No functional change intended. Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20230106011306.85230-17-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13KVM: SVM: Document that vCPU ID == APIC ID in AVIC kick fastpatchSean Christopherson1-3/+7
Document that AVIC is inhibited if any vCPU's APIC ID diverges from its vCPU ID, i.e. that there's no need to check for a destination match in the AVIC kick fast path. Opportunistically tweak comments to remove "guest bug", as that suggests KVM is punting on error handling, which is not the case. Targeting a non-existent vCPU or no vCPUs _may_ be a guest software bug, but whether or not it's a guest bug is irrelevant. Such behavior is architecturally legal and thus needs to faithfully emulated by KVM (and it is). Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20230106011306.85230-16-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13Revert "KVM: SVM: Use target APIC ID to complete x2AVIC IRQs when possible"Sean Christopherson1-18/+11
Due to a likely mismerge of patches, KVM ended up with a superfluous commit to "enable" AVIC's fast path for x2AVIC mode. Even worse, the superfluous commit has several bugs and creates a nasty local shadow variable. Rather than fix the bugs piece-by-piece[*] to achieve the same end result, revert the patch wholesale. Opportunistically add a comment documenting the x2AVIC dependencies. This reverts commit 8c9e639da435874fb845c4d296ce55664071ea7a. [*] https://lore.kernel.org/all/YxEP7ZBRIuFWhnYJ@google.com Fixes: 8c9e639da435 ("KVM: SVM: Use target APIC ID to complete x2AVIC IRQs when possible") Suggested-by: Maxim Levitsky <mlevitsk@redhat.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20230106011306.85230-15-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13KVM: SVM: Fix x2APIC Logical ID calculation for avic_kick_target_vcpus_fastSuravee Suthikulpanit1-1/+1
For X2APIC ID in cluster mode, the logical ID is bit [15:0]. Fixes: 603ccef42ce9 ("KVM: x86: SVM: fix avic_kick_target_vcpus_fast") Cc: Maxim Levitsky <mlevitsk@redhat.com> Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20230106011306.85230-14-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13KVM: SVM: Compute dest based on sender's x2APIC status for AVIC kickSean Christopherson1-7/+1
Compute the destination from ICRH using the sender's x2APIC status, not each (potential) target's x2APIC status. Fixes: c514d3a348ac ("KVM: SVM: Update avic_kick_target_vcpus to support 32-bit APIC ID") Cc: Li RongQing <lirongqing@baidu.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Li RongQing <lirongqing@baidu.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20230106011306.85230-13-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13KVM: SVM: Replace "avic_mode" enum with "x2avic_enabled" booleanSean Christopherson3-35/+24
Replace the "avic_mode" enum with a single bool to track whether or not x2AVIC is enabled. KVM already has "apicv_enabled" that tracks if any flavor of AVIC is enabled, i.e. AVIC_MODE_NONE and AVIC_MODE_X1 are redundant and unnecessary noise. No functional change intended. Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20230106011306.85230-12-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13KVM: x86: Inhibit APIC memslot if x2APIC and AVIC are enabledSean Christopherson7-14/+78
Free the APIC access page memslot if any vCPU enables x2APIC and SVM's AVIC is enabled to prevent accesses to the virtual APIC on vCPUs with x2APIC enabled. On AMD, if its "hybrid" mode is enabled (AVIC is enabled when x2APIC is enabled even without x2AVIC support), keeping the APIC access page memslot results in the guest being able to access the virtual APIC page as x2APIC is fully emulated by KVM. I.e. hardware isn't aware that the guest is operating in x2APIC mode. Exempt nested SVM's update of APICv state from the new logic as x2APIC can't be toggled on VM-Exit. In practice, invoking the x2APIC logic should be harmless precisely because it should be a glorified nop, but play it safe to avoid latent bugs, e.g. with dropping the vCPU's SRCU lock. Intel doesn't suffer from the same issue as APICv has fully independent VMCS controls for xAPIC vs. x2APIC virtualization. Technically, KVM should provide bus error semantics and not memory semantics for the APIC page when x2APIC is enabled, but KVM already provides memory semantics in other scenarios, e.g. if APICv/AVIC is enabled and the APIC is hardware disabled (via APIC_BASE MSR). Note, checking apic_access_memslot_enabled without taking locks relies it being set during vCPU creation (before kvm_vcpu_reset()). vCPUs can race to set the inhibit and delete the memslot, i.e. can get false positives, but can't get false negatives as apic_access_memslot_enabled can't be toggled "on" once any vCPU reaches KVM_RUN. Opportunistically drop the "can" while updating avic_activate_vmcb()'s comment, i.e. to state that KVM _does_ support the hybrid mode. Move the "Note:" down a line to conform to preferred kernel/KVM multi-line comment style. Opportunistically update the apicv_update_lock comment, as it isn't actually used to protect apic_access_memslot_enabled (which is protected by slots_lock). Fixes: 0e311d33bfbe ("KVM: SVM: Introduce hybrid-AVIC mode") Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20230106011306.85230-11-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13KVM: x86: Move APIC access page helper to common x86 codeSean Christopherson4-68/+44
Move the APIC access page allocation helper function to common x86 code, the allocation routine is virtually identical between APICv (VMX) and AVIC (SVM). Keep APICv's gfn_to_page() + put_page() sequence, which verifies that a backing page can be allocated, i.e. that the system isn't under heavy memory pressure. Forcing the backing page to be populated isn't strictly necessary, but skipping the effective prefetch only delays the inevitable. Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20230106011306.85230-10-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13KVM: x86: Handle APICv updates for APIC "mode" changes via requestSean Christopherson1-1/+1
Use KVM_REQ_UPDATE_APICV to react to APIC "mode" changes, i.e. to handle the APIC being hardware enabled/disabled and/or x2APIC being toggled. There is no need to immediately update APICv state, the only requirement is that APICv be updating prior to the next VM-Enter. Making a request will allow piggybacking KVM_REQ_UPDATE_APICV to "inhibit" the APICv memslot when x2APIC is enabled. Doing that directly from kvm_lapic_set_base() isn't feasible as KVM's SRCU must not be held when modifying memslots (to avoid deadlock), and may or may not be held when kvm_lapic_set_base() is called, i.e. KVM can't do the right thing without tracking that is rightly buried behind CONFIG_PROVE_RCU=y. Suggested-by: Maxim Levitsky <mlevitsk@redhat.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20230106011306.85230-9-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13KVM: SVM: Don't put/load AVIC when setting virtual APIC modeSean Christopherson3-18/+17
Move the VMCB updates from avic_refresh_apicv_exec_ctrl() into avic_set_virtual_apic_mode() and invert the dependency being said functions to avoid calling avic_vcpu_{load,put}() and avic_set_pi_irte_mode() when "only" setting the virtual APIC mode. avic_set_virtual_apic_mode() is invoked from common x86 with preemption enabled, which makes avic_vcpu_{load,put}() unhappy. Luckily, calling those and updating IRTE stuff is unnecessary as the only reason avic_set_virtual_apic_mode() is called is to handle transitions between xAPIC and x2APIC that don't also toggle APICv activation. And if activation doesn't change, there's no need to fiddle with the physical APIC ID table or update IRTE. The "full" refresh is guaranteed to be called if activation changes in this case as the only call to the "set" path is: kvm_vcpu_update_apicv(vcpu); static_call_cond(kvm_x86_set_virtual_apic_mode)(vcpu); and kvm_vcpu_update_apicv() invokes the refresh if activation changes: if (apic->apicv_active == activate) goto out; apic->apicv_active = activate; kvm_apic_update_apicv(vcpu); static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); Rename the helper to reflect that it is also called during "refresh". WARNING: CPU: 183 PID: 49186 at arch/x86/kvm/svm/avic.c:1081 avic_vcpu_put+0xde/0xf0 [kvm_amd] CPU: 183 PID: 49186 Comm: stable Tainted: G O 6.0.0-smp--fcddbca45f0a-sink #34 Hardware name: Google, Inc. Arcadia_IT_80/Arcadia_IT_80, BIOS 10.48.0 01/27/2022 RIP: 0010:avic_vcpu_put+0xde/0xf0 [kvm_amd] avic_refresh_apicv_exec_ctrl+0x142/0x1c0 [kvm_amd] avic_set_virtual_apic_mode+0x5a/0x70 [kvm_amd] kvm_lapic_set_base+0x149/0x1a0 [kvm] kvm_set_apic_base+0x8f/0xd0 [kvm] kvm_set_msr_common+0xa3a/0xdc0 [kvm] svm_set_msr+0x364/0x6b0 [kvm_amd] __kvm_set_msr+0xb8/0x1c0 [kvm] kvm_emulate_wrmsr+0x58/0x1d0 [kvm] msr_interception+0x1c/0x30 [kvm_amd] svm_invoke_exit_handler+0x31/0x100 [kvm_amd] svm_handle_exit+0xfc/0x160 [kvm_amd] vcpu_enter_guest+0x21bb/0x23e0 [kvm] vcpu_run+0x92/0x450 [kvm] kvm_arch_vcpu_ioctl_run+0x43e/0x6e0 [kvm] kvm_vcpu_ioctl+0x559/0x620 [kvm] Fixes: 05c4fe8c1bd9 ("KVM: SVM: Refresh AVIC configuration when changing APIC mode") Cc: stable@vger.kernel.org Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20230106011306.85230-8-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13KVM: x86: Don't inhibit APICv/AVIC if xAPIC ID mismatch is due to 32-bit IDSean Christopherson1-1/+6
Truncate the vcpu_id, a.k.a. x2APIC ID, to an 8-bit value when comparing it against the xAPIC ID to avoid false positives (sort of) on systems with >255 CPUs, i.e. with IDs that don't fit into a u8. The intent of APIC_ID_MODIFIED is to inhibit APICv/AVIC when the xAPIC is changed from it's original value, The mismatch isn't technically a false positive, as architecturally the xAPIC IDs do end up being aliased in this scenario, and neither APICv nor AVIC correctly handles IPI virtualization when there is aliasing. However, KVM already deliberately does not honor the aliasing behavior that results when an x2APIC ID gets truncated to an xAPIC ID. I.e. the resulting APICv/AVIC behavior is aligned with KVM's existing behavior when KVM's x2APIC hotplug hack is effectively enabled. If/when KVM provides a way to disable the hotplug hack, APICv/AVIC can piggyback whatever logic disables the optimized APIC map (which is what provides the hotplug hack), i.e. so that KVM's optimized map and APIC virtualization yield the same behavior. For now, fix the immediate problem of APIC virtualization being disabled for large VMs, which is a much more pressing issue than ensuring KVM honors architectural behavior for APIC ID aliasing. Fixes: 3743c2f02517 ("KVM: x86: inhibit APICv/AVIC on changes to APIC ID or APIC base") Reported-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Cc: stable@vger.kernel.org Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20230106011306.85230-7-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13KVM: x86: Don't inhibit APICv/AVIC on xAPIC ID "change" if APIC is disabledSean Christopherson1-0/+3
Don't inhibit APICv/AVIC due to an xAPIC ID mismatch if the APIC is hardware disabled. The ID cannot be consumed while the APIC is disabled, and the ID is guaranteed to be set back to the vcpu_id when the APIC is hardware enabled (architectural behavior correctly emulated by KVM). Fixes: 3743c2f02517 ("KVM: x86: inhibit APICv/AVIC on changes to APIC ID or APIC base") Cc: stable@vger.kernel.org Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20230106011306.85230-6-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13KVM: SVM: Process ICR on AVIC IPI delivery failure due to invalid targetSean Christopherson1-7/+9
Emulate ICR writes on AVIC IPI failures due to invalid targets using the same logic as failures due to invalid types. AVIC acceleration fails if _any_ of the targets are invalid, and crucially VM-Exits before sending IPIs to targets that _are_ valid. In logical mode, the destination is a bitmap, i.e. a single IPI can target multiple logical IDs. Doing nothing causes KVM to drop IPIs if at least one target is valid and at least one target is invalid. Fixes: 18f40c53e10f ("svm: Add VMEXIT handlers for AVIC") Cc: stable@vger.kernel.org Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20230106011306.85230-5-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13KVM: SVM: Flush the "current" TLB when activating AVICSean Christopherson1-0/+6
Flush the TLB when activating AVIC as the CPU can insert into the TLB while AVIC is "locally" disabled. KVM doesn't treat "APIC hardware disabled" as VM-wide AVIC inhibition, and so when a vCPU has its APIC hardware disabled, AVIC is not guaranteed to be inhibited. As a result, KVM may create a valid NPT mapping for the APIC base, which the CPU can cache as a non-AVIC translation. Note, Intel handles this in vmx_set_virtual_apic_mode(). Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Message-Id: <20230106011306.85230-4-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13KVM: x86: Purge "highest ISR" cache when updating APICv stateSean Christopherson1-2/+1
Purge the "highest ISR" cache when updating APICv state on a vCPU. The cache must not be used when APICv is active as hardware may emulate EOIs (and other operations) without exiting to KVM. This fixes a bug where KVM will effectively block IRQs in perpetuity due to the "highest ISR" never getting reset if APICv is activated on a vCPU while an IRQ is in-service. Hardware emulates the EOI and KVM never gets a chance to update its cache. Fixes: b26a695a1d78 ("kvm: lapic: Introduce APICv update helper function") Cc: stable@vger.kernel.org Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Cc: Maxim Levitsky <mlevitsk@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20230106011306.85230-3-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-13KVM: x86: Blindly get current x2APIC reg value on "nodecode write" trapsSean Christopherson1-7/+2
When emulating a x2APIC write in response to an APICv/AVIC trap, get the the written value from the vAPIC page without checking that reads are allowed for the target register. AVIC can generate trap-like VM-Exits on writes to EOI, and so KVM needs to get the written value from the backing page without running afoul of EOI's write-only behavior. Alternatively, EOI could be special cased to always write '0', e.g. so that the sanity check could be preserved, but x2APIC on AMD is actually supposed to disallow non-zero writes (not emulated by KVM), and the sanity check was a byproduct of how the KVM code was written, i.e. wasn't added to guard against anything in particular. Fixes: 70c8327c11c6 ("KVM: x86: Bug the VM if an accelerated x2APIC trap occurs on a "bad" reg") Fixes: 1bd9dfec9fd4 ("KVM: x86: Do not block APIC write for non ICR registers") Reported-by: Alejandro Jimenez <alejandro.j.jimenez@oracle.com> Cc: stable@vger.kernel.org Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20230106011306.85230-2-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-12KVM: x86/xen: Avoid deadlock by adding kvm->arch.xen.xen_lock leaf node lockDavid Woodhouse3-38/+32
In commit 14243b387137a ("KVM: x86/xen: Add KVM_IRQ_ROUTING_XEN_EVTCHN and event channel delivery") the clever version of me left some helpful notes for those who would come after him: /* * For the irqfd workqueue, using the main kvm->lock mutex is * fine since this function is invoked from kvm_set_irq() with * no other lock held, no srcu. In future if it will be called * directly from a vCPU thread (e.g. on hypercall for an IPI) * then it may need to switch to using a leaf-node mutex for * serializing the shared_info mapping. */ mutex_lock(&kvm->lock); In commit 2fd6df2f2b47 ("KVM: x86/xen: intercept EVTCHNOP_send from guests") the other version of me ran straight past that comment without reading it, and introduced a potential deadlock by taking vcpu->mutex and kvm->lock in the wrong order. Solve this as originally suggested, by adding a leaf-node lock in the Xen state rather than using kvm->lock for it. Fixes: 2fd6df2f2b47 ("KVM: x86/xen: intercept EVTCHNOP_send from guests") Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Message-Id: <20230111180651.14394-4-dwmw2@infradead.org> [Rebase, add docs. - Paolo] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-11KVM: Ensure lockdep knows about kvm->lock vs. vcpu->mutex ordering ruleDavid Woodhouse1-0/+7
Documentation/virt/kvm/locking.rst tells us that kvm->lock is taken outside vcpu->mutex. But that doesn't actually happen very often; it's only in some esoteric cases like migration with AMD SEV. This means that lockdep usually doesn't notice, and doesn't do its job of keeping us honest. Ensure that lockdep *always* knows about the ordering of these two locks, by briefly taking vcpu->mutex in kvm_vm_ioctl_create_vcpu() while kvm->lock is held. Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Message-Id: <20230111180651.14394-3-dwmw2@infradead.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-11KVM: x86/xen: Fix potential deadlock in kvm_xen_update_runstate_guest()David Woodhouse1-2/+17
The kvm_xen_update_runstate_guest() function can be called when the vCPU is being scheduled out, from a preempt notifier. It *opportunistically* updates the runstate area in the guest memory, if the gfn_to_pfn_cache which caches the appropriate address is still valid. If there is *contention* when it attempts to obtain gpc->lock, then locking inside the priority inheritance checks may cause a deadlock. Lockdep reports: [13890.148997] Chain exists of: &gpc->lock --> &p->pi_lock --> &rq->__lock [13890.149002] Possible unsafe locking scenario: [13890.149003] CPU0 CPU1 [13890.149004] ---- ---- [13890.149005] lock(&rq->__lock); [13890.149007] lock(&p->pi_lock); [13890.149009] lock(&rq->__lock); [13890.149011] lock(&gpc->lock); [13890.149013] *** DEADLOCK *** In the general case, if there's contention for a read lock on gpc->lock, that's going to be because something else is either invalidating or revalidating the cache. Either way, we've raced with seeing it in an invalid state, in which case we would have aborted the opportunistic update anyway. So in the 'atomic' case when called from the preempt notifier, just switch to using read_trylock() and avoid the PI handling altogether. Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Message-Id: <20230111180651.14394-2-dwmw2@infradead.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-11KVM: x86/xen: Fix lockdep warning on "recursive" gpc lockingDavid Woodhouse1-1/+3
In commit 5ec3289b31 ("KVM: x86/xen: Compatibility fixes for shared runstate area") we declared it safe to obtain two gfn_to_pfn_cache locks at the same time: /* * The guest's runstate_info is split across two pages and we * need to hold and validate both GPCs simultaneously. We can * declare a lock ordering GPC1 > GPC2 because nothing else * takes them more than one at a time. */ However, we forgot to tell lockdep. Do so, by setting a subclass on the first lock before taking the second. Fixes: 5ec3289b31 ("KVM: x86/xen: Compatibility fixes for shared runstate area") Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Message-Id: <20230111180651.14394-1-dwmw2@infradead.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-11Merge tag 'kvmarm-fixes-6.2-1' of ↵Paolo Bonzini11-40/+69
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into kvm-master KVM/arm64 fixes for 6.2, take #1 - Fix the PMCR_EL0 reset value after the PMU rework - Correctly handle S2 fault triggered by a S1 page table walk by not always classifying it as a write, as this breaks on R/O memslots - Document why we cannot exit with KVM_EXIT_MMIO when taking a write fault from a S1 PTW on a R/O memslot - Put the Apple M2 on the naughty step for not being able to correctly implement the vgic SEIS feature, just liek the M1 before it - Reviewer updates: Alex is stepping down, replaced by Zenghui
2023-01-11Documentation: kvm: fix SRCU locking order docsPaolo Bonzini1-11/+12
kvm->srcu is taken in KVM_RUN and several other vCPU ioctls, therefore vcpu->mutex is susceptible to the same deadlock that is documented for kvm->slots_lock. The same holds for kvm->lock, since kvm->lock is held outside vcpu->mutex. Fix the documentation and rearrange it to highlight the difference between these locks and kvm->slots_arch_lock, and how kvm->slots_arch_lock can be useful while processing a vmexit. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-09KVM: x86: Do not return host topology information from KVM_GET_SUPPORTED_CPUIDPaolo Bonzini2-16/+30
Passing the host topology to the guest is almost certainly wrong and will confuse the scheduler. In addition, several fields of these CPUID leaves vary on each processor; it is simply impossible to return the right values from KVM_GET_SUPPORTED_CPUID in such a way that they can be passed to KVM_SET_CPUID2. The values that will most likely prevent confusion are all zeroes. Userspace will have to override it anyway if it wishes to present a specific topology to the guest. Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-09KVM: nSVM: clarify recalc_intercepts() wrt CR8Paolo Bonzini1-7/+5
The mysterious comment "We only want the cr8 intercept bits of L1" dates back to basically the introduction of nested SVM, back when the handling of "less typical" hypervisors was very haphazard. With the development of kvm-unit-tests for interrupt handling, the same code grew another vmcb_clr_intercept for the interrupt window (VINTR) vmexit, this time with a comment that is at least decent. It turns out however that the same comment applies to the CR8 write intercept, which is also a "recheck if an interrupt should be injected" intercept. The CR8 read intercept instead has not been used by KVM for 14 years (commit 649d68643ebf, "KVM: SVM: sync TPR value to V_TPR field in the VMCB"), so do not bother clearing it and let one comment describe both CR8 write and VINTR handling. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-01-08Linux 6.2-rc3v6.2-rc3Linus Torvalds1-1/+1
2023-01-08Merge tag 'powerpc-6.2-2' of ↵Linus Torvalds1-1/+5
git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux Pull powerpc fixes from Michael Ellerman: - Three fixes for various bogosity in our linker script, revealed by the recent commit which changed discard behaviour with some toolchains. * tag 'powerpc-6.2-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: powerpc/vmlinux.lds: Don't discard .comment powerpc/vmlinux.lds: Don't discard .rela* for relocatable builds powerpc/vmlinux.lds: Define RUNTIME_DISCARD_EXIT
2023-01-08Merge tag 'fixes-2023-01-08' of ↵Linus Torvalds3-2/+4
git://git.kernel.org/pub/scm/linux/kernel/git/rppt/memblock Pull memblock fixes from Mike Rapoport: "Small fixes in kernel-doc and tests: - Fix kernel-doc for memblock_phys_free() to use correct names for the counterpart allocation methods - Fix compilation error in memblock tests" * tag 'fixes-2023-01-08' of git://git.kernel.org/pub/scm/linux/kernel/git/rppt/memblock: memblock: Fix doc for memblock_phys_free memblock tests: Fix compilation error.