diff options
Diffstat (limited to 'security/keys/keyring.c')
-rw-r--r-- | security/keys/keyring.c | 295 |
1 files changed, 175 insertions, 120 deletions
diff --git a/security/keys/keyring.c b/security/keys/keyring.c index d37f713e73ce..92024ed12e0a 100644 --- a/security/keys/keyring.c +++ b/security/keys/keyring.c @@ -26,13 +26,13 @@ rwsem_is_locked((struct rw_semaphore *)&(keyring)->sem))) /* - * when plumbing the depths of the key tree, this sets a hard limit set on how - * deep we're willing to go + * When plumbing the depths of the key tree, this sets a hard limit + * set on how deep we're willing to go. */ #define KEYRING_SEARCH_MAX_DEPTH 6 /* - * we keep all named keyrings in a hash to speed looking them up + * We keep all named keyrings in a hash to speed looking them up. */ #define KEYRING_NAME_HASH_SIZE (1 << 5) @@ -50,7 +50,9 @@ static inline unsigned keyring_hash(const char *desc) } /* - * the keyring type definition + * The keyring key type definition. Keyrings are simply keys of this type and + * can be treated as ordinary keys in addition to having their own special + * operations. */ static int keyring_instantiate(struct key *keyring, const void *data, size_t datalen); @@ -71,19 +73,17 @@ struct key_type key_type_keyring = { .describe = keyring_describe, .read = keyring_read, }; - EXPORT_SYMBOL(key_type_keyring); /* - * semaphore to serialise link/link calls to prevent two link calls in parallel - * introducing a cycle + * Semaphore to serialise link/link calls to prevent two link calls in parallel + * introducing a cycle. */ static DECLARE_RWSEM(keyring_serialise_link_sem); -/*****************************************************************************/ /* - * publish the name of a keyring so that it can be found by name (if it has - * one) + * Publish the name of a keyring so that it can be found by name (if it has + * one). */ static void keyring_publish_name(struct key *keyring) { @@ -102,13 +102,12 @@ static void keyring_publish_name(struct key *keyring) write_unlock(&keyring_name_lock); } +} -} /* end keyring_publish_name() */ - -/*****************************************************************************/ /* - * initialise a keyring - * - we object if we were given any data + * Initialise a keyring. + * + * Returns 0 on success, -EINVAL if given any data. */ static int keyring_instantiate(struct key *keyring, const void *data, size_t datalen) @@ -123,23 +122,20 @@ static int keyring_instantiate(struct key *keyring, } return ret; +} -} /* end keyring_instantiate() */ - -/*****************************************************************************/ /* - * match keyrings on their name + * Match keyrings on their name */ static int keyring_match(const struct key *keyring, const void *description) { return keyring->description && strcmp(keyring->description, description) == 0; +} -} /* end keyring_match() */ - -/*****************************************************************************/ /* - * dispose of the data dangling from the corpse of a keyring + * Clean up a keyring when it is destroyed. Unpublish its name if it had one + * and dispose of its data. */ static void keyring_destroy(struct key *keyring) { @@ -164,12 +160,10 @@ static void keyring_destroy(struct key *keyring) key_put(klist->keys[loop]); kfree(klist); } +} -} /* end keyring_destroy() */ - -/*****************************************************************************/ /* - * describe the keyring + * Describe a keyring for /proc. */ static void keyring_describe(const struct key *keyring, struct seq_file *m) { @@ -187,13 +181,12 @@ static void keyring_describe(const struct key *keyring, struct seq_file *m) else seq_puts(m, ": empty"); rcu_read_unlock(); +} -} /* end keyring_describe() */ - -/*****************************************************************************/ /* - * read a list of key IDs from the keyring's contents - * - the keyring's semaphore is read-locked + * Read a list of key IDs from the keyring's contents in binary form + * + * The keyring's semaphore is read-locked by the caller. */ static long keyring_read(const struct key *keyring, char __user *buffer, size_t buflen) @@ -241,12 +234,10 @@ static long keyring_read(const struct key *keyring, error: return ret; +} -} /* end keyring_read() */ - -/*****************************************************************************/ /* - * allocate a keyring and link into the destination keyring + * Allocate a keyring and link into the destination keyring. */ struct key *keyring_alloc(const char *description, uid_t uid, gid_t gid, const struct cred *cred, unsigned long flags, @@ -269,20 +260,42 @@ struct key *keyring_alloc(const char *description, uid_t uid, gid_t gid, } return keyring; +} -} /* end keyring_alloc() */ - -/*****************************************************************************/ -/* - * search the supplied keyring tree for a key that matches the criterion - * - perform a breadth-then-depth search up to the prescribed limit - * - we only find keys on which we have search permission - * - we use the supplied match function to see if the description (or other - * feature of interest) matches - * - we rely on RCU to prevent the keyring lists from disappearing on us - * - we return -EAGAIN if we didn't find any matching key - * - we return -ENOKEY if we only found negative matching keys - * - we propagate the possession attribute from the keyring ref to the key ref +/** + * keyring_search_aux - Search a keyring tree for a key matching some criteria + * @keyring_ref: A pointer to the keyring with possession indicator. + * @cred: The credentials to use for permissions checks. + * @type: The type of key to search for. + * @description: Parameter for @match. + * @match: Function to rule on whether or not a key is the one required. + * + * Search the supplied keyring tree for a key that matches the criteria given. + * The root keyring and any linked keyrings must grant Search permission to the + * caller to be searchable and keys can only be found if they too grant Search + * to the caller. The possession flag on the root keyring pointer controls use + * of the possessor bits in permissions checking of the entire tree. In + * addition, the LSM gets to forbid keyring searches and key matches. + * + * The search is performed as a breadth-then-depth search up to the prescribed + * limit (KEYRING_SEARCH_MAX_DEPTH). + * + * Keys are matched to the type provided and are then filtered by the match + * function, which is given the description to use in any way it sees fit. The + * match function may use any attributes of a key that it wishes to to + * determine the match. Normally the match function from the key type would be + * used. + * + * RCU is used to prevent the keyring key lists from disappearing without the + * need to take lots of locks. + * + * Returns a pointer to the found key and increments the key usage count if + * successful; -EAGAIN if no matching keys were found, or if expired or revoked + * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the + * specified keyring wasn't a keyring. + * + * In the case of a successful return, the possession attribute from + * @keyring_ref is propagated to the returned key reference. */ key_ref_t keyring_search_aux(key_ref_t keyring_ref, const struct cred *cred, @@ -444,17 +457,16 @@ error_2: rcu_read_unlock(); error: return key_ref; +} -} /* end keyring_search_aux() */ - -/*****************************************************************************/ -/* - * search the supplied keyring tree for a key that matches the criterion - * - perform a breadth-then-depth search up to the prescribed limit - * - we only find keys on which we have search permission - * - we readlock the keyrings as we search down the tree - * - we return -EAGAIN if we didn't find any matching key - * - we return -ENOKEY if we only found negative matching keys +/** + * keyring_search - Search the supplied keyring tree for a matching key + * @keyring: The root of the keyring tree to be searched. + * @type: The type of keyring we want to find. + * @description: The name of the keyring we want to find. + * + * As keyring_search_aux() above, but using the current task's credentials and + * type's default matching function. */ key_ref_t keyring_search(key_ref_t keyring, struct key_type *type, @@ -465,16 +477,23 @@ key_ref_t keyring_search(key_ref_t keyring, return keyring_search_aux(keyring, current->cred, type, description, type->match); - -} /* end keyring_search() */ - +} EXPORT_SYMBOL(keyring_search); -/*****************************************************************************/ /* - * search the given keyring only (no recursion) - * - keyring must be locked by caller - * - caller must guarantee that the keyring is a keyring + * Search the given keyring only (no recursion). + * + * The caller must guarantee that the keyring is a keyring and that the + * permission is granted to search the keyring as no check is made here. + * + * RCU is used to make it unnecessary to lock the keyring key list here. + * + * Returns a pointer to the found key with usage count incremented if + * successful and returns -ENOKEY if not found. Revoked keys and keys not + * providing the requested permission are skipped over. + * + * If successful, the possession indicator is propagated from the keyring ref + * to the returned key reference. */ key_ref_t __keyring_search_one(key_ref_t keyring_ref, const struct key_type *ktype, @@ -514,14 +533,18 @@ found: atomic_inc(&key->usage); rcu_read_unlock(); return make_key_ref(key, possessed); +} -} /* end __keyring_search_one() */ - -/*****************************************************************************/ /* - * find a keyring with the specified name - * - all named keyrings are searched - * - normally only finds keyrings with search permission for the current process + * Find a keyring with the specified name. + * + * All named keyrings in the current user namespace are searched, provided they + * grant Search permission directly to the caller (unless this check is + * skipped). Keyrings whose usage points have reached zero or who have been + * revoked are skipped. + * + * Returns a pointer to the keyring with the keyring's refcount having being + * incremented on success. -ENOKEY is returned if a key could not be found. */ struct key *find_keyring_by_name(const char *name, bool skip_perm_check) { @@ -569,15 +592,14 @@ struct key *find_keyring_by_name(const char *name, bool skip_perm_check) out: read_unlock(&keyring_name_lock); return keyring; +} -} /* end find_keyring_by_name() */ - -/*****************************************************************************/ /* - * see if a cycle will will be created by inserting acyclic tree B in acyclic - * tree A at the topmost level (ie: as a direct child of A) - * - since we are adding B to A at the top level, checking for cycles should - * just be a matter of seeing if node A is somewhere in tree B + * See if a cycle will will be created by inserting acyclic tree B in acyclic + * tree A at the topmost level (ie: as a direct child of A). + * + * Since we are adding B to A at the top level, checking for cycles should just + * be a matter of seeing if node A is somewhere in tree B. */ static int keyring_detect_cycle(struct key *A, struct key *B) { @@ -657,11 +679,10 @@ too_deep: cycle_detected: ret = -EDEADLK; goto error; - -} /* end keyring_detect_cycle() */ +} /* - * dispose of a keyring list after the RCU grace period, freeing the unlinked + * Dispose of a keyring list after the RCU grace period, freeing the unlinked * key */ static void keyring_unlink_rcu_disposal(struct rcu_head *rcu) @@ -675,7 +696,7 @@ static void keyring_unlink_rcu_disposal(struct rcu_head *rcu) } /* - * preallocate memory so that a key can be linked into to a keyring + * Preallocate memory so that a key can be linked into to a keyring. */ int __key_link_begin(struct key *keyring, const struct key_type *type, const char *description, @@ -792,10 +813,10 @@ error_krsem: } /* - * check already instantiated keys aren't going to be a problem - * - the caller must have called __key_link_begin() - * - don't need to call this for keys that were created since __key_link_begin() - * was called + * Check already instantiated keys aren't going to be a problem. + * + * The caller must have called __key_link_begin(). Don't need to call this for + * keys that were created since __key_link_begin() was called. */ int __key_link_check_live_key(struct key *keyring, struct key *key) { @@ -807,9 +828,12 @@ int __key_link_check_live_key(struct key *keyring, struct key *key) } /* - * link a key into to a keyring - * - must be called with __key_link_begin() having being called - * - discard already extant link to matching key if there is one + * Link a key into to a keyring. + * + * Must be called with __key_link_begin() having being called. Discards any + * already extant link to matching key if there is one, so that each keyring + * holds at most one link to any given key of a particular type+description + * combination. */ void __key_link(struct key *keyring, struct key *key, struct keyring_list **_prealloc) @@ -852,8 +876,9 @@ void __key_link(struct key *keyring, struct key *key, } /* - * finish linking a key into to a keyring - * - must be called with __key_link_begin() having being called + * Finish linking a key into to a keyring. + * + * Must be called with __key_link_begin() having being called. */ void __key_link_end(struct key *keyring, struct key_type *type, struct keyring_list *prealloc) @@ -874,8 +899,25 @@ void __key_link_end(struct key *keyring, struct key_type *type, up_write(&keyring->sem); } -/* - * link a key to a keyring +/** + * key_link - Link a key to a keyring + * @keyring: The keyring to make the link in. + * @key: The key to link to. + * + * Make a link in a keyring to a key, such that the keyring holds a reference + * on that key and the key can potentially be found by searching that keyring. + * + * This function will write-lock the keyring's semaphore and will consume some + * of the user's key data quota to hold the link. + * + * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, + * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is + * full, -EDQUOT if there is insufficient key data quota remaining to add + * another link or -ENOMEM if there's insufficient memory. + * + * It is assumed that the caller has checked that it is permitted for a link to + * be made (the keyring should have Write permission and the key Link + * permission). */ int key_link(struct key *keyring, struct key *key) { @@ -895,12 +937,24 @@ int key_link(struct key *keyring, struct key *key) return ret; } - EXPORT_SYMBOL(key_link); -/*****************************************************************************/ -/* - * unlink the first link to a key from a keyring +/** + * key_unlink - Unlink the first link to a key from a keyring. + * @keyring: The keyring to remove the link from. + * @key: The key the link is to. + * + * Remove a link from a keyring to a key. + * + * This function will write-lock the keyring's semaphore. + * + * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if + * the key isn't linked to by the keyring or -ENOMEM if there's insufficient + * memory. + * + * It is assumed that the caller has checked that it is permitted for a link to + * be removed (the keyring should have Write permission; no permissions are + * required on the key). */ int key_unlink(struct key *keyring, struct key *key) { @@ -968,15 +1022,12 @@ nomem: ret = -ENOMEM; up_write(&keyring->sem); goto error; - -} /* end key_unlink() */ - +} EXPORT_SYMBOL(key_unlink); -/*****************************************************************************/ /* - * dispose of a keyring list after the RCU grace period, releasing the keys it - * links to + * Dispose of a keyring list after the RCU grace period, releasing the keys it + * links to. */ static void keyring_clear_rcu_disposal(struct rcu_head *rcu) { @@ -989,13 +1040,15 @@ static void keyring_clear_rcu_disposal(struct rcu_head *rcu) key_put(klist->keys[loop]); kfree(klist); +} -} /* end keyring_clear_rcu_disposal() */ - -/*****************************************************************************/ -/* - * clear the specified process keyring - * - implements keyctl(KEYCTL_CLEAR) +/** + * keyring_clear - Clear a keyring + * @keyring: The keyring to clear. + * + * Clear the contents of the specified keyring. + * + * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring. */ int keyring_clear(struct key *keyring) { @@ -1027,15 +1080,13 @@ int keyring_clear(struct key *keyring) } return ret; - -} /* end keyring_clear() */ - +} EXPORT_SYMBOL(keyring_clear); -/*****************************************************************************/ /* - * dispose of the links from a revoked keyring - * - called with the key sem write-locked + * Dispose of the links from a revoked keyring. + * + * This is called with the key sem write-locked. */ static void keyring_revoke(struct key *keyring) { @@ -1050,11 +1101,10 @@ static void keyring_revoke(struct key *keyring) rcu_assign_pointer(keyring->payload.subscriptions, NULL); call_rcu(&klist->rcu, keyring_clear_rcu_disposal); } - -} /* end keyring_revoke() */ +} /* - * Determine whether a key is dead + * Determine whether a key is dead. */ static bool key_is_dead(struct key *key, time_t limit) { @@ -1063,7 +1113,12 @@ static bool key_is_dead(struct key *key, time_t limit) } /* - * Collect garbage from the contents of a keyring + * Collect garbage from the contents of a keyring, replacing the old list with + * a new one with the pointers all shuffled down. + * + * Dead keys are classed as oned that are flagged as being dead or are revoked, + * expired or negative keys that were revoked or expired before the specified + * limit. */ void keyring_gc(struct key *keyring, time_t limit) { |