Age | Commit message (Collapse) | Author | Files | Lines |
|
Now that we already have kvm and the VCPU id set for the VCPU, we can
convert sda_add_vcpu to look much more like sda_del_vcpu.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
Let's always set and clear the sda when enabling/disabling a VCPU.
Dealing with sda being set to something else makes no sense anymore
as we enable a VCPU in the SCA now after it has been registered at
the VM.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
If something goes wrong in kvm_arch_vcpu_create, the VCPU has already
been added to the sca but will never be removed. Trying to create VCPUs
with duplicate ids (e.g. after a failed attempt) is problematic.
Also, when creating multiple VCPUs in parallel, we could theoretically
forget to set the correct SCA when the switch to ESCA happens just
before the VCPU is registered.
Let's add the VCPU to the SCA in kvm_arch_vcpu_postcreate, where we can
be sure that no duplicate VCPU with the same id is around and the VCPU
has already been registered at the VM. We also have to make sure to update
ECB at that point.
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
Having no sca can never happen, even when something goes wrong when
switching to ESCA. Otherwise we would have a serious bug.
Let's remove this superfluous check.
Acked-by: Dominik Dingel <dingel@linux.vnet.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
If CPUSTAT_ECALL_PEND isn't set, we can't have an external call pending,
so we can directly avoid taking the lock.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
This patch allows s390 to have more than 64 VCPUs for a guest (up to
248 for memory usage considerations), if supported by the underlaying
hardware (sclp.has_esca).
Signed-off-by: Eugene (jno) Dvurechenski <jno@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
This patch adds code that performs transparent switch to Extended
SCA on addition of 65th VCPU in a VM. Disposal of ESCA is added too.
The entier ESCA functionality, however, is still not enabled.
The enablement will be provided in a separate patch.
This patch also uses read/write lock protection of SCA and its subfields for
possible disposal at the BSCA-to-ESCA transition. While only Basic SCA needs such
a protection (for the swap), any SCA access is now guarded.
Signed-off-by: Eugene (jno) Dvurechenski <jno@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
This patch updates the routines (sca_*) to provide transparent access
to and manipulation on the data for both Basic and Extended SCA in use.
The kvm.arch.sca is generalized to (void *) to handle BSCA/ESCA cases.
Also the kvm.arch.use_esca flag is provided.
The actual functionality is kept the same.
Signed-off-by: Eugene (jno) Dvurechenski <jno@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
This patch adds new structures and updates some existing ones to
provide the base for Extended SCA functionality.
The old sca_* structures were renamed to bsca_* to keep things uniform.
The access to fields of SIGP controls were turned into bitfields instead
of hardcoded bitmasks.
Signed-off-by: Eugene (jno) Dvurechenski <jno@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
This patch provides SCA-aware helpers to create/delete a VCPU.
This is to prepare for upcoming introduction of Extended SCA support.
Signed-off-by: Eugene (jno) Dvurechenski <jno@linux.vnet.ibm.com>
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
This patch generalizes access to the SIGP controls, which is a part of SCA.
This is to prepare for upcoming introduction of Extended SCA support.
Signed-off-by: Eugene (jno) Dvurechenski <jno@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
This patch generalizes access to the IPTE controls, which is a part of SCA.
This is to prepare for upcoming introduction of Extended SCA support.
Signed-off-by: Eugene (jno) Dvurechenski <jno@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
Introduce sclp.has_hvs and sclp.has_esca to provide a way for kvm to check
whether the extended-SCA and the home-virtual-SCA facilities are available.
Signed-off-by: Eugene (jno) Dvurechenski <jno@linux.vnet.ibm.com>
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
Let's rewrite this function to better reflect how we actually handle
exit_code. By dropping out early we can save a few cycles. This
especially speeds up sie exits caused by host irqs.
Also, let's move the special -EOPNOTSUPP for intercepts to
the place where it belongs and convert it to -EREMOTE.
Reviewed-by: Dominik Dingel <dingel@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
KVM creates debugfs files to export VM statistics to userland. To be
able to remove them on kvm exit it tracks the files' dentries.
Since their parent directory is also tracked and since each parent
direntry knows its children we can easily remove them by using
debugfs_remove_recursive(kvm_debugfs_dir). Therefore we don't
need the extra tracking in the kvm_stats_debugfs_item anymore.
Signed-off-by: Janosch Frank <frankja@linux.vnet.ibm.com>
Reviewed-By: Sascha Silbe <silbe@linux.vnet.ibm.com>
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
Usually, VCPU ids match the array index. So let's try a fast
lookup first before falling back to the slow iteration.
Suggested-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Dominik Dingel <dingel@linux.vnet.ibm.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
|
|
Let's reuse the new common function for VPCU lookup by id.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Dominik Dingel <dingel@linux.vnet.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
[split out the new function into a separate patch]
|
|
Signed-off-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
As kvm_mmu_get_page() was changed so that every parent pointer would not
get into the sp->parent_ptes chain before the entry pointed to by it was
set properly, we can use the for_each_rmap_spte macro instead of
pte_list_walk().
Signed-off-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Cc: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
link_shadow_page()
Every time kvm_mmu_get_page() is called with a non-NULL parent_pte
argument, link_shadow_page() follows that to set the parent entry so
that the new mapping will point to the returned page table.
Moving parent_pte handling there allows to clean up the code because
parent_pte is passed to kvm_mmu_get_page() just for mark_unsync() and
mmu_page_add_parent_pte().
In addition, the patch avoids calling mark_unsync() for other parents in
the sp->parent_ptes chain than the newly added parent_pte, because they
have been there since before the current page fault handling started.
Signed-off-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Cc: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Make kvm_mmu_alloc_page() do just what its name tells to do, and remove
the extra allocation error check and zero-initialization of parent_ptes:
shadow page headers allocated by kmem_cache_zalloc() are always in the
per-VCPU pools.
Signed-off-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
At some call sites of rmap_get_first() and rmap_get_next(), BUG_ON is
placed right after the call to detect unrelated sptes which must not be
found in the reverse-mapping list.
Move this check in rmap_get_first/next() so that all call sites, not
just the users of the for_each_rmap_spte() macro, will be checked the
same way.
One thing to keep in mind is that kvm_mmu_unlink_parents() also uses
rmap_get_first() to handle parent sptes. The change will not break it
because parent sptes are present, at least until drop_parent_pte()
actually unlinks them, and not mmio-sptes.
Signed-off-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
is_rmap_spte(), originally named is_rmap_pte(), was introduced when the
simple reverse mapping was implemented by commit cd4a4e5374110444
("[PATCH] KVM: MMU: Implement simple reverse mapping"). At that point,
its role was clear and only rmap_add() and rmap_remove() were using it
to select sptes that need to be reverse-mapped.
Independently of that, is_shadow_present_pte() was first introduced by
commit c7addb902054195b ("KVM: Allow not-present guest page faults to
bypass kvm") to do bypass_guest_pf optimization, which does not exist
any more.
These two seem to have changed their roles somewhat, and is_rmap_spte()
just calls is_shadow_present_pte() now.
Since using both of them without clear distinction just makes the code
confusing, remove is_rmap_spte().
Signed-off-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
mmu_set_spte()'s code is based on the assumption that the emulate
parameter has a valid pointer value if set_spte() returns true and
write_fault is not zero. In other cases, emulate may be NULL, so a
NULL-check is needed.
Stop passing emulate pointer and make mmu_set_spte() return the emulate
value instead to clean up this complex interface. Prefetch functions
can just throw away the return value.
Signed-off-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Both __mmu_unsync_walk() and mmu_pages_clear_parents() have three line
code which clears a bit in the unsync child bitmap; the former places it
inside a loop block and uses a few goto statements to jump to it.
A new helper function, clear_unsync_child_bit(), makes the code cleaner.
Signed-off-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Signed-off-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
New struct kvm_rmap_head makes the code type-safe to some extent.
Signed-off-by: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
In another patch kvm_is_visible_gfn is maken return bool due to this
function only returns zero or one as its return value, let's also make
kvmppc_visible_gpa return bool to keep consistent.
No functional change.
Signed-off-by: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
This patch makes kvm_para_has_feature return bool due to this
particular function only using either one or zero as its return
value.
No functional change.
Signed-off-by: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
This patch makes kvm_is_visible_gfn return bool due to this particular
function only using either one or zero as its return value.
No functional change.
Signed-off-by: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
"kmem_cache_destroy"
The kmem_cache_destroy() function tests whether its argument is NULL
and then returns immediately. Thus the test around the call is not needed.
This issue was detected by using the Coccinelle software.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Commit 7a1638ce4220 ("nEPT: Redefine EPT-specific link_shadow_page()",
2013-08-05) says:
Since nEPT doesn't support A/D bit, we should not set those bit
when building the shadow page table.
but this is not necessary. Even though nEPT doesn't support A/D
bits, and hence the vmcs12 EPT pointer will never enable them,
we always use them for shadow page tables if available (see
construct_eptp in vmx.c). So we can set the A/D bits freely
in the shadow page table.
This patch hence basically reverts commit 7a1638ce4220.
Cc: Yang Zhang <yang.z.zhang@Intel.com>
Cc: Takuya Yoshikawa <yoshikawa_takuya_b1@lab.ntt.co.jp>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Poor #AC was so unimportant until a few days ago that we were
not even tracing its name correctly. But now it's all over
the place.
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
RDTSCP was never supported for AMD CPUs, which nobody noticed because
Linux does not use it. But exactly the fact that Linux does not
use it makes the implementation very simple; we can freely trash
MSR_TSC_AUX while running the guest.
Cc: Joerg Roedel <joro@8bytes.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
If we do not do this, it is not properly saved and restored across
migration. Windows notices due to its self-protection mechanisms,
and is very upset about it (blue screen of death).
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
A new vcpu exit is introduced to notify the userspace of the
changes in Hyper-V SynIC configuration triggered by guest writing to the
corresponding MSRs.
Changes v4:
* exit into userspace only if guest writes into SynIC MSR's
Changes v3:
* added KVM_EXIT_HYPERV types and structs notes into docs
Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Denis V. Lunev <den@openvz.org>
CC: Gleb Natapov <gleb@kernel.org>
CC: Paolo Bonzini <pbonzini@redhat.com>
CC: Roman Kagan <rkagan@virtuozzo.com>
CC: Denis V. Lunev <den@openvz.org>
CC: qemu-devel@nongnu.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
SynIC (synthetic interrupt controller) is a lapic extension,
which is controlled via MSRs and maintains for each vCPU
- 16 synthetic interrupt "lines" (SINT's); each can be configured to
trigger a specific interrupt vector optionally with auto-EOI
semantics
- a message page in the guest memory with 16 256-byte per-SINT message
slots
- an event flag page in the guest memory with 16 2048-bit per-SINT
event flag areas
The host triggers a SINT whenever it delivers a new message to the
corresponding slot or flips an event flag bit in the corresponding area.
The guest informs the host that it can try delivering a message by
explicitly asserting EOI in lapic or writing to End-Of-Message (EOM)
MSR.
The userspace (qemu) triggers interrupts and receives EOM notifications
via irqfd with resampler; for that, a GSI is allocated for each
configured SINT, and irq_routing api is extended to support GSI-SINT
mapping.
Changes v4:
* added activation of SynIC by vcpu KVM_ENABLE_CAP
* added per SynIC active flag
* added deactivation of APICv upon SynIC activation
Changes v3:
* added KVM_CAP_HYPERV_SYNIC and KVM_IRQ_ROUTING_HV_SINT notes into
docs
Changes v2:
* do not use posted interrupts for Hyper-V SynIC AutoEOI vectors
* add Hyper-V SynIC vectors into EOI exit bitmap
* Hyper-V SyniIC SINT msr write logic simplified
Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Denis V. Lunev <den@openvz.org>
CC: Gleb Natapov <gleb@kernel.org>
CC: Paolo Bonzini <pbonzini@redhat.com>
CC: Roman Kagan <rkagan@virtuozzo.com>
CC: Denis V. Lunev <den@openvz.org>
CC: qemu-devel@nongnu.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The decision on whether to use hardware APIC virtualization used to be
taken globally, based on the availability of the feature in the CPU
and the value of a module parameter.
However, under certain circumstances we want to control it on per-vcpu
basis. In particular, when the userspace activates HyperV synthetic
interrupt controller (SynIC), APICv has to be disabled as it's
incompatible with SynIC auto-EOI behavior.
To achieve that, introduce 'apicv_active' flag on struct
kvm_vcpu_arch, and kvm_vcpu_deactivate_apicv() function to turn APICv
off. The flag is initialized based on the module parameter and CPU
capability, and consulted whenever an APICv-specific action is
performed.
Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Denis V. Lunev <den@openvz.org>
CC: Gleb Natapov <gleb@kernel.org>
CC: Paolo Bonzini <pbonzini@redhat.com>
CC: Roman Kagan <rkagan@virtuozzo.com>
CC: Denis V. Lunev <den@openvz.org>
CC: qemu-devel@nongnu.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The function to determine if the vector is handled by ioapic used to
rely on the fact that only ioapic-handled vectors were set up to
cause vmexits when virtual apic was in use.
We're going to break this assumption when introducing Hyper-V
synthetic interrupts: they may need to cause vmexits too.
To achieve that, introduce a new bitmap dedicated specifically for
ioapic-handled vectors, and populate EOI exit bitmap from it for now.
Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Denis V. Lunev <den@openvz.org>
CC: Gleb Natapov <gleb@kernel.org>
CC: Paolo Bonzini <pbonzini@redhat.com>
CC: Roman Kagan <rkagan@virtuozzo.com>
CC: Denis V. Lunev <den@openvz.org>
CC: qemu-devel@nongnu.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Actually kvm_arch_irq_routing_update() should be
kvm_arch_post_irq_routing_update() as it's called at the end
of irq routing update.
This renaming frees kvm_arch_irq_routing_update function name.
kvm_arch_irq_routing_update() weak function which will be used
to update mappings for arch-specific irq routing entries
(in particular, the upcoming Hyper-V synthetic interrupts).
Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Signed-off-by: Denis V. Lunev <den@openvz.org>
CC: Gleb Natapov <gleb@kernel.org>
CC: Paolo Bonzini <pbonzini@redhat.com>
CC: Roman Kagan <rkagan@virtuozzo.com>
CC: Denis V. Lunev <den@openvz.org>
CC: qemu-devel@nongnu.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
This patch removes the vpid check when emulating nested invvpid
instruction of type all-contexts invalidation. The existing code is
incorrect because:
(1) According to Intel SDM Vol 3, Section "INVVPID - Invalidate
Translations Based on VPID", invvpid instruction does not check
vpid in the invvpid descriptor when its type is all-contexts
invalidation.
(2) According to the same document, invvpid of type all-contexts
invalidation does not require there is an active VMCS, so/and
get_vmcs12() in the existing code may result in a NULL-pointer
dereference. In practice, it can crash both KVM itself and L1
hypervisors that use invvpid (e.g. Xen).
Signed-off-by: Haozhong Zhang <haozhong.zhang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into kvm-master
KVM/ARM Fixes for v4.4-rc3.
Includes some timer fixes, properly unmapping PTEs, an errata fix, and two
tweaks to the EL2 panic code.
|
|
If we call __kvm_hyp_panic while a guest context is active, we call
__restore_sysregs before acquiring the system register values for the
panic, in the process throwing away the PAR_EL1 value at the point of
the panic.
This patch modifies __kvm_hyp_panic to stash the PAR_EL1 value prior to
restoring host register values, enabling us to report the original
values at the point of the panic.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
|
Currently __kvm_hyp_panic uses %p for values which are not pointers,
such as the ESR value. This can confusingly lead to "(null)" being
printed for the value.
Use %x instead, and only use %p for host pointers.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
|
We were probing the physial distributor state for the active state of a
HW virtual IRQ, because we had seen evidence that the LR state was not
cleared when the guest deactivated a virtual interrupted.
However, this issue turned out to be a software bug in the GIC, which
was solved by: 84aab5e68c2a5e1e18d81ae8308c3ce25d501b29
(KVM: arm/arm64: arch_timer: Preserve physical dist. active
state on LR.active, 2015-11-24)
Therefore, get rid of the complexities and just look at the LR.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
|
We were incorrectly removing the active state from the physical
distributor on the timer interrupt when the timer output level was
deasserted. We shouldn't be doing this without considering the virtual
interrupt's active state, because the architecture requires that when an
LR has the HW bit set and the pending or active bits set, then the
physical interrupt must also have the corresponding bits set.
This addresses an issue where we have been observing an inconsistency
between the LR state and the physical distributor state where the LR
state was active and the physical distributor was not active, which
shouldn't happen.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
|
We were setting the physical active state on the GIC distributor in a
preemptible section, which could cause us to set the active state on
different physical CPU from the one we were actually going to run on,
hacoc ensues.
Since we are no longer descheduling/scheduling soft timers in the
flush/sync timer functions, simply moving the timer flush into a
non-preemptible section.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
|
Cortex-A57 parts up to r1p2 can misreport Stage 2 translation faults
when a Stage 1 permission fault or device alignment fault should
have been reported.
This patch implements the workaround (which is to validate that the
Stage-1 translation actually succeeds) by using code patching.
Cc: stable@vger.kernel.org
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
|
When running a 32bit guest under a 64bit hypervisor, the ARMv8
architecture defines a mapping of the 32bit registers in the 64bit
space. This includes banked registers that are being demultiplexed
over the 64bit ones.
On exceptions caused by an operation involving a 32bit register, the
HW exposes the register number in the ESR_EL2 register. It was so
far understood that SW had to distinguish between AArch32 and AArch64
accesses (based on the current AArch32 mode and register number).
It turns out that I misinterpreted the ARM ARM, and the clue is in
D1.20.1: "For some exceptions, the exception syndrome given in the
ESR_ELx identifies one or more register numbers from the issued
instruction that generated the exception. Where the exception is
taken from an Exception level using AArch32 these register numbers
give the AArch64 view of the register."
Which means that the HW is already giving us the translated version,
and that we shouldn't try to interpret it at all (for example, doing
an MMIO operation from the IRQ mode using the LR register leads to
very unexpected behaviours).
The fix is thus not to perform a call to vcpu_reg32() at all from
vcpu_reg(), and use whatever register number is supplied directly.
The only case we need to find out about the mapping is when we
actively generate a register access, which only occurs when injecting
a fault in a guest.
Cc: stable@vger.kernel.org
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
|
The open coded tests for checking whether a PTE maps a page as
uncached use a flawed '(pte_val(xxx) & CONST) != CONST' pattern,
which is not guaranteed to work since the type of a mapping is
not a set of mutually exclusive bits
For HYP mappings, the type is an index into the MAIR table (i.e, the
index itself does not contain any information whatsoever about the
type of the mapping), and for stage-2 mappings it is a bit field where
normal memory and device types are defined as follows:
#define MT_S2_NORMAL 0xf
#define MT_S2_DEVICE_nGnRE 0x1
I.e., masking *and* comparing with the latter matches on the former,
and we have been getting lucky merely because the S2 device mappings
also have the PTE_UXN bit set, or we would misidentify memory mappings
as device mappings.
Since the unmap_range() code path (which contains one instance of the
flawed test) is used both for HYP mappings and stage-2 mappings, and
considering the difference between the two, it is non-trivial to fix
this by rewriting the tests in place, as it would involve passing
down the type of mapping through all the functions.
However, since HYP mappings and stage-2 mappings both deal with host
physical addresses, we can simply check whether the mapping is backed
by memory that is managed by the host kernel, and only perform the
D-cache maintenance if this is the case.
Cc: stable@vger.kernel.org
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Pavel Fedin <p.fedin@samsung.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|