diff options
Diffstat (limited to 'virt')
-rw-r--r-- | virt/kvm/Kconfig | 10 | ||||
-rw-r--r-- | virt/kvm/arm/arch_timer.c | 3 | ||||
-rw-r--r-- | virt/kvm/arm/vgic-v2-emul.c | 847 | ||||
-rw-r--r-- | virt/kvm/arm/vgic-v2.c | 4 | ||||
-rw-r--r-- | virt/kvm/arm/vgic-v3-emul.c | 1036 | ||||
-rw-r--r-- | virt/kvm/arm/vgic-v3.c | 82 | ||||
-rw-r--r-- | virt/kvm/arm/vgic.c | 1127 | ||||
-rw-r--r-- | virt/kvm/arm/vgic.h | 123 | ||||
-rw-r--r-- | virt/kvm/async_pf.c | 2 | ||||
-rw-r--r-- | virt/kvm/kvm_main.c | 194 |
10 files changed, 2495 insertions, 933 deletions
diff --git a/virt/kvm/Kconfig b/virt/kvm/Kconfig index fc0c5e603eb4..e2c876d5a03b 100644 --- a/virt/kvm/Kconfig +++ b/virt/kvm/Kconfig @@ -37,3 +37,13 @@ config HAVE_KVM_CPU_RELAX_INTERCEPT config KVM_VFIO bool + +config HAVE_KVM_ARCH_TLB_FLUSH_ALL + bool + +config KVM_GENERIC_DIRTYLOG_READ_PROTECT + bool + +config KVM_COMPAT + def_bool y + depends on COMPAT && !S390 diff --git a/virt/kvm/arm/arch_timer.c b/virt/kvm/arm/arch_timer.c index 1c0772b340d8..6e54f3542126 100644 --- a/virt/kvm/arm/arch_timer.c +++ b/virt/kvm/arm/arch_timer.c @@ -152,7 +152,8 @@ void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu) return; } - ns = cyclecounter_cyc2ns(timecounter->cc, cval - now); + ns = cyclecounter_cyc2ns(timecounter->cc, cval - now, timecounter->mask, + &timecounter->frac); timer_arm(timer, ns); } diff --git a/virt/kvm/arm/vgic-v2-emul.c b/virt/kvm/arm/vgic-v2-emul.c new file mode 100644 index 000000000000..19c6210f02cf --- /dev/null +++ b/virt/kvm/arm/vgic-v2-emul.c @@ -0,0 +1,847 @@ +/* + * Contains GICv2 specific emulation code, was in vgic.c before. + * + * Copyright (C) 2012 ARM Ltd. + * Author: Marc Zyngier <marc.zyngier@arm.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. + */ + +#include <linux/cpu.h> +#include <linux/kvm.h> +#include <linux/kvm_host.h> +#include <linux/interrupt.h> +#include <linux/io.h> +#include <linux/uaccess.h> + +#include <linux/irqchip/arm-gic.h> + +#include <asm/kvm_emulate.h> +#include <asm/kvm_arm.h> +#include <asm/kvm_mmu.h> + +#include "vgic.h" + +#define GICC_ARCH_VERSION_V2 0x2 + +static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg); +static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi) +{ + return dist->irq_sgi_sources + vcpu_id * VGIC_NR_SGIS + sgi; +} + +static bool handle_mmio_misc(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, phys_addr_t offset) +{ + u32 reg; + u32 word_offset = offset & 3; + + switch (offset & ~3) { + case 0: /* GICD_CTLR */ + reg = vcpu->kvm->arch.vgic.enabled; + vgic_reg_access(mmio, ®, word_offset, + ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); + if (mmio->is_write) { + vcpu->kvm->arch.vgic.enabled = reg & 1; + vgic_update_state(vcpu->kvm); + return true; + } + break; + + case 4: /* GICD_TYPER */ + reg = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5; + reg |= (vcpu->kvm->arch.vgic.nr_irqs >> 5) - 1; + vgic_reg_access(mmio, ®, word_offset, + ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); + break; + + case 8: /* GICD_IIDR */ + reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0); + vgic_reg_access(mmio, ®, word_offset, + ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); + break; + } + + return false; +} + +static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + return vgic_handle_enable_reg(vcpu->kvm, mmio, offset, + vcpu->vcpu_id, ACCESS_WRITE_SETBIT); +} + +static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + return vgic_handle_enable_reg(vcpu->kvm, mmio, offset, + vcpu->vcpu_id, ACCESS_WRITE_CLEARBIT); +} + +static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + return vgic_handle_set_pending_reg(vcpu->kvm, mmio, offset, + vcpu->vcpu_id); +} + +static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + return vgic_handle_clear_pending_reg(vcpu->kvm, mmio, offset, + vcpu->vcpu_id); +} + +static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority, + vcpu->vcpu_id, offset); + vgic_reg_access(mmio, reg, offset, + ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); + return false; +} + +#define GICD_ITARGETSR_SIZE 32 +#define GICD_CPUTARGETS_BITS 8 +#define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS) +static u32 vgic_get_target_reg(struct kvm *kvm, int irq) +{ + struct vgic_dist *dist = &kvm->arch.vgic; + int i; + u32 val = 0; + + irq -= VGIC_NR_PRIVATE_IRQS; + + for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) + val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8); + + return val; +} + +static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq) +{ + struct vgic_dist *dist = &kvm->arch.vgic; + struct kvm_vcpu *vcpu; + int i, c; + unsigned long *bmap; + u32 target; + + irq -= VGIC_NR_PRIVATE_IRQS; + + /* + * Pick the LSB in each byte. This ensures we target exactly + * one vcpu per IRQ. If the byte is null, assume we target + * CPU0. + */ + for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) { + int shift = i * GICD_CPUTARGETS_BITS; + + target = ffs((val >> shift) & 0xffU); + target = target ? (target - 1) : 0; + dist->irq_spi_cpu[irq + i] = target; + kvm_for_each_vcpu(c, vcpu, kvm) { + bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]); + if (c == target) + set_bit(irq + i, bmap); + else + clear_bit(irq + i, bmap); + } + } +} + +static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + u32 reg; + + /* We treat the banked interrupts targets as read-only */ + if (offset < 32) { + u32 roreg; + + roreg = 1 << vcpu->vcpu_id; + roreg |= roreg << 8; + roreg |= roreg << 16; + + vgic_reg_access(mmio, &roreg, offset, + ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); + return false; + } + + reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U); + vgic_reg_access(mmio, ®, offset, + ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); + if (mmio->is_write) { + vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U); + vgic_update_state(vcpu->kvm); + return true; + } + + return false; +} + +static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, phys_addr_t offset) +{ + u32 *reg; + + reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg, + vcpu->vcpu_id, offset >> 1); + + return vgic_handle_cfg_reg(reg, mmio, offset); +} + +static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, phys_addr_t offset) +{ + u32 reg; + + vgic_reg_access(mmio, ®, offset, + ACCESS_READ_RAZ | ACCESS_WRITE_VALUE); + if (mmio->is_write) { + vgic_dispatch_sgi(vcpu, reg); + vgic_update_state(vcpu->kvm); + return true; + } + + return false; +} + +/* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */ +static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + struct vgic_dist *dist = &vcpu->kvm->arch.vgic; + int sgi; + int min_sgi = (offset & ~0x3); + int max_sgi = min_sgi + 3; + int vcpu_id = vcpu->vcpu_id; + u32 reg = 0; + + /* Copy source SGIs from distributor side */ + for (sgi = min_sgi; sgi <= max_sgi; sgi++) { + u8 sources = *vgic_get_sgi_sources(dist, vcpu_id, sgi); + + reg |= ((u32)sources) << (8 * (sgi - min_sgi)); + } + + mmio_data_write(mmio, ~0, reg); + return false; +} + +static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset, bool set) +{ + struct vgic_dist *dist = &vcpu->kvm->arch.vgic; + int sgi; + int min_sgi = (offset & ~0x3); + int max_sgi = min_sgi + 3; + int vcpu_id = vcpu->vcpu_id; + u32 reg; + bool updated = false; + + reg = mmio_data_read(mmio, ~0); + + /* Clear pending SGIs on the distributor */ + for (sgi = min_sgi; sgi <= max_sgi; sgi++) { + u8 mask = reg >> (8 * (sgi - min_sgi)); + u8 *src = vgic_get_sgi_sources(dist, vcpu_id, sgi); + + if (set) { + if ((*src & mask) != mask) + updated = true; + *src |= mask; + } else { + if (*src & mask) + updated = true; + *src &= ~mask; + } + } + + if (updated) + vgic_update_state(vcpu->kvm); + + return updated; +} + +static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + if (!mmio->is_write) + return read_set_clear_sgi_pend_reg(vcpu, mmio, offset); + else + return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, true); +} + +static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + if (!mmio->is_write) + return read_set_clear_sgi_pend_reg(vcpu, mmio, offset); + else + return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, false); +} + +static const struct kvm_mmio_range vgic_dist_ranges[] = { + { + .base = GIC_DIST_CTRL, + .len = 12, + .bits_per_irq = 0, + .handle_mmio = handle_mmio_misc, + }, + { + .base = GIC_DIST_IGROUP, + .len = VGIC_MAX_IRQS / 8, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_raz_wi, + }, + { + .base = GIC_DIST_ENABLE_SET, + .len = VGIC_MAX_IRQS / 8, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_set_enable_reg, + }, + { + .base = GIC_DIST_ENABLE_CLEAR, + .len = VGIC_MAX_IRQS / 8, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_clear_enable_reg, + }, + { + .base = GIC_DIST_PENDING_SET, + .len = VGIC_MAX_IRQS / 8, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_set_pending_reg, + }, + { + .base = GIC_DIST_PENDING_CLEAR, + .len = VGIC_MAX_IRQS / 8, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_clear_pending_reg, + }, + { + .base = GIC_DIST_ACTIVE_SET, + .len = VGIC_MAX_IRQS / 8, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_raz_wi, + }, + { + .base = GIC_DIST_ACTIVE_CLEAR, + .len = VGIC_MAX_IRQS / 8, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_raz_wi, + }, + { + .base = GIC_DIST_PRI, + .len = VGIC_MAX_IRQS, + .bits_per_irq = 8, + .handle_mmio = handle_mmio_priority_reg, + }, + { + .base = GIC_DIST_TARGET, + .len = VGIC_MAX_IRQS, + .bits_per_irq = 8, + .handle_mmio = handle_mmio_target_reg, + }, + { + .base = GIC_DIST_CONFIG, + .len = VGIC_MAX_IRQS / 4, + .bits_per_irq = 2, + .handle_mmio = handle_mmio_cfg_reg, + }, + { + .base = GIC_DIST_SOFTINT, + .len = 4, + .handle_mmio = handle_mmio_sgi_reg, + }, + { + .base = GIC_DIST_SGI_PENDING_CLEAR, + .len = VGIC_NR_SGIS, + .handle_mmio = handle_mmio_sgi_clear, + }, + { + .base = GIC_DIST_SGI_PENDING_SET, + .len = VGIC_NR_SGIS, + .handle_mmio = handle_mmio_sgi_set, + }, + {} +}; + +static bool vgic_v2_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run, + struct kvm_exit_mmio *mmio) +{ + unsigned long base = vcpu->kvm->arch.vgic.vgic_dist_base; + + if (!is_in_range(mmio->phys_addr, mmio->len, base, + KVM_VGIC_V2_DIST_SIZE)) + return false; + + /* GICv2 does not support accesses wider than 32 bits */ + if (mmio->len > 4) { + kvm_inject_dabt(vcpu, mmio->phys_addr); + return true; + } + + return vgic_handle_mmio_range(vcpu, run, mmio, vgic_dist_ranges, base); +} + +static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg) +{ + struct kvm *kvm = vcpu->kvm; + struct vgic_dist *dist = &kvm->arch.vgic; + int nrcpus = atomic_read(&kvm->online_vcpus); + u8 target_cpus; + int sgi, mode, c, vcpu_id; + + vcpu_id = vcpu->vcpu_id; + + sgi = reg & 0xf; + target_cpus = (reg >> 16) & 0xff; + mode = (reg >> 24) & 3; + + switch (mode) { + case 0: + if (!target_cpus) + return; + break; + + case 1: + target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff; + break; + + case 2: + target_cpus = 1 << vcpu_id; + break; + } + + kvm_for_each_vcpu(c, vcpu, kvm) { + if (target_cpus & 1) { + /* Flag the SGI as pending */ + vgic_dist_irq_set_pending(vcpu, sgi); + *vgic_get_sgi_sources(dist, c, sgi) |= 1 << vcpu_id; + kvm_debug("SGI%d from CPU%d to CPU%d\n", + sgi, vcpu_id, c); + } + + target_cpus >>= 1; + } +} + +static bool vgic_v2_queue_sgi(struct kvm_vcpu *vcpu, int irq) +{ + struct vgic_dist *dist = &vcpu->kvm->arch.vgic; + unsigned long sources; + int vcpu_id = vcpu->vcpu_id; + int c; + + sources = *vgic_get_sgi_sources(dist, vcpu_id, irq); + + for_each_set_bit(c, &sources, dist->nr_cpus) { + if (vgic_queue_irq(vcpu, c, irq)) + clear_bit(c, &sources); + } + + *vgic_get_sgi_sources(dist, vcpu_id, irq) = sources; + + /* + * If the sources bitmap has been cleared it means that we + * could queue all the SGIs onto link registers (see the + * clear_bit above), and therefore we are done with them in + * our emulated gic and can get rid of them. + */ + if (!sources) { + vgic_dist_irq_clear_pending(vcpu, irq); + vgic_cpu_irq_clear(vcpu, irq); + return true; + } + + return false; +} + +/** + * kvm_vgic_map_resources - Configure global VGIC state before running any VCPUs + * @kvm: pointer to the kvm struct + * + * Map the virtual CPU interface into the VM before running any VCPUs. We + * can't do this at creation time, because user space must first set the + * virtual CPU interface address in the guest physical address space. + */ +static int vgic_v2_map_resources(struct kvm *kvm, + const struct vgic_params *params) +{ + int ret = 0; + + if (!irqchip_in_kernel(kvm)) + return 0; + + mutex_lock(&kvm->lock); + + if (vgic_ready(kvm)) + goto out; + + if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) || + IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) { + kvm_err("Need to set vgic cpu and dist addresses first\n"); + ret = -ENXIO; + goto out; + } + + /* + * Initialize the vgic if this hasn't already been done on demand by + * accessing the vgic state from userspace. + */ + ret = vgic_init(kvm); + if (ret) { + kvm_err("Unable to allocate maps\n"); + goto out; + } + + ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base, + params->vcpu_base, KVM_VGIC_V2_CPU_SIZE, + true); + if (ret) { + kvm_err("Unable to remap VGIC CPU to VCPU\n"); + goto out; + } + + kvm->arch.vgic.ready = true; +out: + if (ret) + kvm_vgic_destroy(kvm); + mutex_unlock(&kvm->lock); + return ret; +} + +static void vgic_v2_add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source) +{ + struct vgic_dist *dist = &vcpu->kvm->arch.vgic; + + *vgic_get_sgi_sources(dist, vcpu->vcpu_id, irq) |= 1 << source; +} + +static int vgic_v2_init_model(struct kvm *kvm) +{ + int i; + + for (i = VGIC_NR_PRIVATE_IRQS; i < kvm->arch.vgic.nr_irqs; i += 4) + vgic_set_target_reg(kvm, 0, i); + + return 0; +} + +void vgic_v2_init_emulation(struct kvm *kvm) +{ + struct vgic_dist *dist = &kvm->arch.vgic; + + dist->vm_ops.handle_mmio = vgic_v2_handle_mmio; + dist->vm_ops.queue_sgi = vgic_v2_queue_sgi; + dist->vm_ops.add_sgi_source = vgic_v2_add_sgi_source; + dist->vm_ops.init_model = vgic_v2_init_model; + dist->vm_ops.map_resources = vgic_v2_map_resources; + + kvm->arch.max_vcpus = VGIC_V2_MAX_CPUS; +} + +static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, phys_addr_t offset) +{ + bool updated = false; + struct vgic_vmcr vmcr; + u32 *vmcr_field; + u32 reg; + + vgic_get_vmcr(vcpu, &vmcr); + + switch (offset & ~0x3) { + case GIC_CPU_CTRL: + vmcr_field = &vmcr.ctlr; + break; + case GIC_CPU_PRIMASK: + vmcr_field = &vmcr.pmr; + break; + case GIC_CPU_BINPOINT: + vmcr_field = &vmcr.bpr; + break; + case GIC_CPU_ALIAS_BINPOINT: + vmcr_field = &vmcr.abpr; + break; + default: + BUG(); + } + + if (!mmio->is_write) { + reg = *vmcr_field; + mmio_data_write(mmio, ~0, reg); + } else { + reg = mmio_data_read(mmio, ~0); + if (reg != *vmcr_field) { + *vmcr_field = reg; + vgic_set_vmcr(vcpu, &vmcr); + updated = true; + } + } + return updated; +} + +static bool handle_mmio_abpr(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, phys_addr_t offset) +{ + return handle_cpu_mmio_misc(vcpu, mmio, GIC_CPU_ALIAS_BINPOINT); +} + +static bool handle_cpu_mmio_ident(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + u32 reg; + + if (mmio->is_write) + return false; + + /* GICC_IIDR */ + reg = (PRODUCT_ID_KVM << 20) | + (GICC_ARCH_VERSION_V2 << 16) | + (IMPLEMENTER_ARM << 0); + mmio_data_write(mmio, ~0, reg); + return false; +} + +/* + * CPU Interface Register accesses - these are not accessed by the VM, but by + * user space for saving and restoring VGIC state. + */ +static const struct kvm_mmio_range vgic_cpu_ranges[] = { + { + .base = GIC_CPU_CTRL, + .len = 12, + .handle_mmio = handle_cpu_mmio_misc, + }, + { + .base = GIC_CPU_ALIAS_BINPOINT, + .len = 4, + .handle_mmio = handle_mmio_abpr, + }, + { + .base = GIC_CPU_ACTIVEPRIO, + .len = 16, + .handle_mmio = handle_mmio_raz_wi, + }, + { + .base = GIC_CPU_IDENT, + .len = 4, + .handle_mmio = handle_cpu_mmio_ident, + }, +}; + +static int vgic_attr_regs_access(struct kvm_device *dev, + struct kvm_device_attr *attr, + u32 *reg, bool is_write) +{ + const struct kvm_mmio_range *r = NULL, *ranges; + phys_addr_t offset; + int ret, cpuid, c; + struct kvm_vcpu *vcpu, *tmp_vcpu; + struct vgic_dist *vgic; + struct kvm_exit_mmio mmio; + + offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK; + cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >> + KVM_DEV_ARM_VGIC_CPUID_SHIFT; + + mutex_lock(&dev->kvm->lock); + + ret = vgic_init(dev->kvm); + if (ret) + goto out; + + if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) { + ret = -EINVAL; + goto out; + } + + vcpu = kvm_get_vcpu(dev->kvm, cpuid); + vgic = &dev->kvm->arch.vgic; + + mmio.len = 4; + mmio.is_write = is_write; + if (is_write) + mmio_data_write(&mmio, ~0, *reg); + switch (attr->group) { + case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: + mmio.phys_addr = vgic->vgic_dist_base + offset; + ranges = vgic_dist_ranges; + break; + case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: + mmio.phys_addr = vgic->vgic_cpu_base + offset; + ranges = vgic_cpu_ranges; + break; + default: + BUG(); + } + r = vgic_find_range(ranges, &mmio, offset); + + if (unlikely(!r || !r->handle_mmio)) { + ret = -ENXIO; + goto out; + } + + + spin_lock(&vgic->lock); + + /* + * Ensure that no other VCPU is running by checking the vcpu->cpu + * field. If no other VPCUs are running we can safely access the VGIC + * state, because even if another VPU is run after this point, that + * VCPU will not touch the vgic state, because it will block on + * getting the vgic->lock in kvm_vgic_sync_hwstate(). + */ + kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) { + if (unlikely(tmp_vcpu->cpu != -1)) { + ret = -EBUSY; + goto out_vgic_unlock; + } + } + + /* + * Move all pending IRQs from the LRs on all VCPUs so the pending + * state can be properly represented in the register state accessible + * through this API. + */ + kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) + vgic_unqueue_irqs(tmp_vcpu); + + offset -= r->base; + r->handle_mmio(vcpu, &mmio, offset); + + if (!is_write) + *reg = mmio_data_read(&mmio, ~0); + + ret = 0; +out_vgic_unlock: + spin_unlock(&vgic->lock); +out: + mutex_unlock(&dev->kvm->lock); + return ret; +} + +static int vgic_v2_create(struct kvm_device *dev, u32 type) +{ + return kvm_vgic_create(dev->kvm, type); +} + +static void vgic_v2_destroy(struct kvm_device *dev) +{ + kfree(dev); +} + +static int vgic_v2_set_attr(struct kvm_device *dev, + struct kvm_device_attr *attr) +{ + int ret; + + ret = vgic_set_common_attr(dev, attr); + if (ret != -ENXIO) + return ret; + + switch (attr->group) { + case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: + case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: { + u32 __user *uaddr = (u32 __user *)(long)attr->addr; + u32 reg; + + if (get_user(reg, uaddr)) + return -EFAULT; + + return vgic_attr_regs_access(dev, attr, ®, true); + } + + } + + return -ENXIO; +} + +static int vgic_v2_get_attr(struct kvm_device *dev, + struct kvm_device_attr *attr) +{ + int ret; + + ret = vgic_get_common_attr(dev, attr); + if (ret != -ENXIO) + return ret; + + switch (attr->group) { + case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: + case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: { + u32 __user *uaddr = (u32 __user *)(long)attr->addr; + u32 reg = 0; + + ret = vgic_attr_regs_access(dev, attr, ®, false); + if (ret) + return ret; + return put_user(reg, uaddr); + } + + } + + return -ENXIO; +} + +static int vgic_v2_has_attr(struct kvm_device *dev, + struct kvm_device_attr *attr) +{ + phys_addr_t offset; + + switch (attr->group) { + case KVM_DEV_ARM_VGIC_GRP_ADDR: + switch (attr->attr) { + case KVM_VGIC_V2_ADDR_TYPE_DIST: + case KVM_VGIC_V2_ADDR_TYPE_CPU: + return 0; + } + break; + case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: + offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK; + return vgic_has_attr_regs(vgic_dist_ranges, offset); + case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: + offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK; + return vgic_has_attr_regs(vgic_cpu_ranges, offset); + case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: + return 0; + case KVM_DEV_ARM_VGIC_GRP_CTRL: + switch (attr->attr) { + case KVM_DEV_ARM_VGIC_CTRL_INIT: + return 0; + } + } + return -ENXIO; +} + +struct kvm_device_ops kvm_arm_vgic_v2_ops = { + .name = "kvm-arm-vgic-v2", + .create = vgic_v2_create, + .destroy = vgic_v2_destroy, + .set_attr = vgic_v2_set_attr, + .get_attr = vgic_v2_get_attr, + .has_attr = vgic_v2_has_attr, +}; diff --git a/virt/kvm/arm/vgic-v2.c b/virt/kvm/arm/vgic-v2.c index 2935405ad22f..a0a7b5d1a070 100644 --- a/virt/kvm/arm/vgic-v2.c +++ b/virt/kvm/arm/vgic-v2.c @@ -229,12 +229,16 @@ int vgic_v2_probe(struct device_node *vgic_node, goto out_unmap; } + vgic->can_emulate_gicv2 = true; + kvm_register_device_ops(&kvm_arm_vgic_v2_ops, KVM_DEV_TYPE_ARM_VGIC_V2); + vgic->vcpu_base = vcpu_res.start; kvm_info("%s@%llx IRQ%d\n", vgic_node->name, vctrl_res.start, vgic->maint_irq); vgic->type = VGIC_V2; + vgic->max_gic_vcpus = VGIC_V2_MAX_CPUS; *ops = &vgic_v2_ops; *params = vgic; goto out; diff --git a/virt/kvm/arm/vgic-v3-emul.c b/virt/kvm/arm/vgic-v3-emul.c new file mode 100644 index 000000000000..b3f154631515 --- /dev/null +++ b/virt/kvm/arm/vgic-v3-emul.c @@ -0,0 +1,1036 @@ +/* + * GICv3 distributor and redistributor emulation + * + * GICv3 emulation is currently only supported on a GICv3 host (because + * we rely on the hardware's CPU interface virtualization support), but + * supports both hardware with or without the optional GICv2 backwards + * compatibility features. + * + * Limitations of the emulation: + * (RAZ/WI: read as zero, write ignore, RAO/WI: read as one, write ignore) + * - We do not support LPIs (yet). TYPER.LPIS is reported as 0 and is RAZ/WI. + * - We do not support the message based interrupts (MBIs) triggered by + * writes to the GICD_{SET,CLR}SPI_* registers. TYPER.MBIS is reported as 0. + * - We do not support the (optional) backwards compatibility feature. + * GICD_CTLR.ARE resets to 1 and is RAO/WI. If the _host_ GIC supports + * the compatiblity feature, you can use a GICv2 in the guest, though. + * - We only support a single security state. GICD_CTLR.DS is 1 and is RAO/WI. + * - Priorities are not emulated (same as the GICv2 emulation). Linux + * as a guest is fine with this, because it does not use priorities. + * - We only support Group1 interrupts. Again Linux uses only those. + * + * Copyright (C) 2014 ARM Ltd. + * Author: Andre Przywara <andre.przywara@arm.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. + */ + +#include <linux/cpu.h> +#include <linux/kvm.h> +#include <linux/kvm_host.h> +#include <linux/interrupt.h> + +#include <linux/irqchip/arm-gic-v3.h> +#include <kvm/arm_vgic.h> + +#include <asm/kvm_emulate.h> +#include <asm/kvm_arm.h> +#include <asm/kvm_mmu.h> + +#include "vgic.h" + +static bool handle_mmio_rao_wi(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, phys_addr_t offset) +{ + u32 reg = 0xffffffff; + + vgic_reg_access(mmio, ®, offset, + ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); + + return false; +} + +static bool handle_mmio_ctlr(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, phys_addr_t offset) +{ + u32 reg = 0; + + /* + * Force ARE and DS to 1, the guest cannot change this. + * For the time being we only support Group1 interrupts. + */ + if (vcpu->kvm->arch.vgic.enabled) + reg = GICD_CTLR_ENABLE_SS_G1; + reg |= GICD_CTLR_ARE_NS | GICD_CTLR_DS; + + vgic_reg_access(mmio, ®, offset, + ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); + if (mmio->is_write) { + if (reg & GICD_CTLR_ENABLE_SS_G0) + kvm_info("guest tried to enable unsupported Group0 interrupts\n"); + vcpu->kvm->arch.vgic.enabled = !!(reg & GICD_CTLR_ENABLE_SS_G1); + vgic_update_state(vcpu->kvm); + return true; + } + return false; +} + +/* + * As this implementation does not provide compatibility + * with GICv2 (ARE==1), we report zero CPUs in bits [5..7]. + * Also LPIs and MBIs are not supported, so we set the respective bits to 0. + * Also we report at most 2**10=1024 interrupt IDs (to match 1024 SPIs). + */ +#define INTERRUPT_ID_BITS 10 +static bool handle_mmio_typer(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, phys_addr_t offset) +{ + u32 reg; + + reg = (min(vcpu->kvm->arch.vgic.nr_irqs, 1024) >> 5) - 1; + + reg |= (INTERRUPT_ID_BITS - 1) << 19; + + vgic_reg_access(mmio, ®, offset, + ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); + + return false; +} + +static bool handle_mmio_iidr(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, phys_addr_t offset) +{ + u32 reg; + + reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0); + vgic_reg_access(mmio, ®, offset, + ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); + + return false; +} + +static bool handle_mmio_set_enable_reg_dist(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8)) + return vgic_handle_enable_reg(vcpu->kvm, mmio, offset, + vcpu->vcpu_id, + ACCESS_WRITE_SETBIT); + + vgic_reg_access(mmio, NULL, offset, + ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); + return false; +} + +static bool handle_mmio_clear_enable_reg_dist(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8)) + return vgic_handle_enable_reg(vcpu->kvm, mmio, offset, + vcpu->vcpu_id, + ACCESS_WRITE_CLEARBIT); + + vgic_reg_access(mmio, NULL, offset, + ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); + return false; +} + +static bool handle_mmio_set_pending_reg_dist(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8)) + return vgic_handle_set_pending_reg(vcpu->kvm, mmio, offset, + vcpu->vcpu_id); + + vgic_reg_access(mmio, NULL, offset, + ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); + return false; +} + +static bool handle_mmio_clear_pending_reg_dist(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + if (likely(offset >= VGIC_NR_PRIVATE_IRQS / 8)) + return vgic_handle_clear_pending_reg(vcpu->kvm, mmio, offset, + vcpu->vcpu_id); + + vgic_reg_access(mmio, NULL, offset, + ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); + return false; +} + +static bool handle_mmio_priority_reg_dist(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + u32 *reg; + + if (unlikely(offset < VGIC_NR_PRIVATE_IRQS)) { + vgic_reg_access(mmio, NULL, offset, + ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); + return false; + } + + reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority, + vcpu->vcpu_id, offset); + vgic_reg_access(mmio, reg, offset, + ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); + return false; +} + +static bool handle_mmio_cfg_reg_dist(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + u32 *reg; + + if (unlikely(offset < VGIC_NR_PRIVATE_IRQS / 4)) { + vgic_reg_access(mmio, NULL, offset, + ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); + return false; + } + + reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg, + vcpu->vcpu_id, offset >> 1); + + return vgic_handle_cfg_reg(reg, mmio, offset); +} + +/* + * We use a compressed version of the MPIDR (all 32 bits in one 32-bit word) + * when we store the target MPIDR written by the guest. + */ +static u32 compress_mpidr(unsigned long mpidr) +{ + u32 ret; + + ret = MPIDR_AFFINITY_LEVEL(mpidr, 0); + ret |= MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8; + ret |= MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16; + ret |= MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24; + + return ret; +} + +static unsigned long uncompress_mpidr(u32 value) +{ + unsigned long mpidr; + + mpidr = ((value >> 0) & 0xFF) << MPIDR_LEVEL_SHIFT(0); + mpidr |= ((value >> 8) & 0xFF) << MPIDR_LEVEL_SHIFT(1); + mpidr |= ((value >> 16) & 0xFF) << MPIDR_LEVEL_SHIFT(2); + mpidr |= (u64)((value >> 24) & 0xFF) << MPIDR_LEVEL_SHIFT(3); + + return mpidr; +} + +/* + * Lookup the given MPIDR value to get the vcpu_id (if there is one) + * and store that in the irq_spi_cpu[] array. + * This limits the number of VCPUs to 255 for now, extending the data + * type (or storing kvm_vcpu pointers) should lift the limit. + * Store the original MPIDR value in an extra array to support read-as-written. + * Unallocated MPIDRs are translated to a special value and caught + * before any array accesses. + */ +static bool handle_mmio_route_reg(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + struct kvm *kvm = vcpu->kvm; + struct vgic_dist *dist = &kvm->arch.vgic; + int spi; + u32 reg; + int vcpu_id; + unsigned long *bmap, mpidr; + + /* + * The upper 32 bits of each 64 bit register are zero, + * as we don't support Aff3. + */ + if ((offset & 4)) { + vgic_reg_access(mmio, NULL, offset, + ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); + return false; + } + + /* This region only covers SPIs, so no handling of private IRQs here. */ + spi = offset / 8; + + /* get the stored MPIDR for this IRQ */ + mpidr = uncompress_mpidr(dist->irq_spi_mpidr[spi]); + reg = mpidr; + + vgic_reg_access(mmio, ®, offset, + ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); + + if (!mmio->is_write) + return false; + + /* + * Now clear the currently assigned vCPU from the map, making room + * for the new one to be written below + */ + vcpu = kvm_mpidr_to_vcpu(kvm, mpidr); + if (likely(vcpu)) { + vcpu_id = vcpu->vcpu_id; + bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]); + __clear_bit(spi, bmap); + } + + dist->irq_spi_mpidr[spi] = compress_mpidr(reg); + vcpu = kvm_mpidr_to_vcpu(kvm, reg & MPIDR_HWID_BITMASK); + + /* + * The spec says that non-existent MPIDR values should not be + * forwarded to any existent (v)CPU, but should be able to become + * pending anyway. We simply keep the irq_spi_target[] array empty, so + * the interrupt will never be injected. + * irq_spi_cpu[irq] gets a magic value in this case. + */ + if (likely(vcpu)) { + vcpu_id = vcpu->vcpu_id; + dist->irq_spi_cpu[spi] = vcpu_id; + bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]); + __set_bit(spi, bmap); + } else { + dist->irq_spi_cpu[spi] = VCPU_NOT_ALLOCATED; + } + + vgic_update_state(kvm); + + return true; +} + +/* + * We should be careful about promising too much when a guest reads + * this register. Don't claim to be like any hardware implementation, + * but just report the GIC as version 3 - which is what a Linux guest + * would check. + */ +static bool handle_mmio_idregs(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + u32 reg = 0; + + switch (offset + GICD_IDREGS) { + case GICD_PIDR2: + reg = 0x3b; + break; + } + + vgic_reg_access(mmio, ®, offset, + ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); + + return false; +} + +static const struct kvm_mmio_range vgic_v3_dist_ranges[] = { + { + .base = GICD_CTLR, + .len = 0x04, + .bits_per_irq = 0, + .handle_mmio = handle_mmio_ctlr, + }, + { + .base = GICD_TYPER, + .len = 0x04, + .bits_per_irq = 0, + .handle_mmio = handle_mmio_typer, + }, + { + .base = GICD_IIDR, + .len = 0x04, + .bits_per_irq = 0, + .handle_mmio = handle_mmio_iidr, + }, + { + /* this register is optional, it is RAZ/WI if not implemented */ + .base = GICD_STATUSR, + .len = 0x04, + .bits_per_irq = 0, + .handle_mmio = handle_mmio_raz_wi, + }, + { + /* this write only register is WI when TYPER.MBIS=0 */ + .base = GICD_SETSPI_NSR, + .len = 0x04, + .bits_per_irq = 0, + .handle_mmio = handle_mmio_raz_wi, + }, + { + /* this write only register is WI when TYPER.MBIS=0 */ + .base = GICD_CLRSPI_NSR, + .len = 0x04, + .bits_per_irq = 0, + .handle_mmio = handle_mmio_raz_wi, + }, + { + /* this is RAZ/WI when DS=1 */ + .base = GICD_SETSPI_SR, + .len = 0x04, + .bits_per_irq = 0, + .handle_mmio = handle_mmio_raz_wi, + }, + { + /* this is RAZ/WI when DS=1 */ + .base = GICD_CLRSPI_SR, + .len = 0x04, + .bits_per_irq = 0, + .handle_mmio = handle_mmio_raz_wi, + }, + { + .base = GICD_IGROUPR, + .len = 0x80, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_rao_wi, + }, + { + .base = GICD_ISENABLER, + .len = 0x80, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_set_enable_reg_dist, + }, + { + .base = GICD_ICENABLER, + .len = 0x80, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_clear_enable_reg_dist, + }, + { + .base = GICD_ISPENDR, + .len = 0x80, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_set_pending_reg_dist, + }, + { + .base = GICD_ICPENDR, + .len = 0x80, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_clear_pending_reg_dist, + }, + { + .base = GICD_ISACTIVER, + .len = 0x80, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_raz_wi, + }, + { + .base = GICD_ICACTIVER, + .len = 0x80, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_raz_wi, + }, + { + .base = GICD_IPRIORITYR, + .len = 0x400, + .bits_per_irq = 8, + .handle_mmio = handle_mmio_priority_reg_dist, + }, + { + /* TARGETSRn is RES0 when ARE=1 */ + .base = GICD_ITARGETSR, + .len = 0x400, + .bits_per_irq = 8, + .handle_mmio = handle_mmio_raz_wi, + }, + { + .base = GICD_ICFGR, + .len = 0x100, + .bits_per_irq = 2, + .handle_mmio = handle_mmio_cfg_reg_dist, + }, + { + /* this is RAZ/WI when DS=1 */ + .base = GICD_IGRPMODR, + .len = 0x80, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_raz_wi, + }, + { + /* this is RAZ/WI when DS=1 */ + .base = GICD_NSACR, + .len = 0x100, + .bits_per_irq = 2, + .handle_mmio = handle_mmio_raz_wi, + }, + { + /* this is RAZ/WI when ARE=1 */ + .base = GICD_SGIR, + .len = 0x04, + .handle_mmio = handle_mmio_raz_wi, + }, + { + /* this is RAZ/WI when ARE=1 */ + .base = GICD_CPENDSGIR, + .len = 0x10, + .handle_mmio = handle_mmio_raz_wi, + }, + { + /* this is RAZ/WI when ARE=1 */ + .base = GICD_SPENDSGIR, + .len = 0x10, + .handle_mmio = handle_mmio_raz_wi, + }, + { + .base = GICD_IROUTER + 0x100, + .len = 0x1ee0, + .bits_per_irq = 64, + .handle_mmio = handle_mmio_route_reg, + }, + { + .base = GICD_IDREGS, + .len = 0x30, + .bits_per_irq = 0, + .handle_mmio = handle_mmio_idregs, + }, + {}, +}; + +static bool handle_mmio_set_enable_reg_redist(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + struct kvm_vcpu *redist_vcpu = mmio->private; + + return vgic_handle_enable_reg(vcpu->kvm, mmio, offset, + redist_vcpu->vcpu_id, + ACCESS_WRITE_SETBIT); +} + +static bool handle_mmio_clear_enable_reg_redist(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + struct kvm_vcpu *redist_vcpu = mmio->private; + + return vgic_handle_enable_reg(vcpu->kvm, mmio, offset, + redist_vcpu->vcpu_id, + ACCESS_WRITE_CLEARBIT); +} + +static bool handle_mmio_set_pending_reg_redist(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + struct kvm_vcpu *redist_vcpu = mmio->private; + + return vgic_handle_set_pending_reg(vcpu->kvm, mmio, offset, + redist_vcpu->vcpu_id); +} + +static bool handle_mmio_clear_pending_reg_redist(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + struct kvm_vcpu *redist_vcpu = mmio->private; + + return vgic_handle_clear_pending_reg(vcpu->kvm, mmio, offset, + redist_vcpu->vcpu_id); +} + +static bool handle_mmio_priority_reg_redist(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + struct kvm_vcpu *redist_vcpu = mmio->private; + u32 *reg; + + reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority, + redist_vcpu->vcpu_id, offset); + vgic_reg_access(mmio, reg, offset, + ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); + return false; +} + +static bool handle_mmio_cfg_reg_redist(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + struct kvm_vcpu *redist_vcpu = mmio->private; + + u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg, + redist_vcpu->vcpu_id, offset >> 1); + + return vgic_handle_cfg_reg(reg, mmio, offset); +} + +static const struct kvm_mmio_range vgic_redist_sgi_ranges[] = { + { + .base = GICR_IGROUPR0, + .len = 0x04, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_rao_wi, + }, + { + .base = GICR_ISENABLER0, + .len = 0x04, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_set_enable_reg_redist, + }, + { + .base = GICR_ICENABLER0, + .len = 0x04, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_clear_enable_reg_redist, + }, + { + .base = GICR_ISPENDR0, + .len = 0x04, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_set_pending_reg_redist, + }, + { + .base = GICR_ICPENDR0, + .len = 0x04, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_clear_pending_reg_redist, + }, + { + .base = GICR_ISACTIVER0, + .len = 0x04, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_raz_wi, + }, + { + .base = GICR_ICACTIVER0, + .len = 0x04, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_raz_wi, + }, + { + .base = GICR_IPRIORITYR0, + .len = 0x20, + .bits_per_irq = 8, + .handle_mmio = handle_mmio_priority_reg_redist, + }, + { + .base = GICR_ICFGR0, + .len = 0x08, + .bits_per_irq = 2, + .handle_mmio = handle_mmio_cfg_reg_redist, + }, + { + .base = GICR_IGRPMODR0, + .len = 0x04, + .bits_per_irq = 1, + .handle_mmio = handle_mmio_raz_wi, + }, + { + .base = GICR_NSACR, + .len = 0x04, + .handle_mmio = handle_mmio_raz_wi, + }, + {}, +}; + +static bool handle_mmio_ctlr_redist(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + /* since we don't support LPIs, this register is zero for now */ + vgic_reg_access(mmio, NULL, offset, + ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); + return false; +} + +static bool handle_mmio_typer_redist(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + phys_addr_t offset) +{ + u32 reg; + u64 mpidr; + struct kvm_vcpu *redist_vcpu = mmio->private; + int target_vcpu_id = redist_vcpu->vcpu_id; + + /* the upper 32 bits contain the affinity value */ + if ((offset & ~3) == 4) { + mpidr = kvm_vcpu_get_mpidr_aff(redist_vcpu); + reg = compress_mpidr(mpidr); + + vgic_reg_access(mmio, ®, offset, + ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); + return false; + } + + reg = redist_vcpu->vcpu_id << 8; + if (target_vcpu_id == atomic_read(&vcpu->kvm->online_vcpus) - 1) + reg |= GICR_TYPER_LAST; + vgic_reg_access(mmio, ®, offset, + ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); + return false; +} + +static const struct kvm_mmio_range vgic_redist_ranges[] = { + { + .base = GICR_CTLR, + .len = 0x04, + .bits_per_irq = 0, + .handle_mmio = handle_mmio_ctlr_redist, + }, + { + .base = GICR_TYPER, + .len = 0x08, + .bits_per_irq = 0, + .handle_mmio = handle_mmio_typer_redist, + }, + { + .base = GICR_IIDR, + .len = 0x04, + .bits_per_irq = 0, + .handle_mmio = handle_mmio_iidr, + }, + { + .base = GICR_WAKER, + .len = 0x04, + .bits_per_irq = 0, + .handle_mmio = handle_mmio_raz_wi, + }, + { + .base = GICR_IDREGS, + .len = 0x30, + .bits_per_irq = 0, + .handle_mmio = handle_mmio_idregs, + }, + {}, +}; + +/* + * This function splits accesses between the distributor and the two + * redistributor parts (private/SPI). As each redistributor is accessible + * from any CPU, we have to determine the affected VCPU by taking the faulting + * address into account. We then pass this VCPU to the handler function via + * the private parameter. + */ +#define SGI_BASE_OFFSET SZ_64K +static bool vgic_v3_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run, + struct kvm_exit_mmio *mmio) +{ + struct vgic_dist *dist = &vcpu->kvm->arch.vgic; + unsigned long dbase = dist->vgic_dist_base; + unsigned long rdbase = dist->vgic_redist_base; + int nrcpus = atomic_read(&vcpu->kvm->online_vcpus); + int vcpu_id; + const struct kvm_mmio_range *mmio_range; + + if (is_in_range(mmio->phys_addr, mmio->len, dbase, GIC_V3_DIST_SIZE)) { + return vgic_handle_mmio_range(vcpu, run, mmio, + vgic_v3_dist_ranges, dbase); + } + + if (!is_in_range(mmio->phys_addr, mmio->len, rdbase, + GIC_V3_REDIST_SIZE * nrcpus)) + return false; + + vcpu_id = (mmio->phys_addr - rdbase) / GIC_V3_REDIST_SIZE; + rdbase += (vcpu_id * GIC_V3_REDIST_SIZE); + mmio->private = kvm_get_vcpu(vcpu->kvm, vcpu_id); + + if (mmio->phys_addr >= rdbase + SGI_BASE_OFFSET) { + rdbase += SGI_BASE_OFFSET; + mmio_range = vgic_redist_sgi_ranges; + } else { + mmio_range = vgic_redist_ranges; + } + return vgic_handle_mmio_range(vcpu, run, mmio, mmio_range, rdbase); +} + +static bool vgic_v3_queue_sgi(struct kvm_vcpu *vcpu, int irq) +{ + if (vgic_queue_irq(vcpu, 0, irq)) { + vgic_dist_irq_clear_pending(vcpu, irq); + vgic_cpu_irq_clear(vcpu, irq); + return true; + } + + return false; +} + +static int vgic_v3_map_resources(struct kvm *kvm, + const struct vgic_params *params) +{ + int ret = 0; + struct vgic_dist *dist = &kvm->arch.vgic; + + if (!irqchip_in_kernel(kvm)) + return 0; + + mutex_lock(&kvm->lock); + + if (vgic_ready(kvm)) + goto out; + + if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base) || + IS_VGIC_ADDR_UNDEF(dist->vgic_redist_base)) { + kvm_err("Need to set vgic distributor addresses first\n"); + ret = -ENXIO; + goto out; + } + + /* + * For a VGICv3 we require the userland to explicitly initialize + * the VGIC before we need to use it. + */ + if (!vgic_initialized(kvm)) { + ret = -EBUSY; + goto out; + } + + kvm->arch.vgic.ready = true; +out: + if (ret) + kvm_vgic_destroy(kvm); + mutex_unlock(&kvm->lock); + return ret; +} + +static int vgic_v3_init_model(struct kvm *kvm) +{ + int i; + u32 mpidr; + struct vgic_dist *dist = &kvm->arch.vgic; + int nr_spis = dist->nr_irqs - VGIC_NR_PRIVATE_IRQS; + + dist->irq_spi_mpidr = kcalloc(nr_spis, sizeof(dist->irq_spi_mpidr[0]), + GFP_KERNEL); + + if (!dist->irq_spi_mpidr) + return -ENOMEM; + + /* Initialize the target VCPUs for each IRQ to VCPU 0 */ + mpidr = compress_mpidr(kvm_vcpu_get_mpidr_aff(kvm_get_vcpu(kvm, 0))); + for (i = VGIC_NR_PRIVATE_IRQS; i < dist->nr_irqs; i++) { + dist->irq_spi_cpu[i - VGIC_NR_PRIVATE_IRQS] = 0; + dist->irq_spi_mpidr[i - VGIC_NR_PRIVATE_IRQS] = mpidr; + vgic_bitmap_set_irq_val(dist->irq_spi_target, 0, i, 1); + } + + return 0; +} + +/* GICv3 does not keep track of SGI sources anymore. */ +static void vgic_v3_add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source) +{ +} + +void vgic_v3_init_emulation(struct kvm *kvm) +{ + struct vgic_dist *dist = &kvm->arch.vgic; + + dist->vm_ops.handle_mmio = vgic_v3_handle_mmio; + dist->vm_ops.queue_sgi = vgic_v3_queue_sgi; + dist->vm_ops.add_sgi_source = vgic_v3_add_sgi_source; + dist->vm_ops.init_model = vgic_v3_init_model; + dist->vm_ops.map_resources = vgic_v3_map_resources; + + kvm->arch.max_vcpus = KVM_MAX_VCPUS; +} + +/* + * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI + * generation register ICC_SGI1R_EL1) with a given VCPU. + * If the VCPU's MPIDR matches, return the level0 affinity, otherwise + * return -1. + */ +static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu) +{ + unsigned long affinity; + int level0; + + /* + * Split the current VCPU's MPIDR into affinity level 0 and the + * rest as this is what we have to compare against. + */ + affinity = kvm_vcpu_get_mpidr_aff(vcpu); + level0 = MPIDR_AFFINITY_LEVEL(affinity, 0); + affinity &= ~MPIDR_LEVEL_MASK; + + /* bail out if the upper three levels don't match */ + if (sgi_aff != affinity) + return -1; + + /* Is this VCPU's bit set in the mask ? */ + if (!(sgi_cpu_mask & BIT(level0))) + return -1; + + return level0; +} + +#define SGI_AFFINITY_LEVEL(reg, level) \ + ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \ + >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level)) + +/** + * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs + * @vcpu: The VCPU requesting a SGI + * @reg: The value written into the ICC_SGI1R_EL1 register by that VCPU + * + * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register. + * This will trap in sys_regs.c and call this function. + * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the + * target processors as well as a bitmask of 16 Aff0 CPUs. + * If the interrupt routing mode bit is not set, we iterate over all VCPUs to + * check for matching ones. If this bit is set, we signal all, but not the + * calling VCPU. + */ +void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg) +{ + struct kvm *kvm = vcpu->kvm; + struct kvm_vcpu *c_vcpu; + struct vgic_dist *dist = &kvm->arch.vgic; + u16 target_cpus; + u64 mpidr; + int sgi, c; + int vcpu_id = vcpu->vcpu_id; + bool broadcast; + int updated = 0; + + sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT; + broadcast = reg & BIT(ICC_SGI1R_IRQ_ROUTING_MODE_BIT); + target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT; + mpidr = SGI_AFFINITY_LEVEL(reg, 3); + mpidr |= SGI_AFFINITY_LEVEL(reg, 2); + mpidr |= SGI_AFFINITY_LEVEL(reg, 1); + + /* + * We take the dist lock here, because we come from the sysregs + * code path and not from the MMIO one (which already takes the lock). + */ + spin_lock(&dist->lock); + + /* + * We iterate over all VCPUs to find the MPIDRs matching the request. + * If we have handled one CPU, we clear it's bit to detect early + * if we are already finished. This avoids iterating through all + * VCPUs when most of the times we just signal a single VCPU. + */ + kvm_for_each_vcpu(c, c_vcpu, kvm) { + + /* Exit early if we have dealt with all requested CPUs */ + if (!broadcast && target_cpus == 0) + break; + + /* Don't signal the calling VCPU */ + if (broadcast && c == vcpu_id) + continue; + + if (!broadcast) { + int level0; + + level0 = match_mpidr(mpidr, target_cpus, c_vcpu); + if (level0 == -1) + continue; + + /* remove this matching VCPU from the mask */ + target_cpus &= ~BIT(level0); + } + + /* Flag the SGI as pending */ + vgic_dist_irq_set_pending(c_vcpu, sgi); + updated = 1; + kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c); + } + if (updated) + vgic_update_state(vcpu->kvm); + spin_unlock(&dist->lock); + if (updated) + vgic_kick_vcpus(vcpu->kvm); +} + +static int vgic_v3_create(struct kvm_device *dev, u32 type) +{ + return kvm_vgic_create(dev->kvm, type); +} + +static void vgic_v3_destroy(struct kvm_device *dev) +{ + kfree(dev); +} + +static int vgic_v3_set_attr(struct kvm_device *dev, + struct kvm_device_attr *attr) +{ + int ret; + + ret = vgic_set_common_attr(dev, attr); + if (ret != -ENXIO) + return ret; + + switch (attr->group) { + case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: + case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: + return -ENXIO; + } + + return -ENXIO; +} + +static int vgic_v3_get_attr(struct kvm_device *dev, + struct kvm_device_attr *attr) +{ + int ret; + + ret = vgic_get_common_attr(dev, attr); + if (ret != -ENXIO) + return ret; + + switch (attr->group) { + case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: + case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: + return -ENXIO; + } + + return -ENXIO; +} + +static int vgic_v3_has_attr(struct kvm_device *dev, + struct kvm_device_attr *attr) +{ + switch (attr->group) { + case KVM_DEV_ARM_VGIC_GRP_ADDR: + switch (attr->attr) { + case KVM_VGIC_V2_ADDR_TYPE_DIST: + case KVM_VGIC_V2_ADDR_TYPE_CPU: + return -ENXIO; + case KVM_VGIC_V3_ADDR_TYPE_DIST: + case KVM_VGIC_V3_ADDR_TYPE_REDIST: + return 0; + } + break; + case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: + case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: + return -ENXIO; + case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: + return 0; + case KVM_DEV_ARM_VGIC_GRP_CTRL: + switch (attr->attr) { + case KVM_DEV_ARM_VGIC_CTRL_INIT: + return 0; + } + } + return -ENXIO; +} + +struct kvm_device_ops kvm_arm_vgic_v3_ops = { + .name = "kvm-arm-vgic-v3", + .create = vgic_v3_create, + .destroy = vgic_v3_destroy, + .set_attr = vgic_v3_set_attr, + .get_attr = vgic_v3_get_attr, + .has_attr = vgic_v3_has_attr, +}; diff --git a/virt/kvm/arm/vgic-v3.c b/virt/kvm/arm/vgic-v3.c index 1c2c8eef0599..3a62d8a9a2c6 100644 --- a/virt/kvm/arm/vgic-v3.c +++ b/virt/kvm/arm/vgic-v3.c @@ -34,6 +34,7 @@ #define GICH_LR_VIRTUALID (0x3ffUL << 0) #define GICH_LR_PHYSID_CPUID_SHIFT (10) #define GICH_LR_PHYSID_CPUID (7UL << GICH_LR_PHYSID_CPUID_SHIFT) +#define ICH_LR_VIRTUALID_MASK (BIT_ULL(32) - 1) /* * LRs are stored in reverse order in memory. make sure we index them @@ -48,12 +49,17 @@ static struct vgic_lr vgic_v3_get_lr(const struct kvm_vcpu *vcpu, int lr) struct vgic_lr lr_desc; u64 val = vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[LR_INDEX(lr)]; - lr_desc.irq = val & GICH_LR_VIRTUALID; - if (lr_desc.irq <= 15) - lr_desc.source = (val >> GICH_LR_PHYSID_CPUID_SHIFT) & 0x7; + if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) + lr_desc.irq = val & ICH_LR_VIRTUALID_MASK; else - lr_desc.source = 0; - lr_desc.state = 0; + lr_desc.irq = val & GICH_LR_VIRTUALID; + + lr_desc.source = 0; + if (lr_desc.irq <= 15 && + vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2) + lr_desc.source = (val >> GICH_LR_PHYSID_CPUID_SHIFT) & 0x7; + + lr_desc.state = 0; if (val & ICH_LR_PENDING_BIT) lr_desc.state |= LR_STATE_PENDING; @@ -68,8 +74,20 @@ static struct vgic_lr vgic_v3_get_lr(const struct kvm_vcpu *vcpu, int lr) static void vgic_v3_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc) { - u64 lr_val = (((u32)lr_desc.source << GICH_LR_PHYSID_CPUID_SHIFT) | - lr_desc.irq); + u64 lr_val; + + lr_val = lr_desc.irq; + + /* + * Currently all guest IRQs are Group1, as Group0 would result + * in a FIQ in the guest, which it wouldn't expect. + * Eventually we want to make this configurable, so we may revisit + * this in the future. + */ + if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) + lr_val |= ICH_LR_GROUP; + else + lr_val |= (u32)lr_desc.source << GICH_LR_PHYSID_CPUID_SHIFT; if (lr_desc.state & LR_STATE_PENDING) lr_val |= ICH_LR_PENDING_BIT; @@ -145,15 +163,27 @@ static void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) static void vgic_v3_enable(struct kvm_vcpu *vcpu) { + struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3; + /* * By forcing VMCR to zero, the GIC will restore the binary * points to their reset values. Anything else resets to zero * anyway. */ - vcpu->arch.vgic_cpu.vgic_v3.vgic_vmcr = 0; + vgic_v3->vgic_vmcr = 0; + + /* + * If we are emulating a GICv3, we do it in an non-GICv2-compatible + * way, so we force SRE to 1 to demonstrate this to the guest. + * This goes with the spec allowing the value to be RAO/WI. + */ + if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) + vgic_v3->vgic_sre = ICC_SRE_EL1_SRE; + else + vgic_v3->vgic_sre = 0; /* Get the show on the road... */ - vcpu->arch.vgic_cpu.vgic_v3.vgic_hcr = ICH_HCR_EN; + vgic_v3->vgic_hcr = ICH_HCR_EN; } static const struct vgic_ops vgic_v3_ops = { @@ -205,35 +235,37 @@ int vgic_v3_probe(struct device_node *vgic_node, * maximum of 16 list registers. Just ignore bit 4... */ vgic->nr_lr = (ich_vtr_el2 & 0xf) + 1; + vgic->can_emulate_gicv2 = false; if (of_property_read_u32(vgic_node, "#redistributor-regions", &gicv_idx)) gicv_idx = 1; gicv_idx += 3; /* Also skip GICD, GICC, GICH */ if (of_address_to_resource(vgic_node, gicv_idx, &vcpu_res)) { - kvm_err("Cannot obtain GICV region\n"); - ret = -ENXIO; - goto out; - } - - if (!PAGE_ALIGNED(vcpu_res.start)) { - kvm_err("GICV physical address 0x%llx not page aligned\n", + kvm_info("GICv3: no GICV resource entry\n"); + vgic->vcpu_base = 0; + } else if (!PAGE_ALIGNED(vcpu_res.start)) { + pr_warn("GICV physical address 0x%llx not page aligned\n", (unsigned long long)vcpu_res.start); - ret = -ENXIO; - goto out; - } - - if (!PAGE_ALIGNED(resource_size(&vcpu_res))) { - kvm_err("GICV size 0x%llx not a multiple of page size 0x%lx\n", + vgic->vcpu_base = 0; + } else if (!PAGE_ALIGNED(resource_size(&vcpu_res))) { + pr_warn("GICV size 0x%llx not a multiple of page size 0x%lx\n", (unsigned long long)resource_size(&vcpu_res), PAGE_SIZE); - ret = -ENXIO; - goto out; + vgic->vcpu_base = 0; + } else { + vgic->vcpu_base = vcpu_res.start; + vgic->can_emulate_gicv2 = true; + kvm_register_device_ops(&kvm_arm_vgic_v2_ops, + KVM_DEV_TYPE_ARM_VGIC_V2); } + if (vgic->vcpu_base == 0) + kvm_info("disabling GICv2 emulation\n"); + kvm_register_device_ops(&kvm_arm_vgic_v3_ops, KVM_DEV_TYPE_ARM_VGIC_V3); - vgic->vcpu_base = vcpu_res.start; vgic->vctrl_base = NULL; vgic->type = VGIC_V3; + vgic->max_gic_vcpus = KVM_MAX_VCPUS; kvm_info("%s@%llx IRQ%d\n", vgic_node->name, vcpu_res.start, vgic->maint_irq); diff --git a/virt/kvm/arm/vgic.c b/virt/kvm/arm/vgic.c index 03affc7bf453..0cc6ab6005a0 100644 --- a/virt/kvm/arm/vgic.c +++ b/virt/kvm/arm/vgic.c @@ -75,37 +75,31 @@ * inactive as long as the external input line is held high. */ -#define VGIC_ADDR_UNDEF (-1) -#define IS_VGIC_ADDR_UNDEF(_x) ((_x) == VGIC_ADDR_UNDEF) - -#define PRODUCT_ID_KVM 0x4b /* ASCII code K */ -#define IMPLEMENTER_ARM 0x43b -#define GICC_ARCH_VERSION_V2 0x2 - -#define ACCESS_READ_VALUE (1 << 0) -#define ACCESS_READ_RAZ (0 << 0) -#define ACCESS_READ_MASK(x) ((x) & (1 << 0)) -#define ACCESS_WRITE_IGNORED (0 << 1) -#define ACCESS_WRITE_SETBIT (1 << 1) -#define ACCESS_WRITE_CLEARBIT (2 << 1) -#define ACCESS_WRITE_VALUE (3 << 1) -#define ACCESS_WRITE_MASK(x) ((x) & (3 << 1)) - -static int vgic_init(struct kvm *kvm); +#include "vgic.h" + static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu); static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu); -static void vgic_update_state(struct kvm *kvm); -static void vgic_kick_vcpus(struct kvm *kvm); -static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi); -static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg); static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr); static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc); -static void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr); -static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr); static const struct vgic_ops *vgic_ops; static const struct vgic_params *vgic; +static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source) +{ + vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source); +} + +static bool queue_sgi(struct kvm_vcpu *vcpu, int irq) +{ + return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq); +} + +int kvm_vgic_map_resources(struct kvm *kvm) +{ + return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic); +} + /* * struct vgic_bitmap contains a bitmap made of unsigned longs, but * extracts u32s out of them. @@ -160,8 +154,7 @@ static unsigned long *u64_to_bitmask(u64 *val) return (unsigned long *)val; } -static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, - int cpuid, u32 offset) +u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset) { offset >>= 2; if (!offset) @@ -179,8 +172,8 @@ static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x, return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared); } -static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid, - int irq, int val) +void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid, + int irq, int val) { unsigned long *reg; @@ -202,7 +195,7 @@ static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid) return x->private + cpuid; } -static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x) +unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x) { return x->shared; } @@ -229,7 +222,7 @@ static void vgic_free_bytemap(struct vgic_bytemap *b) b->shared = NULL; } -static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset) +u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset) { u32 *reg; @@ -326,14 +319,14 @@ static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq) return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq); } -static void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq) +void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1); } -static void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq) +void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; @@ -349,7 +342,7 @@ static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq) vcpu->arch.vgic_cpu.pending_shared); } -static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq) +void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq) { if (irq < VGIC_NR_PRIVATE_IRQS) clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu); @@ -363,16 +356,6 @@ static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq) return vgic_irq_is_edge(vcpu, irq) || !vgic_irq_is_queued(vcpu, irq); } -static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask) -{ - return le32_to_cpu(*((u32 *)mmio->data)) & mask; -} - -static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value) -{ - *((u32 *)mmio->data) = cpu_to_le32(value) & mask; -} - /** * vgic_reg_access - access vgic register * @mmio: pointer to the data describing the mmio access @@ -384,8 +367,8 @@ static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value) * modes defined for vgic register access * (read,raz,write-ignored,setbit,clearbit,write) */ -static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg, - phys_addr_t offset, int mode) +void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg, + phys_addr_t offset, int mode) { int word_offset = (offset & 3) * 8; u32 mask = (1UL << (mmio->len * 8)) - 1; @@ -434,107 +417,58 @@ static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg, } } -static bool handle_mmio_misc(struct kvm_vcpu *vcpu, - struct kvm_exit_mmio *mmio, phys_addr_t offset) -{ - u32 reg; - u32 word_offset = offset & 3; - - switch (offset & ~3) { - case 0: /* GICD_CTLR */ - reg = vcpu->kvm->arch.vgic.enabled; - vgic_reg_access(mmio, ®, word_offset, - ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); - if (mmio->is_write) { - vcpu->kvm->arch.vgic.enabled = reg & 1; - vgic_update_state(vcpu->kvm); - return true; - } - break; - - case 4: /* GICD_TYPER */ - reg = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5; - reg |= (vcpu->kvm->arch.vgic.nr_irqs >> 5) - 1; - vgic_reg_access(mmio, ®, word_offset, - ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); - break; - - case 8: /* GICD_IIDR */ - reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0); - vgic_reg_access(mmio, ®, word_offset, - ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); - break; - } - - return false; -} - -static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, - struct kvm_exit_mmio *mmio, phys_addr_t offset) +bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, + phys_addr_t offset) { vgic_reg_access(mmio, NULL, offset, ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); return false; } -static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu, - struct kvm_exit_mmio *mmio, - phys_addr_t offset) +bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio, + phys_addr_t offset, int vcpu_id, int access) { - u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled, - vcpu->vcpu_id, offset); - vgic_reg_access(mmio, reg, offset, - ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT); - if (mmio->is_write) { - vgic_update_state(vcpu->kvm); - return true; - } - - return false; -} + u32 *reg; + int mode = ACCESS_READ_VALUE | access; + struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id); -static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu, - struct kvm_exit_mmio *mmio, - phys_addr_t offset) -{ - u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled, - vcpu->vcpu_id, offset); - vgic_reg_access(mmio, reg, offset, - ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT); + reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset); + vgic_reg_access(mmio, reg, offset, mode); if (mmio->is_write) { - if (offset < 4) /* Force SGI enabled */ - *reg |= 0xffff; - vgic_retire_disabled_irqs(vcpu); - vgic_update_state(vcpu->kvm); + if (access & ACCESS_WRITE_CLEARBIT) { + if (offset < 4) /* Force SGI enabled */ + *reg |= 0xffff; + vgic_retire_disabled_irqs(target_vcpu); + } + vgic_update_state(kvm); return true; } return false; } -static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu, - struct kvm_exit_mmio *mmio, - phys_addr_t offset) +bool vgic_handle_set_pending_reg(struct kvm *kvm, + struct kvm_exit_mmio *mmio, + phys_addr_t offset, int vcpu_id) { u32 *reg, orig; u32 level_mask; - struct vgic_dist *dist = &vcpu->kvm->arch.vgic; + int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT; + struct vgic_dist *dist = &kvm->arch.vgic; - reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu->vcpu_id, offset); + reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset); level_mask = (~(*reg)); /* Mark both level and edge triggered irqs as pending */ - reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset); + reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset); orig = *reg; - vgic_reg_access(mmio, reg, offset, - ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT); + vgic_reg_access(mmio, reg, offset, mode); if (mmio->is_write) { /* Set the soft-pending flag only for level-triggered irqs */ reg = vgic_bitmap_get_reg(&dist->irq_soft_pend, - vcpu->vcpu_id, offset); - vgic_reg_access(mmio, reg, offset, - ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT); + vcpu_id, offset); + vgic_reg_access(mmio, reg, offset, mode); *reg &= level_mask; /* Ignore writes to SGIs */ @@ -543,31 +477,30 @@ static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu, *reg |= orig & 0xffff; } - vgic_update_state(vcpu->kvm); + vgic_update_state(kvm); return true; } return false; } -static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu, - struct kvm_exit_mmio *mmio, - phys_addr_t offset) +bool vgic_handle_clear_pending_reg(struct kvm *kvm, + struct kvm_exit_mmio *mmio, + phys_addr_t offset, int vcpu_id) { u32 *level_active; u32 *reg, orig; - struct vgic_dist *dist = &vcpu->kvm->arch.vgic; + int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT; + struct vgic_dist *dist = &kvm->arch.vgic; - reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset); + reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset); orig = *reg; - vgic_reg_access(mmio, reg, offset, - ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT); + vgic_reg_access(mmio, reg, offset, mode); if (mmio->is_write) { /* Re-set level triggered level-active interrupts */ level_active = vgic_bitmap_get_reg(&dist->irq_level, - vcpu->vcpu_id, offset); - reg = vgic_bitmap_get_reg(&dist->irq_pending, - vcpu->vcpu_id, offset); + vcpu_id, offset); + reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset); *reg |= *level_active; /* Ignore writes to SGIs */ @@ -578,101 +511,12 @@ static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu, /* Clear soft-pending flags */ reg = vgic_bitmap_get_reg(&dist->irq_soft_pend, - vcpu->vcpu_id, offset); - vgic_reg_access(mmio, reg, offset, - ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT); + vcpu_id, offset); + vgic_reg_access(mmio, reg, offset, mode); - vgic_update_state(vcpu->kvm); + vgic_update_state(kvm); return true; } - - return false; -} - -static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu, - struct kvm_exit_mmio *mmio, - phys_addr_t offset) -{ - u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority, - vcpu->vcpu_id, offset); - vgic_reg_access(mmio, reg, offset, - ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); - return false; -} - -#define GICD_ITARGETSR_SIZE 32 -#define GICD_CPUTARGETS_BITS 8 -#define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS) -static u32 vgic_get_target_reg(struct kvm *kvm, int irq) -{ - struct vgic_dist *dist = &kvm->arch.vgic; - int i; - u32 val = 0; - - irq -= VGIC_NR_PRIVATE_IRQS; - - for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) - val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8); - - return val; -} - -static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq) -{ - struct vgic_dist *dist = &kvm->arch.vgic; - struct kvm_vcpu *vcpu; - int i, c; - unsigned long *bmap; - u32 target; - - irq -= VGIC_NR_PRIVATE_IRQS; - - /* - * Pick the LSB in each byte. This ensures we target exactly - * one vcpu per IRQ. If the byte is null, assume we target - * CPU0. - */ - for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) { - int shift = i * GICD_CPUTARGETS_BITS; - target = ffs((val >> shift) & 0xffU); - target = target ? (target - 1) : 0; - dist->irq_spi_cpu[irq + i] = target; - kvm_for_each_vcpu(c, vcpu, kvm) { - bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]); - if (c == target) - set_bit(irq + i, bmap); - else - clear_bit(irq + i, bmap); - } - } -} - -static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu, - struct kvm_exit_mmio *mmio, - phys_addr_t offset) -{ - u32 reg; - - /* We treat the banked interrupts targets as read-only */ - if (offset < 32) { - u32 roreg = 1 << vcpu->vcpu_id; - roreg |= roreg << 8; - roreg |= roreg << 16; - - vgic_reg_access(mmio, &roreg, offset, - ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); - return false; - } - - reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U); - vgic_reg_access(mmio, ®, offset, - ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); - if (mmio->is_write) { - vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U); - vgic_update_state(vcpu->kvm); - return true; - } - return false; } @@ -711,14 +555,10 @@ static u16 vgic_cfg_compress(u32 val) * LSB is always 0. As such, we only keep the upper bit, and use the * two above functions to compress/expand the bits */ -static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu, - struct kvm_exit_mmio *mmio, phys_addr_t offset) +bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio, + phys_addr_t offset) { u32 val; - u32 *reg; - - reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg, - vcpu->vcpu_id, offset >> 1); if (offset & 4) val = *reg >> 16; @@ -747,21 +587,6 @@ static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu, return false; } -static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu, - struct kvm_exit_mmio *mmio, phys_addr_t offset) -{ - u32 reg; - vgic_reg_access(mmio, ®, offset, - ACCESS_READ_RAZ | ACCESS_WRITE_VALUE); - if (mmio->is_write) { - vgic_dispatch_sgi(vcpu, reg); - vgic_update_state(vcpu->kvm); - return true; - } - - return false; -} - /** * vgic_unqueue_irqs - move pending IRQs from LRs to the distributor * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs @@ -774,11 +599,9 @@ static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu, * to the distributor but the active state stays in the LRs, because we don't * track the active state on the distributor side. */ -static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu) +void vgic_unqueue_irqs(struct kvm_vcpu *vcpu) { - struct vgic_dist *dist = &vcpu->kvm->arch.vgic; struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; - int vcpu_id = vcpu->vcpu_id; int i; for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) { @@ -805,7 +628,7 @@ static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu) */ vgic_dist_irq_set_pending(vcpu, lr.irq); if (lr.irq < VGIC_NR_SGIS) - *vgic_get_sgi_sources(dist, vcpu_id, lr.irq) |= 1 << lr.source; + add_sgi_source(vcpu, lr.irq, lr.source); lr.state &= ~LR_STATE_PENDING; vgic_set_lr(vcpu, i, lr); @@ -824,188 +647,12 @@ static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu) } } -/* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */ -static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu, - struct kvm_exit_mmio *mmio, - phys_addr_t offset) -{ - struct vgic_dist *dist = &vcpu->kvm->arch.vgic; - int sgi; - int min_sgi = (offset & ~0x3); - int max_sgi = min_sgi + 3; - int vcpu_id = vcpu->vcpu_id; - u32 reg = 0; - - /* Copy source SGIs from distributor side */ - for (sgi = min_sgi; sgi <= max_sgi; sgi++) { - int shift = 8 * (sgi - min_sgi); - reg |= ((u32)*vgic_get_sgi_sources(dist, vcpu_id, sgi)) << shift; - } - - mmio_data_write(mmio, ~0, reg); - return false; -} - -static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu, - struct kvm_exit_mmio *mmio, - phys_addr_t offset, bool set) -{ - struct vgic_dist *dist = &vcpu->kvm->arch.vgic; - int sgi; - int min_sgi = (offset & ~0x3); - int max_sgi = min_sgi + 3; - int vcpu_id = vcpu->vcpu_id; - u32 reg; - bool updated = false; - - reg = mmio_data_read(mmio, ~0); - - /* Clear pending SGIs on the distributor */ - for (sgi = min_sgi; sgi <= max_sgi; sgi++) { - u8 mask = reg >> (8 * (sgi - min_sgi)); - u8 *src = vgic_get_sgi_sources(dist, vcpu_id, sgi); - if (set) { - if ((*src & mask) != mask) - updated = true; - *src |= mask; - } else { - if (*src & mask) - updated = true; - *src &= ~mask; - } - } - - if (updated) - vgic_update_state(vcpu->kvm); - - return updated; -} - -static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu, - struct kvm_exit_mmio *mmio, - phys_addr_t offset) -{ - if (!mmio->is_write) - return read_set_clear_sgi_pend_reg(vcpu, mmio, offset); - else - return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, true); -} - -static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu, - struct kvm_exit_mmio *mmio, - phys_addr_t offset) -{ - if (!mmio->is_write) - return read_set_clear_sgi_pend_reg(vcpu, mmio, offset); - else - return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, false); -} - -/* - * I would have liked to use the kvm_bus_io_*() API instead, but it - * cannot cope with banked registers (only the VM pointer is passed - * around, and we need the vcpu). One of these days, someone please - * fix it! - */ -struct mmio_range { - phys_addr_t base; - unsigned long len; - int bits_per_irq; - bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, - phys_addr_t offset); -}; - -static const struct mmio_range vgic_dist_ranges[] = { - { - .base = GIC_DIST_CTRL, - .len = 12, - .bits_per_irq = 0, - .handle_mmio = handle_mmio_misc, - }, - { - .base = GIC_DIST_IGROUP, - .len = VGIC_MAX_IRQS / 8, - .bits_per_irq = 1, - .handle_mmio = handle_mmio_raz_wi, - }, - { - .base = GIC_DIST_ENABLE_SET, - .len = VGIC_MAX_IRQS / 8, - .bits_per_irq = 1, - .handle_mmio = handle_mmio_set_enable_reg, - }, - { - .base = GIC_DIST_ENABLE_CLEAR, - .len = VGIC_MAX_IRQS / 8, - .bits_per_irq = 1, - .handle_mmio = handle_mmio_clear_enable_reg, - }, - { - .base = GIC_DIST_PENDING_SET, - .len = VGIC_MAX_IRQS / 8, - .bits_per_irq = 1, - .handle_mmio = handle_mmio_set_pending_reg, - }, - { - .base = GIC_DIST_PENDING_CLEAR, - .len = VGIC_MAX_IRQS / 8, - .bits_per_irq = 1, - .handle_mmio = handle_mmio_clear_pending_reg, - }, - { - .base = GIC_DIST_ACTIVE_SET, - .len = VGIC_MAX_IRQS / 8, - .bits_per_irq = 1, - .handle_mmio = handle_mmio_raz_wi, - }, - { - .base = GIC_DIST_ACTIVE_CLEAR, - .len = VGIC_MAX_IRQS / 8, - .bits_per_irq = 1, - .handle_mmio = handle_mmio_raz_wi, - }, - { - .base = GIC_DIST_PRI, - .len = VGIC_MAX_IRQS, - .bits_per_irq = 8, - .handle_mmio = handle_mmio_priority_reg, - }, - { - .base = GIC_DIST_TARGET, - .len = VGIC_MAX_IRQS, - .bits_per_irq = 8, - .handle_mmio = handle_mmio_target_reg, - }, - { - .base = GIC_DIST_CONFIG, - .len = VGIC_MAX_IRQS / 4, - .bits_per_irq = 2, - .handle_mmio = handle_mmio_cfg_reg, - }, - { - .base = GIC_DIST_SOFTINT, - .len = 4, - .handle_mmio = handle_mmio_sgi_reg, - }, - { - .base = GIC_DIST_SGI_PENDING_CLEAR, - .len = VGIC_NR_SGIS, - .handle_mmio = handle_mmio_sgi_clear, - }, - { - .base = GIC_DIST_SGI_PENDING_SET, - .len = VGIC_NR_SGIS, - .handle_mmio = handle_mmio_sgi_set, - }, - {} -}; - -static const -struct mmio_range *find_matching_range(const struct mmio_range *ranges, +const +struct kvm_mmio_range *vgic_find_range(const struct kvm_mmio_range *ranges, struct kvm_exit_mmio *mmio, phys_addr_t offset) { - const struct mmio_range *r = ranges; + const struct kvm_mmio_range *r = ranges; while (r->len) { if (offset >= r->base && @@ -1018,7 +665,7 @@ struct mmio_range *find_matching_range(const struct mmio_range *ranges, } static bool vgic_validate_access(const struct vgic_dist *dist, - const struct mmio_range *range, + const struct kvm_mmio_range *range, unsigned long offset) { int irq; @@ -1033,37 +680,76 @@ static bool vgic_validate_access(const struct vgic_dist *dist, return true; } +/* + * Call the respective handler function for the given range. + * We split up any 64 bit accesses into two consecutive 32 bit + * handler calls and merge the result afterwards. + * We do this in a little endian fashion regardless of the host's + * or guest's endianness, because the GIC is always LE and the rest of + * the code (vgic_reg_access) also puts it in a LE fashion already. + * At this point we have already identified the handle function, so + * range points to that one entry and offset is relative to this. + */ +static bool call_range_handler(struct kvm_vcpu *vcpu, + struct kvm_exit_mmio *mmio, + unsigned long offset, + const struct kvm_mmio_range *range) +{ + u32 *data32 = (void *)mmio->data; + struct kvm_exit_mmio mmio32; + bool ret; + + if (likely(mmio->len <= 4)) + return range->handle_mmio(vcpu, mmio, offset); + + /* + * Any access bigger than 4 bytes (that we currently handle in KVM) + * is actually 8 bytes long, caused by a 64-bit access + */ + + mmio32.len = 4; + mmio32.is_write = mmio->is_write; + mmio32.private = mmio->private; + + mmio32.phys_addr = mmio->phys_addr + 4; + if (mmio->is_write) + *(u32 *)mmio32.data = data32[1]; + ret = range->handle_mmio(vcpu, &mmio32, offset + 4); + if (!mmio->is_write) + data32[1] = *(u32 *)mmio32.data; + + mmio32.phys_addr = mmio->phys_addr; + if (mmio->is_write) + *(u32 *)mmio32.data = data32[0]; + ret |= range->handle_mmio(vcpu, &mmio32, offset); + if (!mmio->is_write) + data32[0] = *(u32 *)mmio32.data; + + return ret; +} + /** - * vgic_handle_mmio - handle an in-kernel MMIO access + * vgic_handle_mmio_range - handle an in-kernel MMIO access * @vcpu: pointer to the vcpu performing the access * @run: pointer to the kvm_run structure * @mmio: pointer to the data describing the access + * @ranges: array of MMIO ranges in a given region + * @mmio_base: base address of that region * - * returns true if the MMIO access has been performed in kernel space, - * and false if it needs to be emulated in user space. + * returns true if the MMIO access could be performed */ -bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run, - struct kvm_exit_mmio *mmio) +bool vgic_handle_mmio_range(struct kvm_vcpu *vcpu, struct kvm_run *run, + struct kvm_exit_mmio *mmio, + const struct kvm_mmio_range *ranges, + unsigned long mmio_base) { - const struct mmio_range *range; + const struct kvm_mmio_range *range; struct vgic_dist *dist = &vcpu->kvm->arch.vgic; - unsigned long base = dist->vgic_dist_base; bool updated_state; unsigned long offset; - if (!irqchip_in_kernel(vcpu->kvm) || - mmio->phys_addr < base || - (mmio->phys_addr + mmio->len) > (base + KVM_VGIC_V2_DIST_SIZE)) - return false; - - /* We don't support ldrd / strd or ldm / stm to the emulated vgic */ - if (mmio->len > 4) { - kvm_inject_dabt(vcpu, mmio->phys_addr); - return true; - } - - offset = mmio->phys_addr - base; - range = find_matching_range(vgic_dist_ranges, mmio, offset); + offset = mmio->phys_addr - mmio_base; + range = vgic_find_range(ranges, mmio, offset); if (unlikely(!range || !range->handle_mmio)) { pr_warn("Unhandled access %d %08llx %d\n", mmio->is_write, mmio->phys_addr, mmio->len); @@ -1071,12 +757,12 @@ bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run, } spin_lock(&vcpu->kvm->arch.vgic.lock); - offset = mmio->phys_addr - range->base - base; + offset -= range->base; if (vgic_validate_access(dist, range, offset)) { - updated_state = range->handle_mmio(vcpu, mmio, offset); + updated_state = call_range_handler(vcpu, mmio, offset, range); } else { - vgic_reg_access(mmio, NULL, offset, - ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); + if (!mmio->is_write) + memset(mmio->data, 0, mmio->len); updated_state = false; } spin_unlock(&vcpu->kvm->arch.vgic.lock); @@ -1089,50 +775,28 @@ bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run, return true; } -static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi) -{ - return dist->irq_sgi_sources + vcpu_id * VGIC_NR_SGIS + sgi; -} - -static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg) +/** + * vgic_handle_mmio - handle an in-kernel MMIO access for the GIC emulation + * @vcpu: pointer to the vcpu performing the access + * @run: pointer to the kvm_run structure + * @mmio: pointer to the data describing the access + * + * returns true if the MMIO access has been performed in kernel space, + * and false if it needs to be emulated in user space. + * Calls the actual handling routine for the selected VGIC model. + */ +bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run, + struct kvm_exit_mmio *mmio) { - struct kvm *kvm = vcpu->kvm; - struct vgic_dist *dist = &kvm->arch.vgic; - int nrcpus = atomic_read(&kvm->online_vcpus); - u8 target_cpus; - int sgi, mode, c, vcpu_id; - - vcpu_id = vcpu->vcpu_id; - - sgi = reg & 0xf; - target_cpus = (reg >> 16) & 0xff; - mode = (reg >> 24) & 3; - - switch (mode) { - case 0: - if (!target_cpus) - return; - break; - - case 1: - target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff; - break; - - case 2: - target_cpus = 1 << vcpu_id; - break; - } - - kvm_for_each_vcpu(c, vcpu, kvm) { - if (target_cpus & 1) { - /* Flag the SGI as pending */ - vgic_dist_irq_set_pending(vcpu, sgi); - *vgic_get_sgi_sources(dist, c, sgi) |= 1 << vcpu_id; - kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c); - } + if (!irqchip_in_kernel(vcpu->kvm)) + return false; - target_cpus >>= 1; - } + /* + * This will currently call either vgic_v2_handle_mmio() or + * vgic_v3_handle_mmio(), which in turn will call + * vgic_handle_mmio_range() defined above. + */ + return vcpu->kvm->arch.vgic.vm_ops.handle_mmio(vcpu, run, mmio); } static int vgic_nr_shared_irqs(struct vgic_dist *dist) @@ -1173,7 +837,7 @@ static int compute_pending_for_cpu(struct kvm_vcpu *vcpu) * Update the interrupt state and determine which CPUs have pending * interrupts. Must be called with distributor lock held. */ -static void vgic_update_state(struct kvm *kvm) +void vgic_update_state(struct kvm *kvm) { struct vgic_dist *dist = &kvm->arch.vgic; struct kvm_vcpu *vcpu; @@ -1234,12 +898,12 @@ static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu) vgic_ops->disable_underflow(vcpu); } -static inline void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr) +void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr) { vgic_ops->get_vmcr(vcpu, vmcr); } -static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr) +void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr) { vgic_ops->set_vmcr(vcpu, vmcr); } @@ -1288,8 +952,9 @@ static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu) /* * Queue an interrupt to a CPU virtual interface. Return true on success, * or false if it wasn't possible to queue it. + * sgi_source must be zero for any non-SGI interrupts. */ -static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq) +bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq) { struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; struct vgic_dist *dist = &vcpu->kvm->arch.vgic; @@ -1338,37 +1003,6 @@ static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq) return true; } -static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq) -{ - struct vgic_dist *dist = &vcpu->kvm->arch.vgic; - unsigned long sources; - int vcpu_id = vcpu->vcpu_id; - int c; - - sources = *vgic_get_sgi_sources(dist, vcpu_id, irq); - - for_each_set_bit(c, &sources, dist->nr_cpus) { - if (vgic_queue_irq(vcpu, c, irq)) - clear_bit(c, &sources); - } - - *vgic_get_sgi_sources(dist, vcpu_id, irq) = sources; - - /* - * If the sources bitmap has been cleared it means that we - * could queue all the SGIs onto link registers (see the - * clear_bit above), and therefore we are done with them in - * our emulated gic and can get rid of them. - */ - if (!sources) { - vgic_dist_irq_clear_pending(vcpu, irq); - vgic_cpu_irq_clear(vcpu, irq); - return true; - } - - return false; -} - static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq) { if (!vgic_can_sample_irq(vcpu, irq)) @@ -1413,7 +1047,7 @@ static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu) /* SGIs */ for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) { - if (!vgic_queue_sgi(vcpu, i)) + if (!queue_sgi(vcpu, i)) overflow = 1; } @@ -1575,7 +1209,7 @@ int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu) return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu); } -static void vgic_kick_vcpus(struct kvm *kvm) +void vgic_kick_vcpus(struct kvm *kvm) { struct kvm_vcpu *vcpu; int c; @@ -1615,7 +1249,7 @@ static int vgic_update_irq_pending(struct kvm *kvm, int cpuid, struct kvm_vcpu *vcpu; int edge_triggered, level_triggered; int enabled; - bool ret = true; + bool ret = true, can_inject = true; spin_lock(&dist->lock); @@ -1630,6 +1264,11 @@ static int vgic_update_irq_pending(struct kvm *kvm, int cpuid, if (irq_num >= VGIC_NR_PRIVATE_IRQS) { cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS]; + if (cpuid == VCPU_NOT_ALLOCATED) { + /* Pretend we use CPU0, and prevent injection */ + cpuid = 0; + can_inject = false; + } vcpu = kvm_get_vcpu(kvm, cpuid); } @@ -1652,7 +1291,7 @@ static int vgic_update_irq_pending(struct kvm *kvm, int cpuid, enabled = vgic_irq_is_enabled(vcpu, irq_num); - if (!enabled) { + if (!enabled || !can_inject) { ret = false; goto out; } @@ -1698,6 +1337,16 @@ int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num, int vcpu_id; if (unlikely(!vgic_initialized(kvm))) { + /* + * We only provide the automatic initialization of the VGIC + * for the legacy case of a GICv2. Any other type must + * be explicitly initialized once setup with the respective + * KVM device call. + */ + if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2) { + ret = -EBUSY; + goto out; + } mutex_lock(&kvm->lock); ret = vgic_init(kvm); mutex_unlock(&kvm->lock); @@ -1762,6 +1411,17 @@ static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs) return 0; } +/** + * kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW + * + * The host's GIC naturally limits the maximum amount of VCPUs a guest + * can use. + */ +int kvm_vgic_get_max_vcpus(void) +{ + return vgic->max_gic_vcpus; +} + void kvm_vgic_destroy(struct kvm *kvm) { struct vgic_dist *dist = &kvm->arch.vgic; @@ -1784,6 +1444,7 @@ void kvm_vgic_destroy(struct kvm *kvm) } kfree(dist->irq_sgi_sources); kfree(dist->irq_spi_cpu); + kfree(dist->irq_spi_mpidr); kfree(dist->irq_spi_target); kfree(dist->irq_pending_on_cpu); dist->irq_sgi_sources = NULL; @@ -1797,7 +1458,7 @@ void kvm_vgic_destroy(struct kvm *kvm) * Allocate and initialize the various data structures. Must be called * with kvm->lock held! */ -static int vgic_init(struct kvm *kvm) +int vgic_init(struct kvm *kvm) { struct vgic_dist *dist = &kvm->arch.vgic; struct kvm_vcpu *vcpu; @@ -1809,7 +1470,7 @@ static int vgic_init(struct kvm *kvm) nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus); if (!nr_cpus) /* No vcpus? Can't be good... */ - return -EINVAL; + return -ENODEV; /* * If nobody configured the number of interrupts, use the @@ -1852,8 +1513,9 @@ static int vgic_init(struct kvm *kvm) if (ret) goto out; - for (i = VGIC_NR_PRIVATE_IRQS; i < dist->nr_irqs; i += 4) - vgic_set_target_reg(kvm, 0, i); + ret = kvm->arch.vgic.vm_ops.init_model(kvm); + if (ret) + goto out; kvm_for_each_vcpu(vcpu_id, vcpu, kvm) { ret = vgic_vcpu_init_maps(vcpu, nr_irqs); @@ -1882,72 +1544,49 @@ out: return ret; } -/** - * kvm_vgic_map_resources - Configure global VGIC state before running any VCPUs - * @kvm: pointer to the kvm struct - * - * Map the virtual CPU interface into the VM before running any VCPUs. We - * can't do this at creation time, because user space must first set the - * virtual CPU interface address in the guest physical address space. - */ -int kvm_vgic_map_resources(struct kvm *kvm) +static int init_vgic_model(struct kvm *kvm, int type) { - int ret = 0; - - if (!irqchip_in_kernel(kvm)) - return 0; - - mutex_lock(&kvm->lock); - - if (vgic_ready(kvm)) - goto out; - - if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) || - IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) { - kvm_err("Need to set vgic cpu and dist addresses first\n"); - ret = -ENXIO; - goto out; - } - - /* - * Initialize the vgic if this hasn't already been done on demand by - * accessing the vgic state from userspace. - */ - ret = vgic_init(kvm); - if (ret) { - kvm_err("Unable to allocate maps\n"); - goto out; + switch (type) { + case KVM_DEV_TYPE_ARM_VGIC_V2: + vgic_v2_init_emulation(kvm); + break; +#ifdef CONFIG_ARM_GIC_V3 + case KVM_DEV_TYPE_ARM_VGIC_V3: + vgic_v3_init_emulation(kvm); + break; +#endif + default: + return -ENODEV; } - ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base, - vgic->vcpu_base, KVM_VGIC_V2_CPU_SIZE, - true); - if (ret) { - kvm_err("Unable to remap VGIC CPU to VCPU\n"); - goto out; - } + if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus) + return -E2BIG; - kvm->arch.vgic.ready = true; -out: - if (ret) - kvm_vgic_destroy(kvm); - mutex_unlock(&kvm->lock); - return ret; + return 0; } -int kvm_vgic_create(struct kvm *kvm) +int kvm_vgic_create(struct kvm *kvm, u32 type) { int i, vcpu_lock_idx = -1, ret; struct kvm_vcpu *vcpu; mutex_lock(&kvm->lock); - if (kvm->arch.vgic.vctrl_base) { + if (irqchip_in_kernel(kvm)) { ret = -EEXIST; goto out; } /* + * This function is also called by the KVM_CREATE_IRQCHIP handler, + * which had no chance yet to check the availability of the GICv2 + * emulation. So check this here again. KVM_CREATE_DEVICE does + * the proper checks already. + */ + if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && !vgic->can_emulate_gicv2) + return -ENODEV; + + /* * Any time a vcpu is run, vcpu_load is called which tries to grab the * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure * that no other VCPUs are run while we create the vgic. @@ -1965,11 +1604,17 @@ int kvm_vgic_create(struct kvm *kvm) } ret = 0; + ret = init_vgic_model(kvm, type); + if (ret) + goto out_unlock; + spin_lock_init(&kvm->arch.vgic.lock); kvm->arch.vgic.in_kernel = true; + kvm->arch.vgic.vgic_model = type; kvm->arch.vgic.vctrl_base = vgic->vctrl_base; kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF; kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF; + kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF; out_unlock: for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) { @@ -2022,7 +1667,7 @@ static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr, /** * kvm_vgic_addr - set or get vgic VM base addresses * @kvm: pointer to the vm struct - * @type: the VGIC addr type, one of KVM_VGIC_V2_ADDR_TYPE_XXX + * @type: the VGIC addr type, one of KVM_VGIC_V[23]_ADDR_TYPE_XXX * @addr: pointer to address value * @write: if true set the address in the VM address space, if false read the * address @@ -2036,216 +1681,64 @@ int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write) { int r = 0; struct vgic_dist *vgic = &kvm->arch.vgic; + int type_needed; + phys_addr_t *addr_ptr, block_size; + phys_addr_t alignment; mutex_lock(&kvm->lock); switch (type) { case KVM_VGIC_V2_ADDR_TYPE_DIST: - if (write) { - r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base, - *addr, KVM_VGIC_V2_DIST_SIZE); - } else { - *addr = vgic->vgic_dist_base; - } + type_needed = KVM_DEV_TYPE_ARM_VGIC_V2; + addr_ptr = &vgic->vgic_dist_base; + block_size = KVM_VGIC_V2_DIST_SIZE; + alignment = SZ_4K; break; case KVM_VGIC_V2_ADDR_TYPE_CPU: - if (write) { - r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base, - *addr, KVM_VGIC_V2_CPU_SIZE); - } else { - *addr = vgic->vgic_cpu_base; - } + type_needed = KVM_DEV_TYPE_ARM_VGIC_V2; + addr_ptr = &vgic->vgic_cpu_base; + block_size = KVM_VGIC_V2_CPU_SIZE; + alignment = SZ_4K; break; - default: - r = -ENODEV; - } - - mutex_unlock(&kvm->lock); - return r; -} - -static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu, - struct kvm_exit_mmio *mmio, phys_addr_t offset) -{ - bool updated = false; - struct vgic_vmcr vmcr; - u32 *vmcr_field; - u32 reg; - - vgic_get_vmcr(vcpu, &vmcr); - - switch (offset & ~0x3) { - case GIC_CPU_CTRL: - vmcr_field = &vmcr.ctlr; - break; - case GIC_CPU_PRIMASK: - vmcr_field = &vmcr.pmr; +#ifdef CONFIG_ARM_GIC_V3 + case KVM_VGIC_V3_ADDR_TYPE_DIST: + type_needed = KVM_DEV_TYPE_ARM_VGIC_V3; + addr_ptr = &vgic->vgic_dist_base; + block_size = KVM_VGIC_V3_DIST_SIZE; + alignment = SZ_64K; break; - case GIC_CPU_BINPOINT: - vmcr_field = &vmcr.bpr; - break; - case GIC_CPU_ALIAS_BINPOINT: - vmcr_field = &vmcr.abpr; + case KVM_VGIC_V3_ADDR_TYPE_REDIST: + type_needed = KVM_DEV_TYPE_ARM_VGIC_V3; + addr_ptr = &vgic->vgic_redist_base; + block_size = KVM_VGIC_V3_REDIST_SIZE; + alignment = SZ_64K; break; +#endif default: - BUG(); - } - - if (!mmio->is_write) { - reg = *vmcr_field; - mmio_data_write(mmio, ~0, reg); - } else { - reg = mmio_data_read(mmio, ~0); - if (reg != *vmcr_field) { - *vmcr_field = reg; - vgic_set_vmcr(vcpu, &vmcr); - updated = true; - } - } - return updated; -} - -static bool handle_mmio_abpr(struct kvm_vcpu *vcpu, - struct kvm_exit_mmio *mmio, phys_addr_t offset) -{ - return handle_cpu_mmio_misc(vcpu, mmio, GIC_CPU_ALIAS_BINPOINT); -} - -static bool handle_cpu_mmio_ident(struct kvm_vcpu *vcpu, - struct kvm_exit_mmio *mmio, - phys_addr_t offset) -{ - u32 reg; - - if (mmio->is_write) - return false; - - /* GICC_IIDR */ - reg = (PRODUCT_ID_KVM << 20) | - (GICC_ARCH_VERSION_V2 << 16) | - (IMPLEMENTER_ARM << 0); - mmio_data_write(mmio, ~0, reg); - return false; -} - -/* - * CPU Interface Register accesses - these are not accessed by the VM, but by - * user space for saving and restoring VGIC state. - */ -static const struct mmio_range vgic_cpu_ranges[] = { - { - .base = GIC_CPU_CTRL, - .len = 12, - .handle_mmio = handle_cpu_mmio_misc, - }, - { - .base = GIC_CPU_ALIAS_BINPOINT, - .len = 4, - .handle_mmio = handle_mmio_abpr, - }, - { - .base = GIC_CPU_ACTIVEPRIO, - .len = 16, - .handle_mmio = handle_mmio_raz_wi, - }, - { - .base = GIC_CPU_IDENT, - .len = 4, - .handle_mmio = handle_cpu_mmio_ident, - }, -}; - -static int vgic_attr_regs_access(struct kvm_device *dev, - struct kvm_device_attr *attr, - u32 *reg, bool is_write) -{ - const struct mmio_range *r = NULL, *ranges; - phys_addr_t offset; - int ret, cpuid, c; - struct kvm_vcpu *vcpu, *tmp_vcpu; - struct vgic_dist *vgic; - struct kvm_exit_mmio mmio; - - offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK; - cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >> - KVM_DEV_ARM_VGIC_CPUID_SHIFT; - - mutex_lock(&dev->kvm->lock); - - ret = vgic_init(dev->kvm); - if (ret) - goto out; - - if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) { - ret = -EINVAL; + r = -ENODEV; goto out; } - vcpu = kvm_get_vcpu(dev->kvm, cpuid); - vgic = &dev->kvm->arch.vgic; - - mmio.len = 4; - mmio.is_write = is_write; - if (is_write) - mmio_data_write(&mmio, ~0, *reg); - switch (attr->group) { - case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: - mmio.phys_addr = vgic->vgic_dist_base + offset; - ranges = vgic_dist_ranges; - break; - case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: - mmio.phys_addr = vgic->vgic_cpu_base + offset; - ranges = vgic_cpu_ranges; - break; - default: - BUG(); - } - r = find_matching_range(ranges, &mmio, offset); - - if (unlikely(!r || !r->handle_mmio)) { - ret = -ENXIO; + if (vgic->vgic_model != type_needed) { + r = -ENODEV; goto out; } - - spin_lock(&vgic->lock); - - /* - * Ensure that no other VCPU is running by checking the vcpu->cpu - * field. If no other VPCUs are running we can safely access the VGIC - * state, because even if another VPU is run after this point, that - * VCPU will not touch the vgic state, because it will block on - * getting the vgic->lock in kvm_vgic_sync_hwstate(). - */ - kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) { - if (unlikely(tmp_vcpu->cpu != -1)) { - ret = -EBUSY; - goto out_vgic_unlock; - } + if (write) { + if (!IS_ALIGNED(*addr, alignment)) + r = -EINVAL; + else + r = vgic_ioaddr_assign(kvm, addr_ptr, *addr, + block_size); + } else { + *addr = *addr_ptr; } - /* - * Move all pending IRQs from the LRs on all VCPUs so the pending - * state can be properly represented in the register state accessible - * through this API. - */ - kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) - vgic_unqueue_irqs(tmp_vcpu); - - offset -= r->base; - r->handle_mmio(vcpu, &mmio, offset); - - if (!is_write) - *reg = mmio_data_read(&mmio, ~0); - - ret = 0; -out_vgic_unlock: - spin_unlock(&vgic->lock); out: - mutex_unlock(&dev->kvm->lock); - return ret; + mutex_unlock(&kvm->lock); + return r; } -static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) +int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr) { int r; @@ -2261,17 +1754,6 @@ static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) r = kvm_vgic_addr(dev->kvm, type, &addr, true); return (r == -ENODEV) ? -ENXIO : r; } - - case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: - case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: { - u32 __user *uaddr = (u32 __user *)(long)attr->addr; - u32 reg; - - if (get_user(reg, uaddr)) - return -EFAULT; - - return vgic_attr_regs_access(dev, attr, ®, true); - } case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: { u32 __user *uaddr = (u32 __user *)(long)attr->addr; u32 val; @@ -2302,13 +1784,20 @@ static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) return ret; } - + case KVM_DEV_ARM_VGIC_GRP_CTRL: { + switch (attr->attr) { + case KVM_DEV_ARM_VGIC_CTRL_INIT: + r = vgic_init(dev->kvm); + return r; + } + break; + } } return -ENXIO; } -static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) +int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr) { int r = -ENXIO; @@ -2326,20 +1815,9 @@ static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) return -EFAULT; break; } - - case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: - case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: { - u32 __user *uaddr = (u32 __user *)(long)attr->addr; - u32 reg = 0; - - r = vgic_attr_regs_access(dev, attr, ®, false); - if (r) - return r; - r = put_user(reg, uaddr); - break; - } case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: { u32 __user *uaddr = (u32 __user *)(long)attr->addr; + r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr); break; } @@ -2349,61 +1827,17 @@ static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) return r; } -static int vgic_has_attr_regs(const struct mmio_range *ranges, - phys_addr_t offset) +int vgic_has_attr_regs(const struct kvm_mmio_range *ranges, phys_addr_t offset) { struct kvm_exit_mmio dev_attr_mmio; dev_attr_mmio.len = 4; - if (find_matching_range(ranges, &dev_attr_mmio, offset)) + if (vgic_find_range(ranges, &dev_attr_mmio, offset)) return 0; else return -ENXIO; } -static int vgic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr) -{ - phys_addr_t offset; - - switch (attr->group) { - case KVM_DEV_ARM_VGIC_GRP_ADDR: - switch (attr->attr) { - case KVM_VGIC_V2_ADDR_TYPE_DIST: - case KVM_VGIC_V2_ADDR_TYPE_CPU: - return 0; - } - break; - case KVM_DEV_ARM_VGIC_GRP_DIST_REGS: - offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK; - return vgic_has_attr_regs(vgic_dist_ranges, offset); - case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: - offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK; - return vgic_has_attr_regs(vgic_cpu_ranges, offset); - case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: - return 0; - } - return -ENXIO; -} - -static void vgic_destroy(struct kvm_device *dev) -{ - kfree(dev); -} - -static int vgic_create(struct kvm_device *dev, u32 type) -{ - return kvm_vgic_create(dev->kvm); -} - -static struct kvm_device_ops kvm_arm_vgic_v2_ops = { - .name = "kvm-arm-vgic", - .create = vgic_create, - .destroy = vgic_destroy, - .set_attr = vgic_set_attr, - .get_attr = vgic_get_attr, - .has_attr = vgic_has_attr, -}; - static void vgic_init_maintenance_interrupt(void *info) { enable_percpu_irq(vgic->maint_irq, 0); @@ -2474,8 +1908,7 @@ int kvm_vgic_hyp_init(void) on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1); - return kvm_register_device_ops(&kvm_arm_vgic_v2_ops, - KVM_DEV_TYPE_ARM_VGIC_V2); + return 0; out_free_irq: free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus()); diff --git a/virt/kvm/arm/vgic.h b/virt/kvm/arm/vgic.h new file mode 100644 index 000000000000..1e83bdf5f499 --- /dev/null +++ b/virt/kvm/arm/vgic.h @@ -0,0 +1,123 @@ +/* + * Copyright (C) 2012-2014 ARM Ltd. + * Author: Marc Zyngier <marc.zyngier@arm.com> + * + * Derived from virt/kvm/arm/vgic.c + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. + */ + +#ifndef __KVM_VGIC_H__ +#define __KVM_VGIC_H__ + +#define VGIC_ADDR_UNDEF (-1) +#define IS_VGIC_ADDR_UNDEF(_x) ((_x) == VGIC_ADDR_UNDEF) + +#define PRODUCT_ID_KVM 0x4b /* ASCII code K */ +#define IMPLEMENTER_ARM 0x43b + +#define ACCESS_READ_VALUE (1 << 0) +#define ACCESS_READ_RAZ (0 << 0) +#define ACCESS_READ_MASK(x) ((x) & (1 << 0)) +#define ACCESS_WRITE_IGNORED (0 << 1) +#define ACCESS_WRITE_SETBIT (1 << 1) +#define ACCESS_WRITE_CLEARBIT (2 << 1) +#define ACCESS_WRITE_VALUE (3 << 1) +#define ACCESS_WRITE_MASK(x) ((x) & (3 << 1)) + +#define VCPU_NOT_ALLOCATED ((u8)-1) + +unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x); + +void vgic_update_state(struct kvm *kvm); +int vgic_init_common_maps(struct kvm *kvm); + +u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset); +u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset); + +void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq); +void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq); +void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq); +void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid, + int irq, int val); + +void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr); +void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr); + +bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq); +void vgic_unqueue_irqs(struct kvm_vcpu *vcpu); + +void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg, + phys_addr_t offset, int mode); +bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, + phys_addr_t offset); + +static inline +u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask) +{ + return le32_to_cpu(*((u32 *)mmio->data)) & mask; +} + +static inline +void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value) +{ + *((u32 *)mmio->data) = cpu_to_le32(value) & mask; +} + +struct kvm_mmio_range { + phys_addr_t base; + unsigned long len; + int bits_per_irq; + bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, + phys_addr_t offset); +}; + +static inline bool is_in_range(phys_addr_t addr, unsigned long len, + phys_addr_t baseaddr, unsigned long size) +{ + return (addr >= baseaddr) && (addr + len <= baseaddr + size); +} + +const +struct kvm_mmio_range *vgic_find_range(const struct kvm_mmio_range *ranges, + struct kvm_exit_mmio *mmio, + phys_addr_t offset); + +bool vgic_handle_mmio_range(struct kvm_vcpu *vcpu, struct kvm_run *run, + struct kvm_exit_mmio *mmio, + const struct kvm_mmio_range *ranges, + unsigned long mmio_base); + +bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio, + phys_addr_t offset, int vcpu_id, int access); + +bool vgic_handle_set_pending_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio, + phys_addr_t offset, int vcpu_id); + +bool vgic_handle_clear_pending_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio, + phys_addr_t offset, int vcpu_id); + +bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio, + phys_addr_t offset); + +void vgic_kick_vcpus(struct kvm *kvm); + +int vgic_has_attr_regs(const struct kvm_mmio_range *ranges, phys_addr_t offset); +int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr); +int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr); + +int vgic_init(struct kvm *kvm); +void vgic_v2_init_emulation(struct kvm *kvm); +void vgic_v3_init_emulation(struct kvm *kvm); + +#endif diff --git a/virt/kvm/async_pf.c b/virt/kvm/async_pf.c index 5ff7f7f2689a..44660aee335f 100644 --- a/virt/kvm/async_pf.c +++ b/virt/kvm/async_pf.c @@ -80,7 +80,7 @@ static void async_pf_execute(struct work_struct *work) might_sleep(); - kvm_get_user_page_io(NULL, mm, addr, 1, NULL); + get_user_pages_unlocked(NULL, mm, addr, 1, 1, 0, NULL); kvm_async_page_present_sync(vcpu, apf); spin_lock(&vcpu->async_pf.lock); diff --git a/virt/kvm/kvm_main.c b/virt/kvm/kvm_main.c index 1cc6e2e19982..a1093700f3a4 100644 --- a/virt/kvm/kvm_main.c +++ b/virt/kvm/kvm_main.c @@ -66,6 +66,9 @@ MODULE_AUTHOR("Qumranet"); MODULE_LICENSE("GPL"); +unsigned int halt_poll_ns = 0; +module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR); + /* * Ordering of locks: * @@ -89,7 +92,7 @@ struct dentry *kvm_debugfs_dir; static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, unsigned long arg); -#ifdef CONFIG_COMPAT +#ifdef CONFIG_KVM_COMPAT static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, unsigned long arg); #endif @@ -176,6 +179,7 @@ bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) return called; } +#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL void kvm_flush_remote_tlbs(struct kvm *kvm) { long dirty_count = kvm->tlbs_dirty; @@ -186,6 +190,7 @@ void kvm_flush_remote_tlbs(struct kvm *kvm) cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); } EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); +#endif void kvm_reload_remote_mmus(struct kvm *kvm) { @@ -673,6 +678,7 @@ static void update_memslots(struct kvm_memslots *slots, if (!new->npages) { WARN_ON(!mslots[i].npages); new->base_gfn = 0; + new->flags = 0; if (mslots[i].npages) slots->used_slots--; } else { @@ -993,6 +999,86 @@ out: } EXPORT_SYMBOL_GPL(kvm_get_dirty_log); +#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT +/** + * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages + * are dirty write protect them for next write. + * @kvm: pointer to kvm instance + * @log: slot id and address to which we copy the log + * @is_dirty: flag set if any page is dirty + * + * We need to keep it in mind that VCPU threads can write to the bitmap + * concurrently. So, to avoid losing track of dirty pages we keep the + * following order: + * + * 1. Take a snapshot of the bit and clear it if needed. + * 2. Write protect the corresponding page. + * 3. Copy the snapshot to the userspace. + * 4. Upon return caller flushes TLB's if needed. + * + * Between 2 and 4, the guest may write to the page using the remaining TLB + * entry. This is not a problem because the page is reported dirty using + * the snapshot taken before and step 4 ensures that writes done after + * exiting to userspace will be logged for the next call. + * + */ +int kvm_get_dirty_log_protect(struct kvm *kvm, + struct kvm_dirty_log *log, bool *is_dirty) +{ + struct kvm_memory_slot *memslot; + int r, i; + unsigned long n; + unsigned long *dirty_bitmap; + unsigned long *dirty_bitmap_buffer; + + r = -EINVAL; + if (log->slot >= KVM_USER_MEM_SLOTS) + goto out; + + memslot = id_to_memslot(kvm->memslots, log->slot); + + dirty_bitmap = memslot->dirty_bitmap; + r = -ENOENT; + if (!dirty_bitmap) + goto out; + + n = kvm_dirty_bitmap_bytes(memslot); + + dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); + memset(dirty_bitmap_buffer, 0, n); + + spin_lock(&kvm->mmu_lock); + *is_dirty = false; + for (i = 0; i < n / sizeof(long); i++) { + unsigned long mask; + gfn_t offset; + + if (!dirty_bitmap[i]) + continue; + + *is_dirty = true; + + mask = xchg(&dirty_bitmap[i], 0); + dirty_bitmap_buffer[i] = mask; + + offset = i * BITS_PER_LONG; + kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, offset, + mask); + } + + spin_unlock(&kvm->mmu_lock); + + r = -EFAULT; + if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) + goto out; + + r = 0; +out: + return r; +} +EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); +#endif + bool kvm_largepages_enabled(void) { return largepages_enabled; @@ -1128,43 +1214,6 @@ static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm, return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL); } -int kvm_get_user_page_io(struct task_struct *tsk, struct mm_struct *mm, - unsigned long addr, bool write_fault, - struct page **pagep) -{ - int npages; - int locked = 1; - int flags = FOLL_TOUCH | FOLL_HWPOISON | - (pagep ? FOLL_GET : 0) | - (write_fault ? FOLL_WRITE : 0); - - /* - * If retrying the fault, we get here *not* having allowed the filemap - * to wait on the page lock. We should now allow waiting on the IO with - * the mmap semaphore released. - */ - down_read(&mm->mmap_sem); - npages = __get_user_pages(tsk, mm, addr, 1, flags, pagep, NULL, - &locked); - if (!locked) { - VM_BUG_ON(npages); - - if (!pagep) - return 0; - - /* - * The previous call has now waited on the IO. Now we can - * retry and complete. Pass TRIED to ensure we do not re - * schedule async IO (see e.g. filemap_fault). - */ - down_read(&mm->mmap_sem); - npages = __get_user_pages(tsk, mm, addr, 1, flags | FOLL_TRIED, - pagep, NULL, NULL); - } - up_read(&mm->mmap_sem); - return npages; -} - static inline int check_user_page_hwpoison(unsigned long addr) { int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE; @@ -1227,15 +1276,10 @@ static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, npages = get_user_page_nowait(current, current->mm, addr, write_fault, page); up_read(¤t->mm->mmap_sem); - } else { - /* - * By now we have tried gup_fast, and possibly async_pf, and we - * are certainly not atomic. Time to retry the gup, allowing - * mmap semaphore to be relinquished in the case of IO. - */ - npages = kvm_get_user_page_io(current, current->mm, addr, - write_fault, page); - } + } else + npages = __get_user_pages_unlocked(current, current->mm, addr, 1, + write_fault, 0, page, + FOLL_TOUCH|FOLL_HWPOISON); if (npages != 1) return npages; @@ -1593,6 +1637,7 @@ int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, } return 0; } +EXPORT_SYMBOL_GPL(kvm_write_guest); int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, gpa_t gpa, unsigned long len) @@ -1729,29 +1774,60 @@ void mark_page_dirty(struct kvm *kvm, gfn_t gfn) } EXPORT_SYMBOL_GPL(mark_page_dirty); +static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) +{ + if (kvm_arch_vcpu_runnable(vcpu)) { + kvm_make_request(KVM_REQ_UNHALT, vcpu); + return -EINTR; + } + if (kvm_cpu_has_pending_timer(vcpu)) + return -EINTR; + if (signal_pending(current)) + return -EINTR; + + return 0; +} + /* * The vCPU has executed a HLT instruction with in-kernel mode enabled. */ void kvm_vcpu_block(struct kvm_vcpu *vcpu) { + ktime_t start, cur; DEFINE_WAIT(wait); + bool waited = false; + + start = cur = ktime_get(); + if (halt_poll_ns) { + ktime_t stop = ktime_add_ns(ktime_get(), halt_poll_ns); + do { + /* + * This sets KVM_REQ_UNHALT if an interrupt + * arrives. + */ + if (kvm_vcpu_check_block(vcpu) < 0) { + ++vcpu->stat.halt_successful_poll; + goto out; + } + cur = ktime_get(); + } while (single_task_running() && ktime_before(cur, stop)); + } for (;;) { prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); - if (kvm_arch_vcpu_runnable(vcpu)) { - kvm_make_request(KVM_REQ_UNHALT, vcpu); - break; - } - if (kvm_cpu_has_pending_timer(vcpu)) - break; - if (signal_pending(current)) + if (kvm_vcpu_check_block(vcpu) < 0) break; + waited = true; schedule(); } finish_wait(&vcpu->wq, &wait); + cur = ktime_get(); + +out: + trace_kvm_vcpu_wakeup(ktime_to_ns(cur) - ktime_to_ns(start), waited); } EXPORT_SYMBOL_GPL(kvm_vcpu_block); @@ -1934,7 +2010,7 @@ static int kvm_vcpu_release(struct inode *inode, struct file *filp) static struct file_operations kvm_vcpu_fops = { .release = kvm_vcpu_release, .unlocked_ioctl = kvm_vcpu_ioctl, -#ifdef CONFIG_COMPAT +#ifdef CONFIG_KVM_COMPAT .compat_ioctl = kvm_vcpu_compat_ioctl, #endif .mmap = kvm_vcpu_mmap, @@ -2224,7 +2300,7 @@ out: return r; } -#ifdef CONFIG_COMPAT +#ifdef CONFIG_KVM_COMPAT static long kvm_vcpu_compat_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { @@ -2316,7 +2392,7 @@ static int kvm_device_release(struct inode *inode, struct file *filp) static const struct file_operations kvm_device_fops = { .unlocked_ioctl = kvm_device_ioctl, -#ifdef CONFIG_COMPAT +#ifdef CONFIG_KVM_COMPAT .compat_ioctl = kvm_device_ioctl, #endif .release = kvm_device_release, @@ -2603,7 +2679,7 @@ out: return r; } -#ifdef CONFIG_COMPAT +#ifdef CONFIG_KVM_COMPAT struct compat_kvm_dirty_log { __u32 slot; __u32 padding1; @@ -2650,7 +2726,7 @@ out: static struct file_operations kvm_vm_fops = { .release = kvm_vm_release, .unlocked_ioctl = kvm_vm_ioctl, -#ifdef CONFIG_COMPAT +#ifdef CONFIG_KVM_COMPAT .compat_ioctl = kvm_vm_compat_ioctl, #endif .llseek = noop_llseek, |