Age | Commit message (Collapse) | Author | Files | Lines |
|
We tag as v0 the version of BFQ containing only BFQ's engine plus
hierarchical support. BFQ's engine is introduced by this commit, while
hierarchical support is added by next commit. We use the v0 tag to
distinguish this minimal version of BFQ from the versions containing
also the features and the improvements added by next commits. BFQ-v0
coincides with the version of BFQ submitted a few years ago [1], apart
from the introduction of preemption, described below.
BFQ is a proportional-share I/O scheduler, whose general structure,
plus a lot of code, are borrowed from CFQ.
- Each process doing I/O on a device is associated with a weight and a
(bfq_)queue.
- BFQ grants exclusive access to the device, for a while, to one queue
(process) at a time, and implements this service model by
associating every queue with a budget, measured in number of
sectors.
- After a queue is granted access to the device, the budget of the
queue is decremented, on each request dispatch, by the size of the
request.
- The in-service queue is expired, i.e., its service is suspended,
only if one of the following events occurs: 1) the queue finishes
its budget, 2) the queue empties, 3) a "budget timeout" fires.
- The budget timeout prevents processes doing random I/O from
holding the device for too long and dramatically reducing
throughput.
- Actually, as in CFQ, a queue associated with a process issuing
sync requests may not be expired immediately when it empties. In
contrast, BFQ may idle the device for a short time interval,
giving the process the chance to go on being served if it issues
a new request in time. Device idling typically boosts the
throughput on rotational devices, if processes do synchronous
and sequential I/O. In addition, under BFQ, device idling is
also instrumental in guaranteeing the desired throughput
fraction to processes issuing sync requests (see [2] for
details).
- With respect to idling for service guarantees, if several
processes are competing for the device at the same time, but
all processes (and groups, after the following commit) have
the same weight, then BFQ guarantees the expected throughput
distribution without ever idling the device. Throughput is
thus as high as possible in this common scenario.
- Queues are scheduled according to a variant of WF2Q+, named
B-WF2Q+, and implemented using an augmented rb-tree to preserve an
O(log N) overall complexity. See [2] for more details. B-WF2Q+ is
also ready for hierarchical scheduling. However, for a cleaner
logical breakdown, the code that enables and completes
hierarchical support is provided in the next commit, which focuses
exactly on this feature.
- B-WF2Q+ guarantees a tight deviation with respect to an ideal,
perfectly fair, and smooth service. In particular, B-WF2Q+
guarantees that each queue receives a fraction of the device
throughput proportional to its weight, even if the throughput
fluctuates, and regardless of: the device parameters, the current
workload and the budgets assigned to the queue.
- The last, budget-independence, property (although probably
counterintuitive in the first place) is definitely beneficial, for
the following reasons:
- First, with any proportional-share scheduler, the maximum
deviation with respect to an ideal service is proportional to
the maximum budget (slice) assigned to queues. As a consequence,
BFQ can keep this deviation tight not only because of the
accurate service of B-WF2Q+, but also because BFQ *does not*
need to assign a larger budget to a queue to let the queue
receive a higher fraction of the device throughput.
- Second, BFQ is free to choose, for every process (queue), the
budget that best fits the needs of the process, or best
leverages the I/O pattern of the process. In particular, BFQ
updates queue budgets with a simple feedback-loop algorithm that
allows a high throughput to be achieved, while still providing
tight latency guarantees to time-sensitive applications. When
the in-service queue expires, this algorithm computes the next
budget of the queue so as to:
- Let large budgets be eventually assigned to the queues
associated with I/O-bound applications performing sequential
I/O: in fact, the longer these applications are served once
got access to the device, the higher the throughput is.
- Let small budgets be eventually assigned to the queues
associated with time-sensitive applications (which typically
perform sporadic and short I/O), because, the smaller the
budget assigned to a queue waiting for service is, the sooner
B-WF2Q+ will serve that queue (Subsec 3.3 in [2]).
- Weights can be assigned to processes only indirectly, through I/O
priorities, and according to the relation:
weight = 10 * (IOPRIO_BE_NR - ioprio).
The next patch provides, instead, a cgroups interface through which
weights can be assigned explicitly.
- If several processes are competing for the device at the same time,
but all processes and groups have the same weight, then BFQ
guarantees the expected throughput distribution without ever idling
the device. It uses preemption instead. Throughput is then much
higher in this common scenario.
- ioprio classes are served in strict priority order, i.e.,
lower-priority queues are not served as long as there are
higher-priority queues. Among queues in the same class, the
bandwidth is distributed in proportion to the weight of each
queue. A very thin extra bandwidth is however guaranteed to the Idle
class, to prevent it from starving.
- If the strict_guarantees parameter is set (default: unset), then BFQ
- always performs idling when the in-service queue becomes empty;
- forces the device to serve one I/O request at a time, by
dispatching a new request only if there is no outstanding
request.
In the presence of differentiated weights or I/O-request sizes,
both the above conditions are needed to guarantee that every
queue receives its allotted share of the bandwidth (see
Documentation/block/bfq-iosched.txt for more details). Setting
strict_guarantees may evidently affect throughput.
[1] https://lkml.org/lkml/2008/4/1/234
https://lkml.org/lkml/2008/11/11/148
[2] P. Valente and M. Andreolini, "Improving Application
Responsiveness with the BFQ Disk I/O Scheduler", Proceedings of
the 5th Annual International Systems and Storage Conference
(SYSTOR '12), June 2012.
Slightly extended version:
http://algogroup.unimore.it/people/paolo/disk_sched/bfq-v1-suite-
results.pdf
Signed-off-by: Fabio Checconi <fchecconi@gmail.com>
Signed-off-by: Paolo Valente <paolo.valente@linaro.org>
Signed-off-by: Arianna Avanzini <avanzini.arianna@gmail.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
NBD doesn't care about limiting the segment size, let the user push the
largest bio's they want. This allows us to control the request size
solely through max_sectors_kb.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/konrad/xen into for-4.12/block
Konrad writes:
It has one fix - to emit an uevent whenever the size of the guest disk image
changes.
|
|
When a blkfront device is resized from dom0, emit a KOBJ_CHANGE uevent to
notify the guest about the change. This allows for custom udev rules, such
as automatically resizing a filesystem, when an event occurs.
With this patch you get these udev
KERNEL[577.206230] change /devices/vbd-51728/block/xvdb (block)
UDEV [577.226218] change /devices/vbd-51728/block/xvdb (block)
Signed-off-by: Marc Olson <marcolso@amazon.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
|
|
For ease of management it would be nice for users to specify that the
device node for a nbd device is destroyed once it is disconnected and
there are no more users. Add a client flag and enable this operation to
happen.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
In order to support deleting the device on disconnect we need to
refcount the actual nbd_device struct. So add the refcounting framework
and change how we free the normal devices at rmmod time so we can catch
reference leaks.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Allow users to query the status of existing nbd devices. Right now this
only returns whether or not the device is connected, but could be
extended in the future to include more information.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Sometimes we like to upgrade our server without making all of our
clients freak out and reconnect. This patch provides a way to specify a
dead connection timeout to allow us to pause all requests and wait for
new connections to be opened. With this in place I can take down the
nbd server for less than the dead connection timeout time and bring it
back up and everything resumes gracefully.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
When running a disconnect torture test I noticed that sometimes we would
crash with a negative ref count on our queue. This was because we were
ending the same request twice. Turns out we were racing with
NBD_CLEAR_SOCK clearing the requests as well as the teardown of the
device clearing the requests. So instead make the ioctl only shutdown
the sockets and make it so that we only ever run nbd_clear_que from the
device teardown.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Provide a mechanism to notify userspace that there's been a link problem
on a NBD device. This will allow userspace to re-establish a connection
and provide the new socket to the device without disrupting the device.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
We want to be able to reconnect dead connections to existing block
devices, so add a reconfigure netlink command. We will also allow users
to change their timeout on the fly, but everything else will require a
disconnect and reconnect. You won't be able to add more connections
either, simply replace dead connections with new more lively
connections.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
The existing ioctl interface for configuring NBD devices is a bit
cumbersome and hard to extend. The other problem is we leave a
userspace app sitting in it's syscall until the device disconnects,
which is less than ideal.
This patch introduces a netlink interface for adding and disconnecting
nbd devices. This has the benefits of being easily extendable without
breaking older userspace applications, and allows us to configure a nbd
device without leaving a userspace app sitting waiting for the device to
disconnect.
With this interface we also gain the ability to configure more devices
than are preallocated at insmod time. We also have gained the ability
to not specify a particular device and be provided one for us so that
userspace doesn't need to find a free device to configure.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
In preparation for the upcoming netlink interface we need to not rely on
already having the bdev for the NBD device we are doing operations on.
Instead of passing the bdev around, just use it in places where we know
we already have the bdev.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
In order to properly refcount the various aspects of a NBD device we
need to separate out the configuration elements of the nbd device. The
configuration of a NBD device has a different lifetime from the actual
device, so it doesn't make sense to bundle these two concepts. Add a
config_refs to keep track of the configuration structure, that way we
can be sure that we never access it when we've torn down the device.
Add a new nbd_config structure to hold all of the transient
configuration information. Finally create this when we open the device
so that it is in place when we start to configure the device. This has
a nice side-effect of fixing a long standing problem where you could end
up with a half-configured nbd device that needed to be "disconnected" in
order to be usable again. Now once we close our device the
configuration will be discarded.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Currently if we have multiple connections and one of them goes down we will tear
down the whole device. However there's no reason we need to do this as we
could have other connections that are working fine. Deal with this by keeping
track of the state of the different connections, and if we lose one we mark it
as dead and send all IO destined for that socket to one of the other healthy
sockets. Any outstanding requests that were on the dead socket will timeout and
be re-submitted properly.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
When adding a new socket we look it up and then try to add it to our
configuration. If any of those steps fail we need to make sure we put
the socket so we don't leak them.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
There were a bunch of places in pblk_lines_init() where we didn't set an
error code. And in pblk_writer_init() we accidentally return 1 instead
of a correct error code, which would result in a Oops later.
Fixes: 11a5d6fdf919 ("lightnvm: physical block device (pblk) target")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
WARN_ON() takes a condition, not an error message. I slightly tweaked
some conditions so hopefully it's more clear.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
These labels are reversed so we could end up dereferencing an error
pointer or leaking.
Fixes: 7f347ba6bb3a ("lightnvm: physical block device (pblk) target")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
This patch introduces pblk, a host-side translation layer for
Open-Channel SSDs to expose them like block devices. The translation
layer allows data placement decisions, and I/O scheduling to be
managed by the host, enabling users to optimize the SSD for their
specific workloads.
An open-channel SSD has a set of LUNs (parallel units) and a
collection of blocks. Each block can be read in any order, but
writes must be sequential. Writes may also fail, and if a block
requires it, must also be reset before new writes can be
applied.
To manage the constraints, pblk maintains a logical to
physical address (L2P) table, write cache, garbage
collection logic, recovery scheme, and logic to rate-limit
user I/Os versus garbage collection I/Os.
The L2P table is fully-associative and manages sectors at a
4KB granularity. Pblk stores the L2P table in two places, in
the out-of-band area of the media and on the last page of a
line. In the cause of a power failure, pblk will perform a
scan to recover the L2P table.
The user data is organized into lines. A line is data
striped across blocks and LUNs. The lines enable the host to
reduce the amount of metadata to maintain besides the user
data and makes it easier to implement RAID or erasure coding
in the future.
pblk implements multi-tenant support and can be instantiated
multiple times on the same drive. Each instance owns a
portion of the SSD - both regarding I/O bandwidth and
capacity - providing I/O isolation for each case.
Finally, pblk also exposes a sysfs interface that allows
user-space to peek into the internals of pblk. The interface
is available at /dev/block/*/pblk/ where * is the block
device name exposed.
This work also contains contributions from:
Matias Bjørling <matias@cnexlabs.com>
Simon A. F. Lund <slund@cnexlabs.com>
Young Tack Jin <youngtack.jin@gmail.com>
Huaicheng Li <huaicheng@cs.uchicago.edu>
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Convert sprintf calls to strlcpy in order to make possible buffer
overflow more obvious.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
sector_t is always unsigned, therefore avoid < 0 checks on it.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Clean unused variable on lightnvm core.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Prefix the nvm_free static function with a missing static keyword.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Target initialization has two responsibilities: creating the target
partition and instantiating the target. This patch enables to create a
factory partition (e.g., do not trigger recovery on the given target).
This is useful for target development and for being able to restore the
device state at any moment in time without requiring a full-device
erase.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
The NVMe I/O command control bits are 16 bytes, but is interpreted as
32 bytes in the lightnvm user I/O data path.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Reorder disk allocation such that the disk structure can be put
safely.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
The dev->lun_map bits are cleared twice if an target init error occurs.
First in the target clean routine, and then next in the nvm_tgt_create
error function. Make sure that it is only cleared once by extending
nvm_remove_tgt_devi() with a clear bit, such that clearing of bits can
ignored when cleaning up a successful initialized target.
Signed-off-by: Javier González <javier@cnexlabs.com>
Fix style.
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
mempool_alloc() cannot fail if the gfp flags allow it to
sleep, and both GFP_KERNEL and GFP_NOIO allows for sleeping.
So rrpc_move_valid_pages() and rrpc_make_rq() don't need to
test the return value.
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
The asserts in _nvme_nvm_check_size are not compiled due to the function
not begin called. Make sure that it is called, and also fix the wrong
sizes of asserts for nvme_nvm_addr_format, and nvme_nvm_bb_tbl, which
checked for number of bits instead of bytes.
Reported-by: Scott Bauer <scott.bauer@intel.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Free the reverse mapping table correctly on target tear down
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
According to the OCSSD 1.2 specification, the 0x200 hint enables the
media scrambler for the read/write opcode, providing that the controller
has been correctly configured by the firmware. Rename the macro to
represent this meaning.
Signed-off-by: Javier González <javier@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Until now erases have been submitted as synchronous commands through a
dedicated erase function. In order to enable targets implementing
asynchronous erases, refactor the erase path so that it uses the normal
async I/O submission functions. If a target requires sync I/O, it can
implement it internally. Also, adapt rrpc to use the new erase path.
Signed-off-by: Javier González <javier@cnexlabs.com>
Fixed spelling error.
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
There are two closely named structs in lightnvm:
struct nvme_nvm_addr_format and
struct nvme_addr_format.
The first struct has 4 reserved bytes at the end, the second does not.
(gdb) p sizeof(struct nvme_nvm_addr_format)
$1 = 16
(gdb) p sizeof(struct nvm_addr_format)
$2 = 12
In the nvme_nvm_identify function we memcpy from the larger struct to the
smaller struct. We incorrectly pass the length of the larger struct
and overflow by 4 bytes, lets not do that.
Signed-off-by: Scott Bauer <scott.bauer@intel.com>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
According to error handling in this function, it is likely that going to
'out' was expected here.
Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Signed-off-by: Matias Bjørling <matias@cnexlabs.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
If "scope_len" is sizeof(scope_id) then we would put the NUL terminator
one space beyond the end of the buffer.
Fixes: b1a951fe469e ("net/utils: generic inet_pton_with_scope helper")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
The Kyber I/O scheduler is an I/O scheduler for fast devices designed to
scale to multiple queues. Users configure only two knobs, the target
read and synchronous write latencies, and the scheduler tunes itself to
achieve that latency goal.
The implementation is based on "tokens", built on top of the scalable
bitmap library. Tokens serve as a mechanism for limiting requests. There
are two tiers of tokens: queueing tokens and dispatch tokens.
A queueing token is required to allocate a request. In fact, these
tokens are actually the blk-mq internal scheduler tags, but the
scheduler manages the allocation directly in order to implement its
policy.
Dispatch tokens are device-wide and split up into two scheduling
domains: reads vs. writes. Each hardware queue dispatches batches
round-robin between the scheduling domains as long as tokens are
available for that domain.
These tokens can be used as the mechanism to enable various policies.
The policy Kyber uses is inspired by active queue management techniques
for network routing, similar to blk-wbt. The scheduler monitors
latencies and scales the number of dispatch tokens accordingly. Queueing
tokens are used to prevent starvation of synchronous requests by
asynchronous requests.
Various extensions are possible, including better heuristics and ionice
support. The new scheduler isn't set as the default yet.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Currently, this callback is called right after put_request() and has no
distinguishable purpose. Instead, let's call it before put_request() as
soon as I/O has completed on the request, before we account it in
blk-stat. With this, Kyber can enable stats when it sees a latency
outlier and make sure the outlier gets accounted.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
blk_mq_finish_request() is required for schedulers that define their own
put_request(). blk_mq_run_hw_queue() is required for schedulers that
hold back requests to be run later.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Wire up the sbitmap_get_shallow() operation to the tag code so that a
caller can limit the number of tags available to it.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
This operation supports the use case of limiting the number of bits that
can be allocated for a given operation. Rather than setting aside some
bits at the end of the bitmap, we can set aside bits in each word of the
bitmap. This means we can keep the allocation hints spread out and
support sbitmap_resize() nicely at the cost of lower granularity for the
allowed depth.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
This drivers was added in 2008, but as far as a I can tell we never had a
single platform that actually registered resources for the platform driver.
It's also been unmaintained for a long time and apparently has a ATA mode
that can be driven using the IDE/libata subsystem.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
When CFQ calls wbt_disable_default(), it will call
blk_stat_remove_callback() to stop gathering IO statistics for the
purposes of writeback throttling. Later, when request_queue is
unregistered, wbt_exit() will call blk_stat_remove_callback() again
which will try to delete callback from the list again and possibly cause
list corruption.
Fix the problem by making wbt_disable_default() called wbt_exit() which
is properly guarded against being called multiple times.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Instead of showing the hctx state and flags as numbers, show the
names of the flags.
Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com>
Cc: Omar Sandoval <osandov@fb.com>
Cc: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Make it possible to check whether or not a block layer queue has
been stopped. Make it possible to start and to run a blk-mq queue
from user space.
Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com>
Cc: Omar Sandoval <osandov@fb.com>
Cc: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Separating discards and zeroout operations allows us to remove the LBPRZ
block zeroing constraints from discards and honor the device preferences
for UNMAP commands.
If supported by the device, we'll also choose UNMAP over one of the
WRITE SAME variants for discards.
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Now that zeroout and discards are distinct operations we need to
separate the policy of choosing the appropriate command. Create a
zeroing_mode which can be one of:
write: Zeroout assist not present, use regular WRITE
writesame: Allow WRITE SAME(10/16) with a zeroed payload
writesame_16_unmap: Allow WRITE SAME(16) with UNMAP
writesame_10_unmap: Allow WRITE SAME(10) with UNMAP
The last two are conditional on the device being thin provisioned with
LBPRZ=1 and LBPWS=1 or LBPWS10=1 respectively.
Whether to set the UNMAP bit or not depends on the REQ_NOUNMAP flag. And
if none of the _unmap variants are supported, regular WRITE SAME will be
used if the device supports it.
The zeroout_mode is exported in sysfs and the detected mode for a given
device can be overridden using the string constants above.
With this change in place we can now issue WRITE SAME(16) with UNMAP set
for block zeroing applications that require hard guarantees and
logical_block_size granularity. And at the same time use the UNMAP
command with the device's preferred granulary and alignment for discard
operations.
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Now that we use the proper REQ_OP_WRITE_ZEROES operation everywhere we can
kill this hack.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
It seems like DRBD assumes its on the wire TRIM request always zeroes data.
Use that fact to implement REQ_OP_WRITE_ZEROES.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
drbd always wants its discard wire operations to zero the blocks, so
use blkdev_issue_zeroout with the BLKDEV_ZERO_UNMAP flag instead of
reinventing it poorly.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|