summaryrefslogtreecommitdiff
path: root/rust
diff options
context:
space:
mode:
Diffstat (limited to 'rust')
-rw-r--r--rust/kernel/rbtree.rs523
1 files changed, 523 insertions, 0 deletions
diff --git a/rust/kernel/rbtree.rs b/rust/kernel/rbtree.rs
index b07a21b5d8b0..64f1611758bb 100644
--- a/rust/kernel/rbtree.rs
+++ b/rust/kernel/rbtree.rs
@@ -236,6 +236,36 @@ impl<K, V> RBTree<K, V> {
pub fn values_mut(&mut self) -> impl Iterator<Item = &'_ mut V> {
self.iter_mut().map(|(_, v)| v)
}
+
+ /// Returns a cursor over the tree nodes, starting with the smallest key.
+ pub fn cursor_front(&mut self) -> Option<Cursor<'_, K, V>> {
+ let root = addr_of_mut!(self.root);
+ // SAFETY: `self.root` is always a valid root node
+ let current = unsafe { bindings::rb_first(root) };
+ NonNull::new(current).map(|current| {
+ // INVARIANT:
+ // - `current` is a valid node in the [`RBTree`] pointed to by `self`.
+ Cursor {
+ current,
+ tree: self,
+ }
+ })
+ }
+
+ /// Returns a cursor over the tree nodes, starting with the largest key.
+ pub fn cursor_back(&mut self) -> Option<Cursor<'_, K, V>> {
+ let root = addr_of_mut!(self.root);
+ // SAFETY: `self.root` is always a valid root node
+ let current = unsafe { bindings::rb_last(root) };
+ NonNull::new(current).map(|current| {
+ // INVARIANT:
+ // - `current` is a valid node in the [`RBTree`] pointed to by `self`.
+ Cursor {
+ current,
+ tree: self,
+ }
+ })
+ }
}
impl<K, V> RBTree<K, V>
@@ -396,6 +426,67 @@ where
pub fn remove(&mut self, key: &K) -> Option<V> {
self.remove_node(key).map(|node| node.node.value)
}
+
+ /// Returns a cursor over the tree nodes based on the given key.
+ ///
+ /// If the given key exists, the cursor starts there.
+ /// Otherwise it starts with the first larger key in sort order.
+ /// If there is no larger key, it returns [`None`].
+ pub fn cursor_lower_bound(&mut self, key: &K) -> Option<Cursor<'_, K, V>>
+ where
+ K: Ord,
+ {
+ let mut node = self.root.rb_node;
+ let mut best_match: Option<NonNull<Node<K, V>>> = None;
+ while !node.is_null() {
+ // SAFETY: By the type invariant of `Self`, all non-null `rb_node` pointers stored in `self`
+ // point to the links field of `Node<K, V>` objects.
+ let this = unsafe { container_of!(node, Node<K, V>, links) }.cast_mut();
+ // SAFETY: `this` is a non-null node so it is valid by the type invariants.
+ let this_key = unsafe { &(*this).key };
+ // SAFETY: `node` is a non-null node so it is valid by the type invariants.
+ let left_child = unsafe { (*node).rb_left };
+ // SAFETY: `node` is a non-null node so it is valid by the type invariants.
+ let right_child = unsafe { (*node).rb_right };
+ match key.cmp(this_key) {
+ Ordering::Equal => {
+ best_match = NonNull::new(this);
+ break;
+ }
+ Ordering::Greater => {
+ node = right_child;
+ }
+ Ordering::Less => {
+ let is_better_match = match best_match {
+ None => true,
+ Some(best) => {
+ // SAFETY: `best` is a non-null node so it is valid by the type invariants.
+ let best_key = unsafe { &(*best.as_ptr()).key };
+ best_key > this_key
+ }
+ };
+ if is_better_match {
+ best_match = NonNull::new(this);
+ }
+ node = left_child;
+ }
+ };
+ }
+
+ let best = best_match?;
+
+ // SAFETY: `best` is a non-null node so it is valid by the type invariants.
+ let links = unsafe { addr_of_mut!((*best.as_ptr()).links) };
+
+ NonNull::new(links).map(|current| {
+ // INVARIANT:
+ // - `current` is a valid node in the [`RBTree`] pointed to by `self`.
+ Cursor {
+ current,
+ tree: self,
+ }
+ })
+ }
}
impl<K, V> Default for RBTree<K, V> {
@@ -427,6 +518,433 @@ impl<K, V> Drop for RBTree<K, V> {
}
}
+/// A bidirectional cursor over the tree nodes, sorted by key.
+///
+/// # Examples
+///
+/// In the following example, we obtain a cursor to the first element in the tree.
+/// The cursor allows us to iterate bidirectionally over key/value pairs in the tree.
+///
+/// ```
+/// use kernel::{alloc::flags, rbtree::RBTree};
+///
+/// // Create a new tree.
+/// let mut tree = RBTree::new();
+///
+/// // Insert three elements.
+/// tree.try_create_and_insert(10, 100, flags::GFP_KERNEL)?;
+/// tree.try_create_and_insert(20, 200, flags::GFP_KERNEL)?;
+/// tree.try_create_and_insert(30, 300, flags::GFP_KERNEL)?;
+///
+/// // Get a cursor to the first element.
+/// let mut cursor = tree.cursor_front().unwrap();
+/// let mut current = cursor.current();
+/// assert_eq!(current, (&10, &100));
+///
+/// // Move the cursor, updating it to the 2nd element.
+/// cursor = cursor.move_next().unwrap();
+/// current = cursor.current();
+/// assert_eq!(current, (&20, &200));
+///
+/// // Peek at the next element without impacting the cursor.
+/// let next = cursor.peek_next().unwrap();
+/// assert_eq!(next, (&30, &300));
+/// current = cursor.current();
+/// assert_eq!(current, (&20, &200));
+///
+/// // Moving past the last element causes the cursor to return [`None`].
+/// cursor = cursor.move_next().unwrap();
+/// current = cursor.current();
+/// assert_eq!(current, (&30, &300));
+/// let cursor = cursor.move_next();
+/// assert!(cursor.is_none());
+///
+/// # Ok::<(), Error>(())
+/// ```
+///
+/// A cursor can also be obtained at the last element in the tree.
+///
+/// ```
+/// use kernel::{alloc::flags, rbtree::RBTree};
+///
+/// // Create a new tree.
+/// let mut tree = RBTree::new();
+///
+/// // Insert three elements.
+/// tree.try_create_and_insert(10, 100, flags::GFP_KERNEL)?;
+/// tree.try_create_and_insert(20, 200, flags::GFP_KERNEL)?;
+/// tree.try_create_and_insert(30, 300, flags::GFP_KERNEL)?;
+///
+/// let mut cursor = tree.cursor_back().unwrap();
+/// let current = cursor.current();
+/// assert_eq!(current, (&30, &300));
+///
+/// # Ok::<(), Error>(())
+/// ```
+///
+/// Obtaining a cursor returns [`None`] if the tree is empty.
+///
+/// ```
+/// use kernel::rbtree::RBTree;
+///
+/// let mut tree: RBTree<u16, u16> = RBTree::new();
+/// assert!(tree.cursor_front().is_none());
+///
+/// # Ok::<(), Error>(())
+/// ```
+///
+/// [`RBTree::cursor_lower_bound`] can be used to start at an arbitrary node in the tree.
+///
+/// ```
+/// use kernel::{alloc::flags, rbtree::RBTree};
+///
+/// // Create a new tree.
+/// let mut tree = RBTree::new();
+///
+/// // Insert five elements.
+/// tree.try_create_and_insert(10, 100, flags::GFP_KERNEL)?;
+/// tree.try_create_and_insert(20, 200, flags::GFP_KERNEL)?;
+/// tree.try_create_and_insert(30, 300, flags::GFP_KERNEL)?;
+/// tree.try_create_and_insert(40, 400, flags::GFP_KERNEL)?;
+/// tree.try_create_and_insert(50, 500, flags::GFP_KERNEL)?;
+///
+/// // If the provided key exists, a cursor to that key is returned.
+/// let cursor = tree.cursor_lower_bound(&20).unwrap();
+/// let current = cursor.current();
+/// assert_eq!(current, (&20, &200));
+///
+/// // If the provided key doesn't exist, a cursor to the first larger element in sort order is returned.
+/// let cursor = tree.cursor_lower_bound(&25).unwrap();
+/// let current = cursor.current();
+/// assert_eq!(current, (&30, &300));
+///
+/// // If there is no larger key, [`None`] is returned.
+/// let cursor = tree.cursor_lower_bound(&55);
+/// assert!(cursor.is_none());
+///
+/// # Ok::<(), Error>(())
+/// ```
+///
+/// The cursor allows mutation of values in the tree.
+///
+/// ```
+/// use kernel::{alloc::flags, rbtree::RBTree};
+///
+/// // Create a new tree.
+/// let mut tree = RBTree::new();
+///
+/// // Insert three elements.
+/// tree.try_create_and_insert(10, 100, flags::GFP_KERNEL)?;
+/// tree.try_create_and_insert(20, 200, flags::GFP_KERNEL)?;
+/// tree.try_create_and_insert(30, 300, flags::GFP_KERNEL)?;
+///
+/// // Retrieve a cursor.
+/// let mut cursor = tree.cursor_front().unwrap();
+///
+/// // Get a mutable reference to the current value.
+/// let (k, v) = cursor.current_mut();
+/// *v = 1000;
+///
+/// // The updated value is reflected in the tree.
+/// let updated = tree.get(&10).unwrap();
+/// assert_eq!(updated, &1000);
+///
+/// # Ok::<(), Error>(())
+/// ```
+///
+/// It also allows node removal. The following examples demonstrate the behavior of removing the current node.
+///
+/// ```
+/// use kernel::{alloc::flags, rbtree::RBTree};
+///
+/// // Create a new tree.
+/// let mut tree = RBTree::new();
+///
+/// // Insert three elements.
+/// tree.try_create_and_insert(10, 100, flags::GFP_KERNEL)?;
+/// tree.try_create_and_insert(20, 200, flags::GFP_KERNEL)?;
+/// tree.try_create_and_insert(30, 300, flags::GFP_KERNEL)?;
+///
+/// // Remove the first element.
+/// let mut cursor = tree.cursor_front().unwrap();
+/// let mut current = cursor.current();
+/// assert_eq!(current, (&10, &100));
+/// cursor = cursor.remove_current().0.unwrap();
+///
+/// // If a node exists after the current element, it is returned.
+/// current = cursor.current();
+/// assert_eq!(current, (&20, &200));
+///
+/// // Get a cursor to the last element, and remove it.
+/// cursor = tree.cursor_back().unwrap();
+/// current = cursor.current();
+/// assert_eq!(current, (&30, &300));
+///
+/// // Since there is no next node, the previous node is returned.
+/// cursor = cursor.remove_current().0.unwrap();
+/// current = cursor.current();
+/// assert_eq!(current, (&20, &200));
+///
+/// // Removing the last element in the tree returns [`None`].
+/// assert!(cursor.remove_current().0.is_none());
+///
+/// # Ok::<(), Error>(())
+/// ```
+///
+/// Nodes adjacent to the current node can also be removed.
+///
+/// ```
+/// use kernel::{alloc::flags, rbtree::RBTree};
+///
+/// // Create a new tree.
+/// let mut tree = RBTree::new();
+///
+/// // Insert three elements.
+/// tree.try_create_and_insert(10, 100, flags::GFP_KERNEL)?;
+/// tree.try_create_and_insert(20, 200, flags::GFP_KERNEL)?;
+/// tree.try_create_and_insert(30, 300, flags::GFP_KERNEL)?;
+///
+/// // Get a cursor to the first element.
+/// let mut cursor = tree.cursor_front().unwrap();
+/// let mut current = cursor.current();
+/// assert_eq!(current, (&10, &100));
+///
+/// // Calling `remove_prev` from the first element returns [`None`].
+/// assert!(cursor.remove_prev().is_none());
+///
+/// // Get a cursor to the last element.
+/// cursor = tree.cursor_back().unwrap();
+/// current = cursor.current();
+/// assert_eq!(current, (&30, &300));
+///
+/// // Calling `remove_prev` removes and returns the middle element.
+/// assert_eq!(cursor.remove_prev().unwrap().to_key_value(), (20, 200));
+///
+/// // Calling `remove_next` from the last element returns [`None`].
+/// assert!(cursor.remove_next().is_none());
+///
+/// // Move to the first element
+/// cursor = cursor.move_prev().unwrap();
+/// current = cursor.current();
+/// assert_eq!(current, (&10, &100));
+///
+/// // Calling `remove_next` removes and returns the last element.
+/// assert_eq!(cursor.remove_next().unwrap().to_key_value(), (30, 300));
+///
+/// # Ok::<(), Error>(())
+///
+/// ```
+///
+/// # Invariants
+/// - `current` points to a node that is in the same [`RBTree`] as `tree`.
+pub struct Cursor<'a, K, V> {
+ tree: &'a mut RBTree<K, V>,
+ current: NonNull<bindings::rb_node>,
+}
+
+// SAFETY: The [`Cursor`] has exclusive access to both `K` and `V`, so it is sufficient to require them to be `Send`.
+// The cursor only gives out immutable references to the keys, but since it has excusive access to those same
+// keys, `Send` is sufficient. `Sync` would be okay, but it is more restrictive to the user.
+unsafe impl<'a, K: Send, V: Send> Send for Cursor<'a, K, V> {}
+
+// SAFETY: The [`Cursor`] gives out immutable references to K and mutable references to V,
+// so it has the same thread safety requirements as mutable references.
+unsafe impl<'a, K: Sync, V: Sync> Sync for Cursor<'a, K, V> {}
+
+impl<'a, K, V> Cursor<'a, K, V> {
+ /// The current node
+ pub fn current(&self) -> (&K, &V) {
+ // SAFETY:
+ // - `self.current` is a valid node by the type invariants.
+ // - We have an immutable reference by the function signature.
+ unsafe { Self::to_key_value(self.current) }
+ }
+
+ /// The current node, with a mutable value
+ pub fn current_mut(&mut self) -> (&K, &mut V) {
+ // SAFETY:
+ // - `self.current` is a valid node by the type invariants.
+ // - We have an mutable reference by the function signature.
+ unsafe { Self::to_key_value_mut(self.current) }
+ }
+
+ /// Remove the current node from the tree.
+ ///
+ /// Returns a tuple where the first element is a cursor to the next node, if it exists,
+ /// else the previous node, else [`None`] (if the tree becomes empty). The second element
+ /// is the removed node.
+ pub fn remove_current(self) -> (Option<Self>, RBTreeNode<K, V>) {
+ let prev = self.get_neighbor_raw(Direction::Prev);
+ let next = self.get_neighbor_raw(Direction::Next);
+ // SAFETY: By the type invariant of `Self`, all non-null `rb_node` pointers stored in `self`
+ // point to the links field of `Node<K, V>` objects.
+ let this = unsafe { container_of!(self.current.as_ptr(), Node<K, V>, links) }.cast_mut();
+ // SAFETY: `this` is valid by the type invariants as described above.
+ let node = unsafe { Box::from_raw(this) };
+ let node = RBTreeNode { node };
+ // SAFETY: The reference to the tree used to create the cursor outlives the cursor, so
+ // the tree cannot change. By the tree invariant, all nodes are valid.
+ unsafe { bindings::rb_erase(&mut (*this).links, addr_of_mut!(self.tree.root)) };
+
+ let current = match (prev, next) {
+ (_, Some(next)) => next,
+ (Some(prev), None) => prev,
+ (None, None) => {
+ return (None, node);
+ }
+ };
+
+ (
+ // INVARIANT:
+ // - `current` is a valid node in the [`RBTree`] pointed to by `self.tree`.
+ Some(Self {
+ current,
+ tree: self.tree,
+ }),
+ node,
+ )
+ }
+
+ /// Remove the previous node, returning it if it exists.
+ pub fn remove_prev(&mut self) -> Option<RBTreeNode<K, V>> {
+ self.remove_neighbor(Direction::Prev)
+ }
+
+ /// Remove the next node, returning it if it exists.
+ pub fn remove_next(&mut self) -> Option<RBTreeNode<K, V>> {
+ self.remove_neighbor(Direction::Next)
+ }
+
+ fn remove_neighbor(&mut self, direction: Direction) -> Option<RBTreeNode<K, V>> {
+ if let Some(neighbor) = self.get_neighbor_raw(direction) {
+ let neighbor = neighbor.as_ptr();
+ // SAFETY: The reference to the tree used to create the cursor outlives the cursor, so
+ // the tree cannot change. By the tree invariant, all nodes are valid.
+ unsafe { bindings::rb_erase(neighbor, addr_of_mut!(self.tree.root)) };
+ // SAFETY: By the type invariant of `Self`, all non-null `rb_node` pointers stored in `self`
+ // point to the links field of `Node<K, V>` objects.
+ let this = unsafe { container_of!(neighbor, Node<K, V>, links) }.cast_mut();
+ // SAFETY: `this` is valid by the type invariants as described above.
+ let node = unsafe { Box::from_raw(this) };
+ return Some(RBTreeNode { node });
+ }
+ None
+ }
+
+ /// Move the cursor to the previous node, returning [`None`] if it doesn't exist.
+ pub fn move_prev(self) -> Option<Self> {
+ self.mv(Direction::Prev)
+ }
+
+ /// Move the cursor to the next node, returning [`None`] if it doesn't exist.
+ pub fn move_next(self) -> Option<Self> {
+ self.mv(Direction::Next)
+ }
+
+ fn mv(self, direction: Direction) -> Option<Self> {
+ // INVARIANT:
+ // - `neighbor` is a valid node in the [`RBTree`] pointed to by `self.tree`.
+ self.get_neighbor_raw(direction).map(|neighbor| Self {
+ tree: self.tree,
+ current: neighbor,
+ })
+ }
+
+ /// Access the previous node without moving the cursor.
+ pub fn peek_prev(&self) -> Option<(&K, &V)> {
+ self.peek(Direction::Prev)
+ }
+
+ /// Access the previous node without moving the cursor.
+ pub fn peek_next(&self) -> Option<(&K, &V)> {
+ self.peek(Direction::Next)
+ }
+
+ fn peek(&self, direction: Direction) -> Option<(&K, &V)> {
+ self.get_neighbor_raw(direction).map(|neighbor| {
+ // SAFETY:
+ // - `neighbor` is a valid tree node.
+ // - By the function signature, we have an immutable reference to `self`.
+ unsafe { Self::to_key_value(neighbor) }
+ })
+ }
+
+ /// Access the previous node mutably without moving the cursor.
+ pub fn peek_prev_mut(&mut self) -> Option<(&K, &mut V)> {
+ self.peek_mut(Direction::Prev)
+ }
+
+ /// Access the next node mutably without moving the cursor.
+ pub fn peek_next_mut(&mut self) -> Option<(&K, &mut V)> {
+ self.peek_mut(Direction::Next)
+ }
+
+ fn peek_mut(&mut self, direction: Direction) -> Option<(&K, &mut V)> {
+ self.get_neighbor_raw(direction).map(|neighbor| {
+ // SAFETY:
+ // - `neighbor` is a valid tree node.
+ // - By the function signature, we have a mutable reference to `self`.
+ unsafe { Self::to_key_value_mut(neighbor) }
+ })
+ }
+
+ fn get_neighbor_raw(&self, direction: Direction) -> Option<NonNull<bindings::rb_node>> {
+ // SAFETY: `self.current` is valid by the type invariants.
+ let neighbor = unsafe {
+ match direction {
+ Direction::Prev => bindings::rb_prev(self.current.as_ptr()),
+ Direction::Next => bindings::rb_next(self.current.as_ptr()),
+ }
+ };
+
+ NonNull::new(neighbor)
+ }
+
+ /// SAFETY:
+ /// - `node` must be a valid pointer to a node in an [`RBTree`].
+ /// - The caller has immutable access to `node` for the duration of 'b.
+ unsafe fn to_key_value<'b>(node: NonNull<bindings::rb_node>) -> (&'b K, &'b V) {
+ // SAFETY: the caller guarantees that `node` is a valid pointer in an `RBTree`.
+ let (k, v) = unsafe { Self::to_key_value_raw(node) };
+ // SAFETY: the caller guarantees immutable access to `node`.
+ (k, unsafe { &*v })
+ }
+
+ /// SAFETY:
+ /// - `node` must be a valid pointer to a node in an [`RBTree`].
+ /// - The caller has mutable access to `node` for the duration of 'b.
+ unsafe fn to_key_value_mut<'b>(node: NonNull<bindings::rb_node>) -> (&'b K, &'b mut V) {
+ // SAFETY: the caller guarantees that `node` is a valid pointer in an `RBTree`.
+ let (k, v) = unsafe { Self::to_key_value_raw(node) };
+ // SAFETY: the caller guarantees mutable access to `node`.
+ (k, unsafe { &mut *v })
+ }
+
+ /// SAFETY:
+ /// - `node` must be a valid pointer to a node in an [`RBTree`].
+ /// - The caller has immutable access to the key for the duration of 'b.
+ unsafe fn to_key_value_raw<'b>(node: NonNull<bindings::rb_node>) -> (&'b K, *mut V) {
+ // SAFETY: By the type invariant of `Self`, all non-null `rb_node` pointers stored in `self`
+ // point to the links field of `Node<K, V>` objects.
+ let this = unsafe { container_of!(node.as_ptr(), Node<K, V>, links) }.cast_mut();
+ // SAFETY: The passed `node` is the current node or a non-null neighbor,
+ // thus `this` is valid by the type invariants.
+ let k = unsafe { &(*this).key };
+ // SAFETY: The passed `node` is the current node or a non-null neighbor,
+ // thus `this` is valid by the type invariants.
+ let v = unsafe { addr_of_mut!((*this).value) };
+ (k, v)
+ }
+}
+
+/// Direction for [`Cursor`] operations.
+enum Direction {
+ /// the node immediately before, in sort order
+ Prev,
+ /// the node immediately after, in sort order
+ Next,
+}
+
impl<'a, K, V> IntoIterator for &'a RBTree<K, V> {
type Item = (&'a K, &'a V);
type IntoIter = Iter<'a, K, V>;
@@ -584,6 +1102,11 @@ impl<K, V> RBTreeNode<K, V> {
pub fn new(key: K, value: V, flags: Flags) -> Result<RBTreeNode<K, V>> {
Ok(RBTreeNodeReservation::new(flags)?.into_node(key, value))
}
+
+ /// Get the key and value from inside the node.
+ pub fn to_key_value(self) -> (K, V) {
+ (self.node.key, self.node.value)
+ }
}
// SAFETY: If K and V can be sent across threads, then it's also okay to send [`RBTreeNode`] across