diff options
Diffstat (limited to 'security')
-rw-r--r-- | security/keys/Kconfig | 4 | ||||
-rw-r--r-- | security/keys/big_key.c | 127 |
2 files changed, 60 insertions, 71 deletions
diff --git a/security/keys/Kconfig b/security/keys/Kconfig index a7a23b5541f8..91eafada3164 100644 --- a/security/keys/Kconfig +++ b/security/keys/Kconfig @@ -45,10 +45,8 @@ config BIG_KEYS bool "Large payload keys" depends on KEYS depends on TMPFS - depends on (CRYPTO_ANSI_CPRNG = y || CRYPTO_DRBG = y) select CRYPTO_AES - select CRYPTO_ECB - select CRYPTO_RNG + select CRYPTO_GCM help This option provides support for holding large keys within the kernel (for example Kerberos ticket caches). The data may be stored out to diff --git a/security/keys/big_key.c b/security/keys/big_key.c index 507d6fb86a4f..e607830b6154 100644 --- a/security/keys/big_key.c +++ b/security/keys/big_key.c @@ -1,5 +1,6 @@ /* Large capacity key type * + * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved. * Written by David Howells (dhowells@redhat.com) * @@ -16,10 +17,10 @@ #include <linux/shmem_fs.h> #include <linux/err.h> #include <linux/scatterlist.h> +#include <linux/random.h> #include <keys/user-type.h> #include <keys/big_key-type.h> -#include <crypto/rng.h> -#include <crypto/skcipher.h> +#include <crypto/aead.h> /* * Layout of key payload words. @@ -49,7 +50,12 @@ enum big_key_op { /* * Key size for big_key data encryption */ -#define ENC_KEY_SIZE 16 +#define ENC_KEY_SIZE 32 + +/* + * Authentication tag length + */ +#define ENC_AUTHTAG_SIZE 16 /* * big_key defined keys take an arbitrary string as the description and an @@ -64,57 +70,62 @@ struct key_type key_type_big_key = { .destroy = big_key_destroy, .describe = big_key_describe, .read = big_key_read, + /* no ->update(); don't add it without changing big_key_crypt() nonce */ }; /* - * Crypto names for big_key data encryption + * Crypto names for big_key data authenticated encryption */ -static const char big_key_rng_name[] = "stdrng"; -static const char big_key_alg_name[] = "ecb(aes)"; +static const char big_key_alg_name[] = "gcm(aes)"; /* - * Crypto algorithms for big_key data encryption + * Crypto algorithms for big_key data authenticated encryption */ -static struct crypto_rng *big_key_rng; -static struct crypto_skcipher *big_key_skcipher; +static struct crypto_aead *big_key_aead; /* - * Generate random key to encrypt big_key data + * Since changing the key affects the entire object, we need a mutex. */ -static inline int big_key_gen_enckey(u8 *key) -{ - return crypto_rng_get_bytes(big_key_rng, key, ENC_KEY_SIZE); -} +static DEFINE_MUTEX(big_key_aead_lock); /* * Encrypt/decrypt big_key data */ static int big_key_crypt(enum big_key_op op, u8 *data, size_t datalen, u8 *key) { - int ret = -EINVAL; + int ret; struct scatterlist sgio; - SKCIPHER_REQUEST_ON_STACK(req, big_key_skcipher); - - if (crypto_skcipher_setkey(big_key_skcipher, key, ENC_KEY_SIZE)) { + struct aead_request *aead_req; + /* We always use a zero nonce. The reason we can get away with this is + * because we're using a different randomly generated key for every + * different encryption. Notably, too, key_type_big_key doesn't define + * an .update function, so there's no chance we'll wind up reusing the + * key to encrypt updated data. Simply put: one key, one encryption. + */ + u8 zero_nonce[crypto_aead_ivsize(big_key_aead)]; + + aead_req = aead_request_alloc(big_key_aead, GFP_KERNEL); + if (!aead_req) + return -ENOMEM; + + memset(zero_nonce, 0, sizeof(zero_nonce)); + sg_init_one(&sgio, data, datalen + (op == BIG_KEY_ENC ? ENC_AUTHTAG_SIZE : 0)); + aead_request_set_crypt(aead_req, &sgio, &sgio, datalen, zero_nonce); + aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL); + aead_request_set_ad(aead_req, 0); + + mutex_lock(&big_key_aead_lock); + if (crypto_aead_setkey(big_key_aead, key, ENC_KEY_SIZE)) { ret = -EAGAIN; goto error; } - - skcipher_request_set_tfm(req, big_key_skcipher); - skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, - NULL, NULL); - - sg_init_one(&sgio, data, datalen); - skcipher_request_set_crypt(req, &sgio, &sgio, datalen, NULL); - if (op == BIG_KEY_ENC) - ret = crypto_skcipher_encrypt(req); + ret = crypto_aead_encrypt(aead_req); else - ret = crypto_skcipher_decrypt(req); - - skcipher_request_zero(req); - + ret = crypto_aead_decrypt(aead_req); error: + mutex_unlock(&big_key_aead_lock); + aead_request_free(aead_req); return ret; } @@ -146,16 +157,13 @@ int big_key_preparse(struct key_preparsed_payload *prep) * * File content is stored encrypted with randomly generated key. */ - size_t enclen = ALIGN(datalen, crypto_skcipher_blocksize(big_key_skcipher)); + size_t enclen = datalen + ENC_AUTHTAG_SIZE; loff_t pos = 0; - /* prepare aligned data to encrypt */ data = kmalloc(enclen, GFP_KERNEL); if (!data) return -ENOMEM; - memcpy(data, prep->data, datalen); - memset(data + datalen, 0x00, enclen - datalen); /* generate random key */ enckey = kmalloc(ENC_KEY_SIZE, GFP_KERNEL); @@ -163,13 +171,12 @@ int big_key_preparse(struct key_preparsed_payload *prep) ret = -ENOMEM; goto error; } - - ret = big_key_gen_enckey(enckey); - if (ret) + ret = get_random_bytes_wait(enckey, ENC_KEY_SIZE); + if (unlikely(ret)) goto err_enckey; /* encrypt aligned data */ - ret = big_key_crypt(BIG_KEY_ENC, data, enclen, enckey); + ret = big_key_crypt(BIG_KEY_ENC, data, datalen, enckey); if (ret) goto err_enckey; @@ -295,7 +302,7 @@ long big_key_read(const struct key *key, char __user *buffer, size_t buflen) struct file *file; u8 *data; u8 *enckey = (u8 *)key->payload.data[big_key_data]; - size_t enclen = ALIGN(datalen, crypto_skcipher_blocksize(big_key_skcipher)); + size_t enclen = datalen + ENC_AUTHTAG_SIZE; loff_t pos = 0; data = kmalloc(enclen, GFP_KERNEL); @@ -344,47 +351,31 @@ error: */ static int __init big_key_init(void) { - struct crypto_skcipher *cipher; - struct crypto_rng *rng; int ret; - rng = crypto_alloc_rng(big_key_rng_name, 0, 0); - if (IS_ERR(rng)) { - pr_err("Can't alloc rng: %ld\n", PTR_ERR(rng)); - return PTR_ERR(rng); - } - - big_key_rng = rng; - - /* seed RNG */ - ret = crypto_rng_reset(rng, NULL, crypto_rng_seedsize(rng)); - if (ret) { - pr_err("Can't reset rng: %d\n", ret); - goto error_rng; - } - /* init block cipher */ - cipher = crypto_alloc_skcipher(big_key_alg_name, 0, CRYPTO_ALG_ASYNC); - if (IS_ERR(cipher)) { - ret = PTR_ERR(cipher); + big_key_aead = crypto_alloc_aead(big_key_alg_name, 0, CRYPTO_ALG_ASYNC); + if (IS_ERR(big_key_aead)) { + ret = PTR_ERR(big_key_aead); pr_err("Can't alloc crypto: %d\n", ret); - goto error_rng; + return ret; + } + ret = crypto_aead_setauthsize(big_key_aead, ENC_AUTHTAG_SIZE); + if (ret < 0) { + pr_err("Can't set crypto auth tag len: %d\n", ret); + goto free_aead; } - - big_key_skcipher = cipher; ret = register_key_type(&key_type_big_key); if (ret < 0) { pr_err("Can't register type: %d\n", ret); - goto error_cipher; + goto free_aead; } return 0; -error_cipher: - crypto_free_skcipher(big_key_skcipher); -error_rng: - crypto_free_rng(big_key_rng); +free_aead: + crypto_free_aead(big_key_aead); return ret; } |