summaryrefslogtreecommitdiff
path: root/mm
diff options
context:
space:
mode:
Diffstat (limited to 'mm')
-rw-r--r--mm/Kconfig6
-rw-r--r--mm/Makefile4
-rw-r--r--mm/cleancache.c276
-rw-r--r--mm/cma.c62
-rw-r--r--mm/cma.h24
-rw-r--r--mm/cma_debug.c205
-rw-r--r--mm/compaction.c75
-rw-r--r--mm/filemap.c130
-rw-r--r--mm/gup.c128
-rw-r--r--mm/huge_memory.c136
-rw-r--r--mm/hugetlb.c250
-rw-r--r--mm/internal.h8
-rw-r--r--mm/iov_iter.c753
-rw-r--r--mm/kasan/kasan.c27
-rw-r--r--mm/ksm.c10
-rw-r--r--mm/memblock.c22
-rw-r--r--mm/memcontrol.c261
-rw-r--r--mm/memory-failure.c122
-rw-r--r--mm/memory.c436
-rw-r--r--mm/memory_hotplug.c50
-rw-r--r--mm/mempolicy.c6
-rw-r--r--mm/mempool.c127
-rw-r--r--mm/memtest.c118
-rw-r--r--mm/migrate.c40
-rw-r--r--mm/mlock.c135
-rw-r--r--mm/mmap.c29
-rw-r--r--mm/mprotect.c3
-rw-r--r--mm/mremap.c35
-rw-r--r--mm/nommu.c9
-rw-r--r--mm/oom_kill.c9
-rw-r--r--mm/page-writeback.c29
-rw-r--r--mm/page_alloc.c265
-rw-r--r--mm/page_io.c7
-rw-r--r--mm/page_isolation.c1
-rw-r--r--mm/pagewalk.c9
-rw-r--r--mm/percpu.c4
-rw-r--r--mm/process_vm_access.c35
-rw-r--r--mm/rmap.c13
-rw-r--r--mm/shmem.c37
-rw-r--r--mm/slab.c22
-rw-r--r--mm/slob.c3
-rw-r--r--mm/slub.c38
-rw-r--r--mm/swap.c34
-rw-r--r--mm/swap_state.c2
-rw-r--r--mm/swapfile.c2
-rw-r--r--mm/truncate.c39
-rw-r--r--mm/util.c41
-rw-r--r--mm/vmalloc.c104
-rw-r--r--mm/zsmalloc.c971
49 files changed, 2827 insertions, 2325 deletions
diff --git a/mm/Kconfig b/mm/Kconfig
index a03131b6ba8e..390214da4546 100644
--- a/mm/Kconfig
+++ b/mm/Kconfig
@@ -517,6 +517,12 @@ config CMA_DEBUG
processing calls such as dma_alloc_from_contiguous().
This option does not affect warning and error messages.
+config CMA_DEBUGFS
+ bool "CMA debugfs interface"
+ depends on CMA && DEBUG_FS
+ help
+ Turns on the DebugFS interface for CMA.
+
config CMA_AREAS
int "Maximum count of the CMA areas"
depends on CMA
diff --git a/mm/Makefile b/mm/Makefile
index 3c1caa2693bd..98c4eaeabdcb 100644
--- a/mm/Makefile
+++ b/mm/Makefile
@@ -21,7 +21,7 @@ obj-y := filemap.o mempool.o oom_kill.o \
mm_init.o mmu_context.o percpu.o slab_common.o \
compaction.o vmacache.o \
interval_tree.o list_lru.o workingset.o \
- iov_iter.o debug.o $(mmu-y)
+ debug.o $(mmu-y)
obj-y += init-mm.o
@@ -55,6 +55,7 @@ obj-$(CONFIG_KMEMCHECK) += kmemcheck.o
obj-$(CONFIG_KASAN) += kasan/
obj-$(CONFIG_FAILSLAB) += failslab.o
obj-$(CONFIG_MEMORY_HOTPLUG) += memory_hotplug.o
+obj-$(CONFIG_MEMTEST) += memtest.o
obj-$(CONFIG_MIGRATION) += migrate.o
obj-$(CONFIG_QUICKLIST) += quicklist.o
obj-$(CONFIG_TRANSPARENT_HUGEPAGE) += huge_memory.o
@@ -76,3 +77,4 @@ obj-$(CONFIG_GENERIC_EARLY_IOREMAP) += early_ioremap.o
obj-$(CONFIG_CMA) += cma.o
obj-$(CONFIG_MEMORY_BALLOON) += balloon_compaction.o
obj-$(CONFIG_PAGE_EXTENSION) += page_ext.o
+obj-$(CONFIG_CMA_DEBUGFS) += cma_debug.o
diff --git a/mm/cleancache.c b/mm/cleancache.c
index 053bcd8f12fb..8fc50811119b 100644
--- a/mm/cleancache.c
+++ b/mm/cleancache.c
@@ -19,7 +19,7 @@
#include <linux/cleancache.h>
/*
- * cleancache_ops is set by cleancache_ops_register to contain the pointers
+ * cleancache_ops is set by cleancache_register_ops to contain the pointers
* to the cleancache "backend" implementation functions.
*/
static struct cleancache_ops *cleancache_ops __read_mostly;
@@ -34,145 +34,107 @@ static u64 cleancache_failed_gets;
static u64 cleancache_puts;
static u64 cleancache_invalidates;
-/*
- * When no backend is registered all calls to init_fs and init_shared_fs
- * are registered and fake poolids (FAKE_FS_POOLID_OFFSET or
- * FAKE_SHARED_FS_POOLID_OFFSET, plus offset in the respective array
- * [shared_|]fs_poolid_map) are given to the respective super block
- * (sb->cleancache_poolid) and no tmem_pools are created. When a backend
- * registers with cleancache the previous calls to init_fs and init_shared_fs
- * are executed to create tmem_pools and set the respective poolids. While no
- * backend is registered all "puts", "gets" and "flushes" are ignored or failed.
- */
-#define MAX_INITIALIZABLE_FS 32
-#define FAKE_FS_POOLID_OFFSET 1000
-#define FAKE_SHARED_FS_POOLID_OFFSET 2000
-
-#define FS_NO_BACKEND (-1)
-#define FS_UNKNOWN (-2)
-static int fs_poolid_map[MAX_INITIALIZABLE_FS];
-static int shared_fs_poolid_map[MAX_INITIALIZABLE_FS];
-static char *uuids[MAX_INITIALIZABLE_FS];
-/*
- * Mutex for the [shared_|]fs_poolid_map to guard against multiple threads
- * invoking umount (and ending in __cleancache_invalidate_fs) and also multiple
- * threads calling mount (and ending up in __cleancache_init_[shared|]fs).
- */
-static DEFINE_MUTEX(poolid_mutex);
-/*
- * When set to false (default) all calls to the cleancache functions, except
- * the __cleancache_invalidate_fs and __cleancache_init_[shared|]fs are guarded
- * by the if (!cleancache_ops) return. This means multiple threads (from
- * different filesystems) will be checking cleancache_ops. The usage of a
- * bool instead of a atomic_t or a bool guarded by a spinlock is OK - we are
- * OK if the time between the backend's have been initialized (and
- * cleancache_ops has been set to not NULL) and when the filesystems start
- * actually calling the backends. The inverse (when unloading) is obviously
- * not good - but this shim does not do that (yet).
- */
-
-/*
- * The backends and filesystems work all asynchronously. This is b/c the
- * backends can be built as modules.
- * The usual sequence of events is:
- * a) mount / -> __cleancache_init_fs is called. We set the
- * [shared_|]fs_poolid_map and uuids for.
- *
- * b). user does I/Os -> we call the rest of __cleancache_* functions
- * which return immediately as cleancache_ops is false.
- *
- * c). modprobe zcache -> cleancache_register_ops. We init the backend
- * and set cleancache_ops to true, and for any fs_poolid_map
- * (which is set by __cleancache_init_fs) we initialize the poolid.
- *
- * d). user does I/Os -> now that cleancache_ops is true all the
- * __cleancache_* functions can call the backend. They all check
- * that fs_poolid_map is valid and if so invoke the backend.
- *
- * e). umount / -> __cleancache_invalidate_fs, the fs_poolid_map is
- * reset (which is the second check in the __cleancache_* ops
- * to call the backend).
- *
- * The sequence of event could also be c), followed by a), and d). and e). The
- * c) would not happen anymore. There is also the chance of c), and one thread
- * doing a) + d), and another doing e). For that case we depend on the
- * filesystem calling __cleancache_invalidate_fs in the proper sequence (so
- * that it handles all I/Os before it invalidates the fs (which is last part
- * of unmounting process).
- *
- * Note: The acute reader will notice that there is no "rmmod zcache" case.
- * This is b/c the functionality for that is not yet implemented and when
- * done, will require some extra locking not yet devised.
- */
+static void cleancache_register_ops_sb(struct super_block *sb, void *unused)
+{
+ switch (sb->cleancache_poolid) {
+ case CLEANCACHE_NO_BACKEND:
+ __cleancache_init_fs(sb);
+ break;
+ case CLEANCACHE_NO_BACKEND_SHARED:
+ __cleancache_init_shared_fs(sb);
+ break;
+ }
+}
/*
- * Register operations for cleancache, returning previous thus allowing
- * detection of multiple backends and possible nesting.
+ * Register operations for cleancache. Returns 0 on success.
*/
-struct cleancache_ops *cleancache_register_ops(struct cleancache_ops *ops)
+int cleancache_register_ops(struct cleancache_ops *ops)
{
- struct cleancache_ops *old = cleancache_ops;
- int i;
+ if (cmpxchg(&cleancache_ops, NULL, ops))
+ return -EBUSY;
- mutex_lock(&poolid_mutex);
- for (i = 0; i < MAX_INITIALIZABLE_FS; i++) {
- if (fs_poolid_map[i] == FS_NO_BACKEND)
- fs_poolid_map[i] = ops->init_fs(PAGE_SIZE);
- if (shared_fs_poolid_map[i] == FS_NO_BACKEND)
- shared_fs_poolid_map[i] = ops->init_shared_fs
- (uuids[i], PAGE_SIZE);
- }
/*
- * We MUST set cleancache_ops _after_ we have called the backends
- * init_fs or init_shared_fs functions. Otherwise the compiler might
- * re-order where cleancache_ops is set in this function.
+ * A cleancache backend can be built as a module and hence loaded after
+ * a cleancache enabled filesystem has called cleancache_init_fs. To
+ * handle such a scenario, here we call ->init_fs or ->init_shared_fs
+ * for each active super block. To differentiate between local and
+ * shared filesystems, we temporarily initialize sb->cleancache_poolid
+ * to CLEANCACHE_NO_BACKEND or CLEANCACHE_NO_BACKEND_SHARED
+ * respectively in case there is no backend registered at the time
+ * cleancache_init_fs or cleancache_init_shared_fs is called.
+ *
+ * Since filesystems can be mounted concurrently with cleancache
+ * backend registration, we have to be careful to guarantee that all
+ * cleancache enabled filesystems that has been mounted by the time
+ * cleancache_register_ops is called has got and all mounted later will
+ * get cleancache_poolid. This is assured by the following statements
+ * tied together:
+ *
+ * a) iterate_supers skips only those super blocks that has started
+ * ->kill_sb
+ *
+ * b) if iterate_supers encounters a super block that has not finished
+ * ->mount yet, it waits until it is finished
+ *
+ * c) cleancache_init_fs is called from ->mount and
+ * cleancache_invalidate_fs is called from ->kill_sb
+ *
+ * d) we call iterate_supers after cleancache_ops has been set
+ *
+ * From a) it follows that if iterate_supers skips a super block, then
+ * either the super block is already dead, in which case we do not need
+ * to bother initializing cleancache for it, or it was mounted after we
+ * initiated iterate_supers. In the latter case, it must have seen
+ * cleancache_ops set according to d) and initialized cleancache from
+ * ->mount by itself according to c). This proves that we call
+ * ->init_fs at least once for each active super block.
+ *
+ * From b) and c) it follows that if iterate_supers encounters a super
+ * block that has already started ->init_fs, it will wait until ->mount
+ * and hence ->init_fs has finished, then check cleancache_poolid, see
+ * that it has already been set and therefore do nothing. This proves
+ * that we call ->init_fs no more than once for each super block.
+ *
+ * Combined together, the last two paragraphs prove the function
+ * correctness.
+ *
+ * Note that various cleancache callbacks may proceed before this
+ * function is called or even concurrently with it, but since
+ * CLEANCACHE_NO_BACKEND is negative, they will all result in a noop
+ * until the corresponding ->init_fs has been actually called and
+ * cleancache_ops has been set.
*/
- barrier();
- cleancache_ops = ops;
- mutex_unlock(&poolid_mutex);
- return old;
+ iterate_supers(cleancache_register_ops_sb, NULL);
+ return 0;
}
EXPORT_SYMBOL(cleancache_register_ops);
/* Called by a cleancache-enabled filesystem at time of mount */
void __cleancache_init_fs(struct super_block *sb)
{
- int i;
+ int pool_id = CLEANCACHE_NO_BACKEND;
- mutex_lock(&poolid_mutex);
- for (i = 0; i < MAX_INITIALIZABLE_FS; i++) {
- if (fs_poolid_map[i] == FS_UNKNOWN) {
- sb->cleancache_poolid = i + FAKE_FS_POOLID_OFFSET;
- if (cleancache_ops)
- fs_poolid_map[i] = cleancache_ops->init_fs(PAGE_SIZE);
- else
- fs_poolid_map[i] = FS_NO_BACKEND;
- break;
- }
+ if (cleancache_ops) {
+ pool_id = cleancache_ops->init_fs(PAGE_SIZE);
+ if (pool_id < 0)
+ pool_id = CLEANCACHE_NO_POOL;
}
- mutex_unlock(&poolid_mutex);
+ sb->cleancache_poolid = pool_id;
}
EXPORT_SYMBOL(__cleancache_init_fs);
/* Called by a cleancache-enabled clustered filesystem at time of mount */
-void __cleancache_init_shared_fs(char *uuid, struct super_block *sb)
+void __cleancache_init_shared_fs(struct super_block *sb)
{
- int i;
+ int pool_id = CLEANCACHE_NO_BACKEND_SHARED;
- mutex_lock(&poolid_mutex);
- for (i = 0; i < MAX_INITIALIZABLE_FS; i++) {
- if (shared_fs_poolid_map[i] == FS_UNKNOWN) {
- sb->cleancache_poolid = i + FAKE_SHARED_FS_POOLID_OFFSET;
- uuids[i] = uuid;
- if (cleancache_ops)
- shared_fs_poolid_map[i] = cleancache_ops->init_shared_fs
- (uuid, PAGE_SIZE);
- else
- shared_fs_poolid_map[i] = FS_NO_BACKEND;
- break;
- }
+ if (cleancache_ops) {
+ pool_id = cleancache_ops->init_shared_fs(sb->s_uuid, PAGE_SIZE);
+ if (pool_id < 0)
+ pool_id = CLEANCACHE_NO_POOL;
}
- mutex_unlock(&poolid_mutex);
+ sb->cleancache_poolid = pool_id;
}
EXPORT_SYMBOL(__cleancache_init_shared_fs);
@@ -202,19 +164,6 @@ static int cleancache_get_key(struct inode *inode,
}
/*
- * Returns a pool_id that is associated with a given fake poolid.
- */
-static int get_poolid_from_fake(int fake_pool_id)
-{
- if (fake_pool_id >= FAKE_SHARED_FS_POOLID_OFFSET)
- return shared_fs_poolid_map[fake_pool_id -
- FAKE_SHARED_FS_POOLID_OFFSET];
- else if (fake_pool_id >= FAKE_FS_POOLID_OFFSET)
- return fs_poolid_map[fake_pool_id - FAKE_FS_POOLID_OFFSET];
- return FS_NO_BACKEND;
-}
-
-/*
* "Get" data from cleancache associated with the poolid/inode/index
* that were specified when the data was put to cleanache and, if
* successful, use it to fill the specified page with data and return 0.
@@ -229,7 +178,6 @@ int __cleancache_get_page(struct page *page)
{
int ret = -1;
int pool_id;
- int fake_pool_id;
struct cleancache_filekey key = { .u.key = { 0 } };
if (!cleancache_ops) {
@@ -238,17 +186,14 @@ int __cleancache_get_page(struct page *page)
}
VM_BUG_ON_PAGE(!PageLocked(page), page);
- fake_pool_id = page->mapping->host->i_sb->cleancache_poolid;
- if (fake_pool_id < 0)
+ pool_id = page->mapping->host->i_sb->cleancache_poolid;
+ if (pool_id < 0)
goto out;
- pool_id = get_poolid_from_fake(fake_pool_id);
if (cleancache_get_key(page->mapping->host, &key) < 0)
goto out;
- if (pool_id >= 0)
- ret = cleancache_ops->get_page(pool_id,
- key, page->index, page);
+ ret = cleancache_ops->get_page(pool_id, key, page->index, page);
if (ret == 0)
cleancache_succ_gets++;
else
@@ -271,7 +216,6 @@ EXPORT_SYMBOL(__cleancache_get_page);
void __cleancache_put_page(struct page *page)
{
int pool_id;
- int fake_pool_id;
struct cleancache_filekey key = { .u.key = { 0 } };
if (!cleancache_ops) {
@@ -280,12 +224,7 @@ void __cleancache_put_page(struct page *page)
}
VM_BUG_ON_PAGE(!PageLocked(page), page);
- fake_pool_id = page->mapping->host->i_sb->cleancache_poolid;
- if (fake_pool_id < 0)
- return;
-
- pool_id = get_poolid_from_fake(fake_pool_id);
-
+ pool_id = page->mapping->host->i_sb->cleancache_poolid;
if (pool_id >= 0 &&
cleancache_get_key(page->mapping->host, &key) >= 0) {
cleancache_ops->put_page(pool_id, key, page->index, page);
@@ -306,18 +245,13 @@ void __cleancache_invalidate_page(struct address_space *mapping,
struct page *page)
{
/* careful... page->mapping is NULL sometimes when this is called */
- int pool_id;
- int fake_pool_id = mapping->host->i_sb->cleancache_poolid;
+ int pool_id = mapping->host->i_sb->cleancache_poolid;
struct cleancache_filekey key = { .u.key = { 0 } };
if (!cleancache_ops)
return;
- if (fake_pool_id >= 0) {
- pool_id = get_poolid_from_fake(fake_pool_id);
- if (pool_id < 0)
- return;
-
+ if (pool_id >= 0) {
VM_BUG_ON_PAGE(!PageLocked(page), page);
if (cleancache_get_key(mapping->host, &key) >= 0) {
cleancache_ops->invalidate_page(pool_id,
@@ -339,18 +273,12 @@ EXPORT_SYMBOL(__cleancache_invalidate_page);
*/
void __cleancache_invalidate_inode(struct address_space *mapping)
{
- int pool_id;
- int fake_pool_id = mapping->host->i_sb->cleancache_poolid;
+ int pool_id = mapping->host->i_sb->cleancache_poolid;
struct cleancache_filekey key = { .u.key = { 0 } };
if (!cleancache_ops)
return;
- if (fake_pool_id < 0)
- return;
-
- pool_id = get_poolid_from_fake(fake_pool_id);
-
if (pool_id >= 0 && cleancache_get_key(mapping->host, &key) >= 0)
cleancache_ops->invalidate_inode(pool_id, key);
}
@@ -363,32 +291,18 @@ EXPORT_SYMBOL(__cleancache_invalidate_inode);
*/
void __cleancache_invalidate_fs(struct super_block *sb)
{
- int index;
- int fake_pool_id = sb->cleancache_poolid;
- int old_poolid = fake_pool_id;
+ int pool_id;
- mutex_lock(&poolid_mutex);
- if (fake_pool_id >= FAKE_SHARED_FS_POOLID_OFFSET) {
- index = fake_pool_id - FAKE_SHARED_FS_POOLID_OFFSET;
- old_poolid = shared_fs_poolid_map[index];
- shared_fs_poolid_map[index] = FS_UNKNOWN;
- uuids[index] = NULL;
- } else if (fake_pool_id >= FAKE_FS_POOLID_OFFSET) {
- index = fake_pool_id - FAKE_FS_POOLID_OFFSET;
- old_poolid = fs_poolid_map[index];
- fs_poolid_map[index] = FS_UNKNOWN;
- }
- sb->cleancache_poolid = -1;
- if (cleancache_ops)
- cleancache_ops->invalidate_fs(old_poolid);
- mutex_unlock(&poolid_mutex);
+ pool_id = sb->cleancache_poolid;
+ sb->cleancache_poolid = CLEANCACHE_NO_POOL;
+
+ if (cleancache_ops && pool_id >= 0)
+ cleancache_ops->invalidate_fs(pool_id);
}
EXPORT_SYMBOL(__cleancache_invalidate_fs);
static int __init init_cleancache(void)
{
- int i;
-
#ifdef CONFIG_DEBUG_FS
struct dentry *root = debugfs_create_dir("cleancache", NULL);
if (root == NULL)
@@ -400,10 +314,6 @@ static int __init init_cleancache(void)
debugfs_create_u64("invalidates", S_IRUGO,
root, &cleancache_invalidates);
#endif
- for (i = 0; i < MAX_INITIALIZABLE_FS; i++) {
- fs_poolid_map[i] = FS_UNKNOWN;
- shared_fs_poolid_map[i] = FS_UNKNOWN;
- }
return 0;
}
module_init(init_cleancache)
diff --git a/mm/cma.c b/mm/cma.c
index 75016fd1de90..3a7a67b93394 100644
--- a/mm/cma.c
+++ b/mm/cma.c
@@ -23,6 +23,7 @@
# define DEBUG
#endif
#endif
+#define CREATE_TRACE_POINTS
#include <linux/memblock.h>
#include <linux/err.h>
@@ -34,59 +35,54 @@
#include <linux/cma.h>
#include <linux/highmem.h>
#include <linux/io.h>
+#include <trace/events/cma.h>
-struct cma {
- unsigned long base_pfn;
- unsigned long count;
- unsigned long *bitmap;
- unsigned int order_per_bit; /* Order of pages represented by one bit */
- struct mutex lock;
-};
+#include "cma.h"
-static struct cma cma_areas[MAX_CMA_AREAS];
-static unsigned cma_area_count;
+struct cma cma_areas[MAX_CMA_AREAS];
+unsigned cma_area_count;
static DEFINE_MUTEX(cma_mutex);
-phys_addr_t cma_get_base(struct cma *cma)
+phys_addr_t cma_get_base(const struct cma *cma)
{
return PFN_PHYS(cma->base_pfn);
}
-unsigned long cma_get_size(struct cma *cma)
+unsigned long cma_get_size(const struct cma *cma)
{
return cma->count << PAGE_SHIFT;
}
-static unsigned long cma_bitmap_aligned_mask(struct cma *cma, int align_order)
+static unsigned long cma_bitmap_aligned_mask(const struct cma *cma,
+ int align_order)
{
if (align_order <= cma->order_per_bit)
return 0;
return (1UL << (align_order - cma->order_per_bit)) - 1;
}
-static unsigned long cma_bitmap_aligned_offset(struct cma *cma, int align_order)
+/*
+ * Find a PFN aligned to the specified order and return an offset represented in
+ * order_per_bits.
+ */
+static unsigned long cma_bitmap_aligned_offset(const struct cma *cma,
+ int align_order)
{
- unsigned int alignment;
-
if (align_order <= cma->order_per_bit)
return 0;
- alignment = 1UL << (align_order - cma->order_per_bit);
- return ALIGN(cma->base_pfn, alignment) -
- (cma->base_pfn >> cma->order_per_bit);
-}
-static unsigned long cma_bitmap_maxno(struct cma *cma)
-{
- return cma->count >> cma->order_per_bit;
+ return (ALIGN(cma->base_pfn, (1UL << align_order))
+ - cma->base_pfn) >> cma->order_per_bit;
}
-static unsigned long cma_bitmap_pages_to_bits(struct cma *cma,
- unsigned long pages)
+static unsigned long cma_bitmap_pages_to_bits(const struct cma *cma,
+ unsigned long pages)
{
return ALIGN(pages, 1UL << cma->order_per_bit) >> cma->order_per_bit;
}
-static void cma_clear_bitmap(struct cma *cma, unsigned long pfn, int count)
+static void cma_clear_bitmap(struct cma *cma, unsigned long pfn,
+ unsigned int count)
{
unsigned long bitmap_no, bitmap_count;
@@ -132,6 +128,12 @@ static int __init cma_activate_area(struct cma *cma)
} while (--i);
mutex_init(&cma->lock);
+
+#ifdef CONFIG_CMA_DEBUGFS
+ INIT_HLIST_HEAD(&cma->mem_head);
+ spin_lock_init(&cma->mem_head_lock);
+#endif
+
return 0;
err:
@@ -165,7 +167,8 @@ core_initcall(cma_init_reserved_areas);
* This function creates custom contiguous area from already reserved memory.
*/
int __init cma_init_reserved_mem(phys_addr_t base, phys_addr_t size,
- int order_per_bit, struct cma **res_cma)
+ unsigned int order_per_bit,
+ struct cma **res_cma)
{
struct cma *cma;
phys_addr_t alignment;
@@ -356,7 +359,7 @@ err:
* This function allocates part of contiguous memory on specific
* contiguous memory area.
*/
-struct page *cma_alloc(struct cma *cma, int count, unsigned int align)
+struct page *cma_alloc(struct cma *cma, unsigned int count, unsigned int align)
{
unsigned long mask, offset, pfn, start = 0;
unsigned long bitmap_maxno, bitmap_no, bitmap_count;
@@ -413,6 +416,8 @@ struct page *cma_alloc(struct cma *cma, int count, unsigned int align)
start = bitmap_no + mask + 1;
}
+ trace_cma_alloc(page ? pfn : -1UL, page, count, align);
+
pr_debug("%s(): returned %p\n", __func__, page);
return page;
}
@@ -427,7 +432,7 @@ struct page *cma_alloc(struct cma *cma, int count, unsigned int align)
* It returns false when provided pages do not belong to contiguous area and
* true otherwise.
*/
-bool cma_release(struct cma *cma, struct page *pages, int count)
+bool cma_release(struct cma *cma, const struct page *pages, unsigned int count)
{
unsigned long pfn;
@@ -445,6 +450,7 @@ bool cma_release(struct cma *cma, struct page *pages, int count)
free_contig_range(pfn, count);
cma_clear_bitmap(cma, pfn, count);
+ trace_cma_release(pfn, pages, count);
return true;
}
diff --git a/mm/cma.h b/mm/cma.h
new file mode 100644
index 000000000000..1132d733556d
--- /dev/null
+++ b/mm/cma.h
@@ -0,0 +1,24 @@
+#ifndef __MM_CMA_H__
+#define __MM_CMA_H__
+
+struct cma {
+ unsigned long base_pfn;
+ unsigned long count;
+ unsigned long *bitmap;
+ unsigned int order_per_bit; /* Order of pages represented by one bit */
+ struct mutex lock;
+#ifdef CONFIG_CMA_DEBUGFS
+ struct hlist_head mem_head;
+ spinlock_t mem_head_lock;
+#endif
+};
+
+extern struct cma cma_areas[MAX_CMA_AREAS];
+extern unsigned cma_area_count;
+
+static unsigned long cma_bitmap_maxno(struct cma *cma)
+{
+ return cma->count >> cma->order_per_bit;
+}
+
+#endif
diff --git a/mm/cma_debug.c b/mm/cma_debug.c
new file mode 100644
index 000000000000..7621ee34daa0
--- /dev/null
+++ b/mm/cma_debug.c
@@ -0,0 +1,205 @@
+/*
+ * CMA DebugFS Interface
+ *
+ * Copyright (c) 2015 Sasha Levin <sasha.levin@oracle.com>
+ */
+
+
+#include <linux/debugfs.h>
+#include <linux/cma.h>
+#include <linux/list.h>
+#include <linux/kernel.h>
+#include <linux/slab.h>
+#include <linux/mm_types.h>
+
+#include "cma.h"
+
+struct cma_mem {
+ struct hlist_node node;
+ struct page *p;
+ unsigned long n;
+};
+
+static struct dentry *cma_debugfs_root;
+
+static int cma_debugfs_get(void *data, u64 *val)
+{
+ unsigned long *p = data;
+
+ *val = *p;
+
+ return 0;
+}
+DEFINE_SIMPLE_ATTRIBUTE(cma_debugfs_fops, cma_debugfs_get, NULL, "%llu\n");
+
+static int cma_used_get(void *data, u64 *val)
+{
+ struct cma *cma = data;
+ unsigned long used;
+
+ mutex_lock(&cma->lock);
+ /* pages counter is smaller than sizeof(int) */
+ used = bitmap_weight(cma->bitmap, (int)cma->count);
+ mutex_unlock(&cma->lock);
+ *val = (u64)used << cma->order_per_bit;
+
+ return 0;
+}
+DEFINE_SIMPLE_ATTRIBUTE(cma_used_fops, cma_used_get, NULL, "%llu\n");
+
+static int cma_maxchunk_get(void *data, u64 *val)
+{
+ struct cma *cma = data;
+ unsigned long maxchunk = 0;
+ unsigned long start, end = 0;
+
+ mutex_lock(&cma->lock);
+ for (;;) {
+ start = find_next_zero_bit(cma->bitmap, cma->count, end);
+ if (start >= cma->count)
+ break;
+ end = find_next_bit(cma->bitmap, cma->count, start);
+ maxchunk = max(end - start, maxchunk);
+ }
+ mutex_unlock(&cma->lock);
+ *val = (u64)maxchunk << cma->order_per_bit;
+
+ return 0;
+}
+DEFINE_SIMPLE_ATTRIBUTE(cma_maxchunk_fops, cma_maxchunk_get, NULL, "%llu\n");
+
+static void cma_add_to_cma_mem_list(struct cma *cma, struct cma_mem *mem)
+{
+ spin_lock(&cma->mem_head_lock);
+ hlist_add_head(&mem->node, &cma->mem_head);
+ spin_unlock(&cma->mem_head_lock);
+}
+
+static struct cma_mem *cma_get_entry_from_list(struct cma *cma)
+{
+ struct cma_mem *mem = NULL;
+
+ spin_lock(&cma->mem_head_lock);
+ if (!hlist_empty(&cma->mem_head)) {
+ mem = hlist_entry(cma->mem_head.first, struct cma_mem, node);
+ hlist_del_init(&mem->node);
+ }
+ spin_unlock(&cma->mem_head_lock);
+
+ return mem;
+}
+
+static int cma_free_mem(struct cma *cma, int count)
+{
+ struct cma_mem *mem = NULL;
+
+ while (count) {
+ mem = cma_get_entry_from_list(cma);
+ if (mem == NULL)
+ return 0;
+
+ if (mem->n <= count) {
+ cma_release(cma, mem->p, mem->n);
+ count -= mem->n;
+ kfree(mem);
+ } else if (cma->order_per_bit == 0) {
+ cma_release(cma, mem->p, count);
+ mem->p += count;
+ mem->n -= count;
+ count = 0;
+ cma_add_to_cma_mem_list(cma, mem);
+ } else {
+ pr_debug("cma: cannot release partial block when order_per_bit != 0\n");
+ cma_add_to_cma_mem_list(cma, mem);
+ break;
+ }
+ }
+
+ return 0;
+
+}
+
+static int cma_free_write(void *data, u64 val)
+{
+ int pages = val;
+ struct cma *cma = data;
+
+ return cma_free_mem(cma, pages);
+}
+DEFINE_SIMPLE_ATTRIBUTE(cma_free_fops, NULL, cma_free_write, "%llu\n");
+
+static int cma_alloc_mem(struct cma *cma, int count)
+{
+ struct cma_mem *mem;
+ struct page *p;
+
+ mem = kzalloc(sizeof(*mem), GFP_KERNEL);
+ if (!mem)
+ return -ENOMEM;
+
+ p = cma_alloc(cma, count, 0);
+ if (!p) {
+ kfree(mem);
+ return -ENOMEM;
+ }
+
+ mem->p = p;
+ mem->n = count;
+
+ cma_add_to_cma_mem_list(cma, mem);
+
+ return 0;
+}
+
+static int cma_alloc_write(void *data, u64 val)
+{
+ int pages = val;
+ struct cma *cma = data;
+
+ return cma_alloc_mem(cma, pages);
+}
+DEFINE_SIMPLE_ATTRIBUTE(cma_alloc_fops, NULL, cma_alloc_write, "%llu\n");
+
+static void cma_debugfs_add_one(struct cma *cma, int idx)
+{
+ struct dentry *tmp;
+ char name[16];
+ int u32s;
+
+ sprintf(name, "cma-%d", idx);
+
+ tmp = debugfs_create_dir(name, cma_debugfs_root);
+
+ debugfs_create_file("alloc", S_IWUSR, cma_debugfs_root, cma,
+ &cma_alloc_fops);
+
+ debugfs_create_file("free", S_IWUSR, cma_debugfs_root, cma,
+ &cma_free_fops);
+
+ debugfs_create_file("base_pfn", S_IRUGO, tmp,
+ &cma->base_pfn, &cma_debugfs_fops);
+ debugfs_create_file("count", S_IRUGO, tmp,
+ &cma->count, &cma_debugfs_fops);
+ debugfs_create_file("order_per_bit", S_IRUGO, tmp,
+ &cma->order_per_bit, &cma_debugfs_fops);
+ debugfs_create_file("used", S_IRUGO, tmp, cma, &cma_used_fops);
+ debugfs_create_file("maxchunk", S_IRUGO, tmp, cma, &cma_maxchunk_fops);
+
+ u32s = DIV_ROUND_UP(cma_bitmap_maxno(cma), BITS_PER_BYTE * sizeof(u32));
+ debugfs_create_u32_array("bitmap", S_IRUGO, tmp, (u32*)cma->bitmap, u32s);
+}
+
+static int __init cma_debugfs_init(void)
+{
+ int i;
+
+ cma_debugfs_root = debugfs_create_dir("cma", NULL);
+ if (!cma_debugfs_root)
+ return -ENOMEM;
+
+ for (i = 0; i < cma_area_count; i++)
+ cma_debugfs_add_one(&cma_areas[i], i);
+
+ return 0;
+}
+late_initcall(cma_debugfs_init);
diff --git a/mm/compaction.c b/mm/compaction.c
index 8c0d9459b54a..018f08da99a2 100644
--- a/mm/compaction.c
+++ b/mm/compaction.c
@@ -391,28 +391,6 @@ static inline bool compact_should_abort(struct compact_control *cc)
return false;
}
-/* Returns true if the page is within a block suitable for migration to */
-static bool suitable_migration_target(struct page *page)
-{
- /* If the page is a large free page, then disallow migration */
- if (PageBuddy(page)) {
- /*
- * We are checking page_order without zone->lock taken. But
- * the only small danger is that we skip a potentially suitable
- * pageblock, so it's not worth to check order for valid range.
- */
- if (page_order_unsafe(page) >= pageblock_order)
- return false;
- }
-
- /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
- if (migrate_async_suitable(get_pageblock_migratetype(page)))
- return true;
-
- /* Otherwise skip the block */
- return false;
-}
-
/*
* Isolate free pages onto a private freelist. If @strict is true, will abort
* returning 0 on any invalid PFNs or non-free pages inside of the pageblock
@@ -896,6 +874,29 @@ isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION
+
+/* Returns true if the page is within a block suitable for migration to */
+static bool suitable_migration_target(struct page *page)
+{
+ /* If the page is a large free page, then disallow migration */
+ if (PageBuddy(page)) {
+ /*
+ * We are checking page_order without zone->lock taken. But
+ * the only small danger is that we skip a potentially suitable
+ * pageblock, so it's not worth to check order for valid range.
+ */
+ if (page_order_unsafe(page) >= pageblock_order)
+ return false;
+ }
+
+ /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
+ if (migrate_async_suitable(get_pageblock_migratetype(page)))
+ return true;
+
+ /* Otherwise skip the block */
+ return false;
+}
+
/*
* Based on information in the current compact_control, find blocks
* suitable for isolating free pages from and then isolate them.
@@ -1047,6 +1048,12 @@ typedef enum {
} isolate_migrate_t;
/*
+ * Allow userspace to control policy on scanning the unevictable LRU for
+ * compactable pages.
+ */
+int sysctl_compact_unevictable_allowed __read_mostly = 1;
+
+/*
* Isolate all pages that can be migrated from the first suitable block,
* starting at the block pointed to by the migrate scanner pfn within
* compact_control.
@@ -1057,6 +1064,7 @@ static isolate_migrate_t isolate_migratepages(struct zone *zone,
unsigned long low_pfn, end_pfn;
struct page *page;
const isolate_mode_t isolate_mode =
+ (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
(cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
/*
@@ -1174,13 +1182,24 @@ static int __compact_finished(struct zone *zone, struct compact_control *cc,
/* Direct compactor: Is a suitable page free? */
for (order = cc->order; order < MAX_ORDER; order++) {
struct free_area *area = &zone->free_area[order];
+ bool can_steal;
/* Job done if page is free of the right migratetype */
if (!list_empty(&area->free_list[migratetype]))
return COMPACT_PARTIAL;
- /* Job done if allocation would set block type */
- if (order >= pageblock_order && area->nr_free)
+#ifdef CONFIG_CMA
+ /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
+ if (migratetype == MIGRATE_MOVABLE &&
+ !list_empty(&area->free_list[MIGRATE_CMA]))
+ return COMPACT_PARTIAL;
+#endif
+ /*
+ * Job done if allocation would steal freepages from
+ * other migratetype buddy lists.
+ */
+ if (find_suitable_fallback(area, order, migratetype,
+ true, &can_steal) != -1)
return COMPACT_PARTIAL;
}
@@ -1587,6 +1606,14 @@ static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
INIT_LIST_HEAD(&cc->freepages);
INIT_LIST_HEAD(&cc->migratepages);
+ /*
+ * When called via /proc/sys/vm/compact_memory
+ * this makes sure we compact the whole zone regardless of
+ * cached scanner positions.
+ */
+ if (cc->order == -1)
+ __reset_isolation_suitable(zone);
+
if (cc->order == -1 || !compaction_deferred(zone, cc->order))
compact_zone(zone, cc);
diff --git a/mm/filemap.c b/mm/filemap.c
index ad7242043bdb..6bf5e42d560a 100644
--- a/mm/filemap.c
+++ b/mm/filemap.c
@@ -13,7 +13,6 @@
#include <linux/compiler.h>
#include <linux/fs.h>
#include <linux/uaccess.h>
-#include <linux/aio.h>
#include <linux/capability.h>
#include <linux/kernel_stat.h>
#include <linux/gfp.h>
@@ -203,16 +202,15 @@ void __delete_from_page_cache(struct page *page, void *shadow)
BUG_ON(page_mapped(page));
/*
- * Some filesystems seem to re-dirty the page even after
- * the VM has canceled the dirty bit (eg ext3 journaling).
+ * At this point page must be either written or cleaned by truncate.
+ * Dirty page here signals a bug and loss of unwritten data.
*
- * Fix it up by doing a final dirty accounting check after
- * having removed the page entirely.
+ * This fixes dirty accounting after removing the page entirely but
+ * leaves PageDirty set: it has no effect for truncated page and
+ * anyway will be cleared before returning page into buddy allocator.
*/
- if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
- dec_zone_page_state(page, NR_FILE_DIRTY);
- dec_bdi_stat(inode_to_bdi(mapping->host), BDI_RECLAIMABLE);
- }
+ if (WARN_ON_ONCE(PageDirty(page)))
+ account_page_cleaned(page, mapping);
}
/**
@@ -1695,7 +1693,7 @@ generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
loff_t *ppos = &iocb->ki_pos;
loff_t pos = *ppos;
- if (io_is_direct(file)) {
+ if (iocb->ki_flags & IOCB_DIRECT) {
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
size_t count = iov_iter_count(iter);
@@ -1708,7 +1706,7 @@ generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
pos + count - 1);
if (!retval) {
struct iov_iter data = *iter;
- retval = mapping->a_ops->direct_IO(READ, iocb, &data, pos);
+ retval = mapping->a_ops->direct_IO(iocb, &data, pos);
}
if (retval > 0) {
@@ -2261,41 +2259,38 @@ EXPORT_SYMBOL(read_cache_page_gfp);
* Returns appropriate error code that caller should return or
* zero in case that write should be allowed.
*/
-inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
+inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
{
+ struct file *file = iocb->ki_filp;
struct inode *inode = file->f_mapping->host;
unsigned long limit = rlimit(RLIMIT_FSIZE);
+ loff_t pos;
- if (unlikely(*pos < 0))
- return -EINVAL;
+ if (!iov_iter_count(from))
+ return 0;
- if (!isblk) {
- /* FIXME: this is for backwards compatibility with 2.4 */
- if (file->f_flags & O_APPEND)
- *pos = i_size_read(inode);
+ /* FIXME: this is for backwards compatibility with 2.4 */
+ if (iocb->ki_flags & IOCB_APPEND)
+ iocb->ki_pos = i_size_read(inode);
- if (limit != RLIM_INFINITY) {
- if (*pos >= limit) {
- send_sig(SIGXFSZ, current, 0);
- return -EFBIG;
- }
- if (*count > limit - (typeof(limit))*pos) {
- *count = limit - (typeof(limit))*pos;
- }
+ pos = iocb->ki_pos;
+
+ if (limit != RLIM_INFINITY) {
+ if (iocb->ki_pos >= limit) {
+ send_sig(SIGXFSZ, current, 0);
+ return -EFBIG;
}
+ iov_iter_truncate(from, limit - (unsigned long)pos);
}
/*
* LFS rule
*/
- if (unlikely(*pos + *count > MAX_NON_LFS &&
+ if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
!(file->f_flags & O_LARGEFILE))) {
- if (*pos >= MAX_NON_LFS) {
+ if (pos >= MAX_NON_LFS)
return -EFBIG;
- }
- if (*count > MAX_NON_LFS - (unsigned long)*pos) {
- *count = MAX_NON_LFS - (unsigned long)*pos;
- }
+ iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
}
/*
@@ -2305,34 +2300,11 @@ inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, i
* exceeded without writing data we send a signal and return EFBIG.
* Linus frestrict idea will clean these up nicely..
*/
- if (likely(!isblk)) {
- if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
- if (*count || *pos > inode->i_sb->s_maxbytes) {
- return -EFBIG;
- }
- /* zero-length writes at ->s_maxbytes are OK */
- }
-
- if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
- *count = inode->i_sb->s_maxbytes - *pos;
- } else {
-#ifdef CONFIG_BLOCK
- loff_t isize;
- if (bdev_read_only(I_BDEV(inode)))
- return -EPERM;
- isize = i_size_read(inode);
- if (*pos >= isize) {
- if (*count || *pos > isize)
- return -ENOSPC;
- }
+ if (unlikely(pos >= inode->i_sb->s_maxbytes))
+ return -EFBIG;
- if (*pos + *count > isize)
- *count = isize - *pos;
-#else
- return -EPERM;
-#endif
- }
- return 0;
+ iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
+ return iov_iter_count(from);
}
EXPORT_SYMBOL(generic_write_checks);
@@ -2396,7 +2368,7 @@ generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
}
data = *from;
- written = mapping->a_ops->direct_IO(WRITE, iocb, &data, pos);
+ written = mapping->a_ops->direct_IO(iocb, &data, pos);
/*
* Finally, try again to invalidate clean pages which might have been
@@ -2558,23 +2530,12 @@ ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
struct file *file = iocb->ki_filp;
struct address_space * mapping = file->f_mapping;
struct inode *inode = mapping->host;
- loff_t pos = iocb->ki_pos;
ssize_t written = 0;
ssize_t err;
ssize_t status;
- size_t count = iov_iter_count(from);
/* We can write back this queue in page reclaim */
current->backing_dev_info = inode_to_bdi(inode);
- err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
- if (err)
- goto out;
-
- if (count == 0)
- goto out;
-
- iov_iter_truncate(from, count);
-
err = file_remove_suid(file);
if (err)
goto out;
@@ -2583,10 +2544,10 @@ ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
if (err)
goto out;
- if (io_is_direct(file)) {
- loff_t endbyte;
+ if (iocb->ki_flags & IOCB_DIRECT) {
+ loff_t pos, endbyte;
- written = generic_file_direct_write(iocb, from, pos);
+ written = generic_file_direct_write(iocb, from, iocb->ki_pos);
/*
* If the write stopped short of completing, fall back to
* buffered writes. Some filesystems do this for writes to
@@ -2594,13 +2555,10 @@ ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
* not succeed (even if it did, DAX does not handle dirty
* page-cache pages correctly).
*/
- if (written < 0 || written == count || IS_DAX(inode))
+ if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
goto out;
- pos += written;
- count -= written;
-
- status = generic_perform_write(file, from, pos);
+ status = generic_perform_write(file, from, pos = iocb->ki_pos);
/*
* If generic_perform_write() returned a synchronous error
* then we want to return the number of bytes which were
@@ -2612,15 +2570,15 @@ ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
err = status;
goto out;
}
- iocb->ki_pos = pos + status;
/*
* We need to ensure that the page cache pages are written to
* disk and invalidated to preserve the expected O_DIRECT
* semantics.
*/
endbyte = pos + status - 1;
- err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
+ err = filemap_write_and_wait_range(mapping, pos, endbyte);
if (err == 0) {
+ iocb->ki_pos = endbyte + 1;
written += status;
invalidate_mapping_pages(mapping,
pos >> PAGE_CACHE_SHIFT,
@@ -2632,9 +2590,9 @@ ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
*/
}
} else {
- written = generic_perform_write(file, from, pos);
- if (likely(written >= 0))
- iocb->ki_pos = pos + written;
+ written = generic_perform_write(file, from, iocb->ki_pos);
+ if (likely(written > 0))
+ iocb->ki_pos += written;
}
out:
current->backing_dev_info = NULL;
@@ -2658,7 +2616,9 @@ ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
ssize_t ret;
mutex_lock(&inode->i_mutex);
- ret = __generic_file_write_iter(iocb, from);
+ ret = generic_write_checks(iocb, from);
+ if (ret > 0)
+ ret = __generic_file_write_iter(iocb, from);
mutex_unlock(&inode->i_mutex);
if (ret > 0) {
diff --git a/mm/gup.c b/mm/gup.c
index a6e24e246f86..6297f6bccfb1 100644
--- a/mm/gup.c
+++ b/mm/gup.c
@@ -92,7 +92,7 @@ retry:
*/
mark_page_accessed(page);
}
- if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
+ if ((flags & FOLL_POPULATE) && (vma->vm_flags & VM_LOCKED)) {
/*
* The preliminary mapping check is mainly to avoid the
* pointless overhead of lock_page on the ZERO_PAGE
@@ -265,8 +265,8 @@ static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
unsigned int fault_flags = 0;
int ret;
- /* For mlock, just skip the stack guard page. */
- if ((*flags & FOLL_MLOCK) &&
+ /* For mm_populate(), just skip the stack guard page. */
+ if ((*flags & FOLL_POPULATE) &&
(stack_guard_page_start(vma, address) ||
stack_guard_page_end(vma, address + PAGE_SIZE)))
return -ENOENT;
@@ -819,6 +819,124 @@ long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
EXPORT_SYMBOL(get_user_pages);
/**
+ * populate_vma_page_range() - populate a range of pages in the vma.
+ * @vma: target vma
+ * @start: start address
+ * @end: end address
+ * @nonblocking:
+ *
+ * This takes care of mlocking the pages too if VM_LOCKED is set.
+ *
+ * return 0 on success, negative error code on error.
+ *
+ * vma->vm_mm->mmap_sem must be held.
+ *
+ * If @nonblocking is NULL, it may be held for read or write and will
+ * be unperturbed.
+ *
+ * If @nonblocking is non-NULL, it must held for read only and may be
+ * released. If it's released, *@nonblocking will be set to 0.
+ */
+long populate_vma_page_range(struct vm_area_struct *vma,
+ unsigned long start, unsigned long end, int *nonblocking)
+{
+ struct mm_struct *mm = vma->vm_mm;
+ unsigned long nr_pages = (end - start) / PAGE_SIZE;
+ int gup_flags;
+
+ VM_BUG_ON(start & ~PAGE_MASK);
+ VM_BUG_ON(end & ~PAGE_MASK);
+ VM_BUG_ON_VMA(start < vma->vm_start, vma);
+ VM_BUG_ON_VMA(end > vma->vm_end, vma);
+ VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
+
+ gup_flags = FOLL_TOUCH | FOLL_POPULATE;
+ /*
+ * We want to touch writable mappings with a write fault in order
+ * to break COW, except for shared mappings because these don't COW
+ * and we would not want to dirty them for nothing.
+ */
+ if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
+ gup_flags |= FOLL_WRITE;
+
+ /*
+ * We want mlock to succeed for regions that have any permissions
+ * other than PROT_NONE.
+ */
+ if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
+ gup_flags |= FOLL_FORCE;
+
+ /*
+ * We made sure addr is within a VMA, so the following will
+ * not result in a stack expansion that recurses back here.
+ */
+ return __get_user_pages(current, mm, start, nr_pages, gup_flags,
+ NULL, NULL, nonblocking);
+}
+
+/*
+ * __mm_populate - populate and/or mlock pages within a range of address space.
+ *
+ * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
+ * flags. VMAs must be already marked with the desired vm_flags, and
+ * mmap_sem must not be held.
+ */
+int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
+{
+ struct mm_struct *mm = current->mm;
+ unsigned long end, nstart, nend;
+ struct vm_area_struct *vma = NULL;
+ int locked = 0;
+ long ret = 0;
+
+ VM_BUG_ON(start & ~PAGE_MASK);
+ VM_BUG_ON(len != PAGE_ALIGN(len));
+ end = start + len;
+
+ for (nstart = start; nstart < end; nstart = nend) {
+ /*
+ * We want to fault in pages for [nstart; end) address range.
+ * Find first corresponding VMA.
+ */
+ if (!locked) {
+ locked = 1;
+ down_read(&mm->mmap_sem);
+ vma = find_vma(mm, nstart);
+ } else if (nstart >= vma->vm_end)
+ vma = vma->vm_next;
+ if (!vma || vma->vm_start >= end)
+ break;
+ /*
+ * Set [nstart; nend) to intersection of desired address
+ * range with the first VMA. Also, skip undesirable VMA types.
+ */
+ nend = min(end, vma->vm_end);
+ if (vma->vm_flags & (VM_IO | VM_PFNMAP))
+ continue;
+ if (nstart < vma->vm_start)
+ nstart = vma->vm_start;
+ /*
+ * Now fault in a range of pages. populate_vma_page_range()
+ * double checks the vma flags, so that it won't mlock pages
+ * if the vma was already munlocked.
+ */
+ ret = populate_vma_page_range(vma, nstart, nend, &locked);
+ if (ret < 0) {
+ if (ignore_errors) {
+ ret = 0;
+ continue; /* continue at next VMA */
+ }
+ break;
+ }
+ nend = nstart + ret * PAGE_SIZE;
+ ret = 0;
+ }
+ if (locked)
+ up_read(&mm->mmap_sem);
+ return ret; /* 0 or negative error code */
+}
+
+/**
* get_dump_page() - pin user page in memory while writing it to core dump
* @addr: user address
*
@@ -901,7 +1019,7 @@ static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
*
* for an example see gup_get_pte in arch/x86/mm/gup.c
*/
- pte_t pte = ACCESS_ONCE(*ptep);
+ pte_t pte = READ_ONCE(*ptep);
struct page *page;
/*
@@ -1191,7 +1309,7 @@ int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
local_irq_save(flags);
pgdp = pgd_offset(mm, addr);
do {
- pgd_t pgd = ACCESS_ONCE(*pgdp);
+ pgd_t pgd = READ_ONCE(*pgdp);
next = pgd_addr_end(addr, end);
if (pgd_none(pgd))
diff --git a/mm/huge_memory.c b/mm/huge_memory.c
index fc00c8cb5a82..078832cf3636 100644
--- a/mm/huge_memory.c
+++ b/mm/huge_memory.c
@@ -67,6 +67,7 @@ static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
static int khugepaged(void *none);
static int khugepaged_slab_init(void);
+static void khugepaged_slab_exit(void);
#define MM_SLOTS_HASH_BITS 10
static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
@@ -109,9 +110,6 @@ static int set_recommended_min_free_kbytes(void)
int nr_zones = 0;
unsigned long recommended_min;
- if (!khugepaged_enabled())
- return 0;
-
for_each_populated_zone(zone)
nr_zones++;
@@ -143,9 +141,8 @@ static int set_recommended_min_free_kbytes(void)
setup_per_zone_wmarks();
return 0;
}
-late_initcall(set_recommended_min_free_kbytes);
-static int start_khugepaged(void)
+static int start_stop_khugepaged(void)
{
int err = 0;
if (khugepaged_enabled()) {
@@ -156,6 +153,7 @@ static int start_khugepaged(void)
pr_err("khugepaged: kthread_run(khugepaged) failed\n");
err = PTR_ERR(khugepaged_thread);
khugepaged_thread = NULL;
+ goto fail;
}
if (!list_empty(&khugepaged_scan.mm_head))
@@ -166,7 +164,7 @@ static int start_khugepaged(void)
kthread_stop(khugepaged_thread);
khugepaged_thread = NULL;
}
-
+fail:
return err;
}
@@ -183,7 +181,7 @@ static struct page *get_huge_zero_page(void)
struct page *zero_page;
retry:
if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
- return ACCESS_ONCE(huge_zero_page);
+ return READ_ONCE(huge_zero_page);
zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
HPAGE_PMD_ORDER);
@@ -202,7 +200,7 @@ retry:
/* We take additional reference here. It will be put back by shrinker */
atomic_set(&huge_zero_refcount, 2);
preempt_enable();
- return ACCESS_ONCE(huge_zero_page);
+ return READ_ONCE(huge_zero_page);
}
static void put_huge_zero_page(void)
@@ -300,7 +298,7 @@ static ssize_t enabled_store(struct kobject *kobj,
int err;
mutex_lock(&khugepaged_mutex);
- err = start_khugepaged();
+ err = start_stop_khugepaged();
mutex_unlock(&khugepaged_mutex);
if (err)
@@ -634,27 +632,38 @@ static int __init hugepage_init(void)
err = hugepage_init_sysfs(&hugepage_kobj);
if (err)
- return err;
+ goto err_sysfs;
err = khugepaged_slab_init();
if (err)
- goto out;
+ goto err_slab;
- register_shrinker(&huge_zero_page_shrinker);
+ err = register_shrinker(&huge_zero_page_shrinker);
+ if (err)
+ goto err_hzp_shrinker;
/*
* By default disable transparent hugepages on smaller systems,
* where the extra memory used could hurt more than TLB overhead
* is likely to save. The admin can still enable it through /sys.
*/
- if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
+ if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
transparent_hugepage_flags = 0;
+ return 0;
+ }
- start_khugepaged();
+ err = start_stop_khugepaged();
+ if (err)
+ goto err_khugepaged;
return 0;
-out:
+err_khugepaged:
+ unregister_shrinker(&huge_zero_page_shrinker);
+err_hzp_shrinker:
+ khugepaged_slab_exit();
+err_slab:
hugepage_exit_sysfs(hugepage_kobj);
+err_sysfs:
return err;
}
subsys_initcall(hugepage_init);
@@ -708,7 +717,7 @@ static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
struct vm_area_struct *vma,
unsigned long haddr, pmd_t *pmd,
- struct page *page)
+ struct page *page, gfp_t gfp)
{
struct mem_cgroup *memcg;
pgtable_t pgtable;
@@ -716,7 +725,7 @@ static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
VM_BUG_ON_PAGE(!PageCompound(page), page);
- if (mem_cgroup_try_charge(page, mm, GFP_TRANSHUGE, &memcg))
+ if (mem_cgroup_try_charge(page, mm, gfp, &memcg))
return VM_FAULT_OOM;
pgtable = pte_alloc_one(mm, haddr);
@@ -822,7 +831,7 @@ int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
count_vm_event(THP_FAULT_FALLBACK);
return VM_FAULT_FALLBACK;
}
- if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
+ if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page, gfp))) {
put_page(page);
count_vm_event(THP_FAULT_FALLBACK);
return VM_FAULT_FALLBACK;
@@ -1080,6 +1089,7 @@ int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long haddr;
unsigned long mmun_start; /* For mmu_notifiers */
unsigned long mmun_end; /* For mmu_notifiers */
+ gfp_t huge_gfp; /* for allocation and charge */
ptl = pmd_lockptr(mm, pmd);
VM_BUG_ON_VMA(!vma->anon_vma, vma);
@@ -1106,10 +1116,8 @@ int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
alloc:
if (transparent_hugepage_enabled(vma) &&
!transparent_hugepage_debug_cow()) {
- gfp_t gfp;
-
- gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
- new_page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
+ huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
+ new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
} else
new_page = NULL;
@@ -1130,8 +1138,7 @@ alloc:
goto out;
}
- if (unlikely(mem_cgroup_try_charge(new_page, mm,
- GFP_TRANSHUGE, &memcg))) {
+ if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg))) {
put_page(new_page);
if (page) {
split_huge_page(page);
@@ -1231,7 +1238,7 @@ struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
pmd, _pmd, 1))
update_mmu_cache_pmd(vma, addr, pmd);
}
- if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
+ if ((flags & FOLL_POPULATE) && (vma->vm_flags & VM_LOCKED)) {
if (page->mapping && trylock_page(page)) {
lru_add_drain();
if (page->mapping)
@@ -1260,6 +1267,7 @@ int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
int target_nid, last_cpupid = -1;
bool page_locked;
bool migrated = false;
+ bool was_writable;
int flags = 0;
/* A PROT_NONE fault should not end up here */
@@ -1291,12 +1299,8 @@ int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
flags |= TNF_FAULT_LOCAL;
}
- /*
- * Avoid grouping on DSO/COW pages in specific and RO pages
- * in general, RO pages shouldn't hurt as much anyway since
- * they can be in shared cache state.
- */
- if (!pmd_write(pmd))
+ /* See similar comment in do_numa_page for explanation */
+ if (!(vma->vm_flags & VM_WRITE))
flags |= TNF_NO_GROUP;
/*
@@ -1353,12 +1357,17 @@ int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
if (migrated) {
flags |= TNF_MIGRATED;
page_nid = target_nid;
- }
+ } else
+ flags |= TNF_MIGRATE_FAIL;
goto out;
clear_pmdnuma:
BUG_ON(!PageLocked(page));
+ was_writable = pmd_write(pmd);
pmd = pmd_modify(pmd, vma->vm_page_prot);
+ pmd = pmd_mkyoung(pmd);
+ if (was_writable)
+ pmd = pmd_mkwrite(pmd);
set_pmd_at(mm, haddr, pmdp, pmd);
update_mmu_cache_pmd(vma, addr, pmdp);
unlock_page(page);
@@ -1482,6 +1491,8 @@ int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
pmd_t entry;
+ bool preserve_write = prot_numa && pmd_write(*pmd);
+ ret = 1;
/*
* Avoid trapping faults against the zero page. The read-only
@@ -1490,16 +1501,17 @@ int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
*/
if (prot_numa && is_huge_zero_pmd(*pmd)) {
spin_unlock(ptl);
- return 0;
+ return ret;
}
if (!prot_numa || !pmd_protnone(*pmd)) {
- ret = 1;
entry = pmdp_get_and_clear_notify(mm, addr, pmd);
entry = pmd_modify(entry, newprot);
+ if (preserve_write)
+ entry = pmd_mkwrite(entry);
ret = HPAGE_PMD_NR;
set_pmd_at(mm, addr, pmd, entry);
- BUG_ON(pmd_write(entry));
+ BUG_ON(!preserve_write && pmd_write(entry));
}
spin_unlock(ptl);
}
@@ -1971,6 +1983,11 @@ static int __init khugepaged_slab_init(void)
return 0;
}
+static void __init khugepaged_slab_exit(void)
+{
+ kmem_cache_destroy(mm_slot_cache);
+}
+
static inline struct mm_slot *alloc_mm_slot(void)
{
if (!mm_slot_cache) /* initialization failed */
@@ -2104,7 +2121,7 @@ static void release_pte_pages(pte_t *pte, pte_t *_pte)
{
while (--_pte >= pte) {
pte_t pteval = *_pte;
- if (!pte_none(pteval))
+ if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
release_pte_page(pte_page(pteval));
}
}
@@ -2115,13 +2132,13 @@ static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
{
struct page *page;
pte_t *_pte;
- int none = 0;
+ int none_or_zero = 0;
bool referenced = false, writable = false;
for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
_pte++, address += PAGE_SIZE) {
pte_t pteval = *_pte;
- if (pte_none(pteval)) {
- if (++none <= khugepaged_max_ptes_none)
+ if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
+ if (++none_or_zero <= khugepaged_max_ptes_none)
continue;
else
goto out;
@@ -2202,9 +2219,21 @@ static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
pte_t pteval = *_pte;
struct page *src_page;
- if (pte_none(pteval)) {
+ if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
clear_user_highpage(page, address);
add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
+ if (is_zero_pfn(pte_pfn(pteval))) {
+ /*
+ * ptl mostly unnecessary.
+ */
+ spin_lock(ptl);
+ /*
+ * paravirt calls inside pte_clear here are
+ * superfluous.
+ */
+ pte_clear(vma->vm_mm, address, _pte);
+ spin_unlock(ptl);
+ }
} else {
src_page = pte_page(pteval);
copy_user_highpage(page, src_page, address, vma);
@@ -2306,8 +2335,8 @@ static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
return true;
}
-static struct page
-*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
+static struct page *
+khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
struct vm_area_struct *vma, unsigned long address,
int node)
{
@@ -2321,8 +2350,7 @@ static struct page
*/
up_read(&mm->mmap_sem);
- *hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
- khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
+ *hpage = alloc_pages_exact_node(node, gfp, HPAGE_PMD_ORDER);
if (unlikely(!*hpage)) {
count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
*hpage = ERR_PTR(-ENOMEM);
@@ -2375,13 +2403,14 @@ static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
return true;
}
-static struct page
-*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
+static struct page *
+khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
struct vm_area_struct *vma, unsigned long address,
int node)
{
up_read(&mm->mmap_sem);
VM_BUG_ON(!*hpage);
+
return *hpage;
}
#endif
@@ -2416,16 +2445,21 @@ static void collapse_huge_page(struct mm_struct *mm,
struct mem_cgroup *memcg;
unsigned long mmun_start; /* For mmu_notifiers */
unsigned long mmun_end; /* For mmu_notifiers */
+ gfp_t gfp;
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
+ /* Only allocate from the target node */
+ gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
+ __GFP_THISNODE;
+
/* release the mmap_sem read lock. */
- new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
+ new_page = khugepaged_alloc_page(hpage, gfp, mm, vma, address, node);
if (!new_page)
return;
if (unlikely(mem_cgroup_try_charge(new_page, mm,
- GFP_TRANSHUGE, &memcg)))
+ gfp, &memcg)))
return;
/*
@@ -2538,7 +2572,7 @@ static int khugepaged_scan_pmd(struct mm_struct *mm,
{
pmd_t *pmd;
pte_t *pte, *_pte;
- int ret = 0, none = 0;
+ int ret = 0, none_or_zero = 0;
struct page *page;
unsigned long _address;
spinlock_t *ptl;
@@ -2556,8 +2590,8 @@ static int khugepaged_scan_pmd(struct mm_struct *mm,
for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
_pte++, _address += PAGE_SIZE) {
pte_t pteval = *_pte;
- if (pte_none(pteval)) {
- if (++none <= khugepaged_max_ptes_none)
+ if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
+ if (++none_or_zero <= khugepaged_max_ptes_none)
continue;
else
goto out_unmap;
diff --git a/mm/hugetlb.c b/mm/hugetlb.c
index 0a9ac6c26832..271e4432734c 100644
--- a/mm/hugetlb.c
+++ b/mm/hugetlb.c
@@ -61,6 +61,9 @@ DEFINE_SPINLOCK(hugetlb_lock);
static int num_fault_mutexes;
static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
+/* Forward declaration */
+static int hugetlb_acct_memory(struct hstate *h, long delta);
+
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
bool free = (spool->count == 0) && (spool->used_hpages == 0);
@@ -68,23 +71,36 @@ static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
spin_unlock(&spool->lock);
/* If no pages are used, and no other handles to the subpool
- * remain, free the subpool the subpool remain */
- if (free)
+ * remain, give up any reservations mased on minimum size and
+ * free the subpool */
+ if (free) {
+ if (spool->min_hpages != -1)
+ hugetlb_acct_memory(spool->hstate,
+ -spool->min_hpages);
kfree(spool);
+ }
}
-struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
+struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
+ long min_hpages)
{
struct hugepage_subpool *spool;
- spool = kmalloc(sizeof(*spool), GFP_KERNEL);
+ spool = kzalloc(sizeof(*spool), GFP_KERNEL);
if (!spool)
return NULL;
spin_lock_init(&spool->lock);
spool->count = 1;
- spool->max_hpages = nr_blocks;
- spool->used_hpages = 0;
+ spool->max_hpages = max_hpages;
+ spool->hstate = h;
+ spool->min_hpages = min_hpages;
+
+ if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
+ kfree(spool);
+ return NULL;
+ }
+ spool->rsv_hpages = min_hpages;
return spool;
}
@@ -97,36 +113,89 @@ void hugepage_put_subpool(struct hugepage_subpool *spool)
unlock_or_release_subpool(spool);
}
-static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
+/*
+ * Subpool accounting for allocating and reserving pages.
+ * Return -ENOMEM if there are not enough resources to satisfy the
+ * the request. Otherwise, return the number of pages by which the
+ * global pools must be adjusted (upward). The returned value may
+ * only be different than the passed value (delta) in the case where
+ * a subpool minimum size must be manitained.
+ */
+static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
long delta)
{
- int ret = 0;
+ long ret = delta;
if (!spool)
- return 0;
+ return ret;
spin_lock(&spool->lock);
- if ((spool->used_hpages + delta) <= spool->max_hpages) {
- spool->used_hpages += delta;
- } else {
- ret = -ENOMEM;
+
+ if (spool->max_hpages != -1) { /* maximum size accounting */
+ if ((spool->used_hpages + delta) <= spool->max_hpages)
+ spool->used_hpages += delta;
+ else {
+ ret = -ENOMEM;
+ goto unlock_ret;
+ }
}
- spin_unlock(&spool->lock);
+ if (spool->min_hpages != -1) { /* minimum size accounting */
+ if (delta > spool->rsv_hpages) {
+ /*
+ * Asking for more reserves than those already taken on
+ * behalf of subpool. Return difference.
+ */
+ ret = delta - spool->rsv_hpages;
+ spool->rsv_hpages = 0;
+ } else {
+ ret = 0; /* reserves already accounted for */
+ spool->rsv_hpages -= delta;
+ }
+ }
+
+unlock_ret:
+ spin_unlock(&spool->lock);
return ret;
}
-static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
+/*
+ * Subpool accounting for freeing and unreserving pages.
+ * Return the number of global page reservations that must be dropped.
+ * The return value may only be different than the passed value (delta)
+ * in the case where a subpool minimum size must be maintained.
+ */
+static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
long delta)
{
+ long ret = delta;
+
if (!spool)
- return;
+ return delta;
spin_lock(&spool->lock);
- spool->used_hpages -= delta;
- /* If hugetlbfs_put_super couldn't free spool due to
- * an outstanding quota reference, free it now. */
+
+ if (spool->max_hpages != -1) /* maximum size accounting */
+ spool->used_hpages -= delta;
+
+ if (spool->min_hpages != -1) { /* minimum size accounting */
+ if (spool->rsv_hpages + delta <= spool->min_hpages)
+ ret = 0;
+ else
+ ret = spool->rsv_hpages + delta - spool->min_hpages;
+
+ spool->rsv_hpages += delta;
+ if (spool->rsv_hpages > spool->min_hpages)
+ spool->rsv_hpages = spool->min_hpages;
+ }
+
+ /*
+ * If hugetlbfs_put_super couldn't free spool due to an outstanding
+ * quota reference, free it now.
+ */
unlock_or_release_subpool(spool);
+
+ return ret;
}
static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
@@ -855,6 +924,31 @@ struct hstate *size_to_hstate(unsigned long size)
return NULL;
}
+/*
+ * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
+ * to hstate->hugepage_activelist.)
+ *
+ * This function can be called for tail pages, but never returns true for them.
+ */
+bool page_huge_active(struct page *page)
+{
+ VM_BUG_ON_PAGE(!PageHuge(page), page);
+ return PageHead(page) && PagePrivate(&page[1]);
+}
+
+/* never called for tail page */
+static void set_page_huge_active(struct page *page)
+{
+ VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
+ SetPagePrivate(&page[1]);
+}
+
+static void clear_page_huge_active(struct page *page)
+{
+ VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
+ ClearPagePrivate(&page[1]);
+}
+
void free_huge_page(struct page *page)
{
/*
@@ -874,7 +968,16 @@ void free_huge_page(struct page *page)
restore_reserve = PagePrivate(page);
ClearPagePrivate(page);
+ /*
+ * A return code of zero implies that the subpool will be under its
+ * minimum size if the reservation is not restored after page is free.
+ * Therefore, force restore_reserve operation.
+ */
+ if (hugepage_subpool_put_pages(spool, 1) == 0)
+ restore_reserve = true;
+
spin_lock(&hugetlb_lock);
+ clear_page_huge_active(page);
hugetlb_cgroup_uncharge_page(hstate_index(h),
pages_per_huge_page(h), page);
if (restore_reserve)
@@ -891,7 +994,6 @@ void free_huge_page(struct page *page)
enqueue_huge_page(h, page);
}
spin_unlock(&hugetlb_lock);
- hugepage_subpool_put_pages(spool, 1);
}
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
@@ -917,7 +1019,6 @@ static void prep_compound_gigantic_page(struct page *page, unsigned long order)
__SetPageHead(page);
__ClearPageReserved(page);
for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
- __SetPageTail(p);
/*
* For gigantic hugepages allocated through bootmem at
* boot, it's safer to be consistent with the not-gigantic
@@ -933,6 +1034,9 @@ static void prep_compound_gigantic_page(struct page *page, unsigned long order)
__ClearPageReserved(p);
set_page_count(p, 0);
p->first_page = page;
+ /* Make sure p->first_page is always valid for PageTail() */
+ smp_wmb();
+ __SetPageTail(p);
}
}
@@ -1384,7 +1488,7 @@ static struct page *alloc_huge_page(struct vm_area_struct *vma,
if (chg < 0)
return ERR_PTR(-ENOMEM);
if (chg || avoid_reserve)
- if (hugepage_subpool_get_pages(spool, 1))
+ if (hugepage_subpool_get_pages(spool, 1) < 0)
return ERR_PTR(-ENOSPC);
ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
@@ -2452,6 +2556,7 @@ static void hugetlb_vm_op_close(struct vm_area_struct *vma)
struct resv_map *resv = vma_resv_map(vma);
struct hugepage_subpool *spool = subpool_vma(vma);
unsigned long reserve, start, end;
+ long gbl_reserve;
if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
return;
@@ -2464,8 +2569,12 @@ static void hugetlb_vm_op_close(struct vm_area_struct *vma)
kref_put(&resv->refs, resv_map_release);
if (reserve) {
- hugetlb_acct_memory(h, -reserve);
- hugepage_subpool_put_pages(spool, reserve);
+ /*
+ * Decrement reserve counts. The global reserve count may be
+ * adjusted if the subpool has a minimum size.
+ */
+ gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
+ hugetlb_acct_memory(h, -gbl_reserve);
}
}
@@ -2889,6 +2998,7 @@ retry_avoidcopy:
copy_user_huge_page(new_page, old_page, address, vma,
pages_per_huge_page(h));
__SetPageUptodate(new_page);
+ set_page_huge_active(new_page);
mmun_start = address & huge_page_mask(h);
mmun_end = mmun_start + huge_page_size(h);
@@ -3001,6 +3111,7 @@ retry:
}
clear_huge_page(page, address, pages_per_huge_page(h));
__SetPageUptodate(page);
+ set_page_huge_active(page);
if (vma->vm_flags & VM_MAYSHARE) {
int err;
@@ -3276,6 +3387,15 @@ long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
struct page *page;
/*
+ * If we have a pending SIGKILL, don't keep faulting pages and
+ * potentially allocating memory.
+ */
+ if (unlikely(fatal_signal_pending(current))) {
+ remainder = 0;
+ break;
+ }
+
+ /*
* Some archs (sparc64, sh*) have multiple pte_ts to
* each hugepage. We have to make sure we get the
* first, for the page indexing below to work.
@@ -3436,6 +3556,7 @@ int hugetlb_reserve_pages(struct inode *inode,
struct hstate *h = hstate_inode(inode);
struct hugepage_subpool *spool = subpool_inode(inode);
struct resv_map *resv_map;
+ long gbl_reserve;
/*
* Only apply hugepage reservation if asked. At fault time, an
@@ -3472,8 +3593,13 @@ int hugetlb_reserve_pages(struct inode *inode,
goto out_err;
}
- /* There must be enough pages in the subpool for the mapping */
- if (hugepage_subpool_get_pages(spool, chg)) {
+ /*
+ * There must be enough pages in the subpool for the mapping. If
+ * the subpool has a minimum size, there may be some global
+ * reservations already in place (gbl_reserve).
+ */
+ gbl_reserve = hugepage_subpool_get_pages(spool, chg);
+ if (gbl_reserve < 0) {
ret = -ENOSPC;
goto out_err;
}
@@ -3482,9 +3608,10 @@ int hugetlb_reserve_pages(struct inode *inode,
* Check enough hugepages are available for the reservation.
* Hand the pages back to the subpool if there are not
*/
- ret = hugetlb_acct_memory(h, chg);
+ ret = hugetlb_acct_memory(h, gbl_reserve);
if (ret < 0) {
- hugepage_subpool_put_pages(spool, chg);
+ /* put back original number of pages, chg */
+ (void)hugepage_subpool_put_pages(spool, chg);
goto out_err;
}
@@ -3514,6 +3641,7 @@ void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
struct resv_map *resv_map = inode_resv_map(inode);
long chg = 0;
struct hugepage_subpool *spool = subpool_inode(inode);
+ long gbl_reserve;
if (resv_map)
chg = region_truncate(resv_map, offset);
@@ -3521,8 +3649,12 @@ void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
inode->i_blocks -= (blocks_per_huge_page(h) * freed);
spin_unlock(&inode->i_lock);
- hugepage_subpool_put_pages(spool, (chg - freed));
- hugetlb_acct_memory(h, -(chg - freed));
+ /*
+ * If the subpool has a minimum size, the number of global
+ * reservations to be released may be adjusted.
+ */
+ gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
+ hugetlb_acct_memory(h, -gbl_reserve);
}
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
@@ -3733,8 +3865,7 @@ retry:
if (!pmd_huge(*pmd))
goto out;
if (pmd_present(*pmd)) {
- page = pte_page(*(pte_t *)pmd) +
- ((address & ~PMD_MASK) >> PAGE_SHIFT);
+ page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
if (flags & FOLL_GET)
get_page(page);
} else {
@@ -3765,20 +3896,6 @@ follow_huge_pud(struct mm_struct *mm, unsigned long address,
#ifdef CONFIG_MEMORY_FAILURE
-/* Should be called in hugetlb_lock */
-static int is_hugepage_on_freelist(struct page *hpage)
-{
- struct page *page;
- struct page *tmp;
- struct hstate *h = page_hstate(hpage);
- int nid = page_to_nid(hpage);
-
- list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
- if (page == hpage)
- return 1;
- return 0;
-}
-
/*
* This function is called from memory failure code.
* Assume the caller holds page lock of the head page.
@@ -3790,7 +3907,11 @@ int dequeue_hwpoisoned_huge_page(struct page *hpage)
int ret = -EBUSY;
spin_lock(&hugetlb_lock);
- if (is_hugepage_on_freelist(hpage)) {
+ /*
+ * Just checking !page_huge_active is not enough, because that could be
+ * an isolated/hwpoisoned hugepage (which have >0 refcount).
+ */
+ if (!page_huge_active(hpage) && !page_count(hpage)) {
/*
* Hwpoisoned hugepage isn't linked to activelist or freelist,
* but dangling hpage->lru can trigger list-debug warnings
@@ -3810,42 +3931,27 @@ int dequeue_hwpoisoned_huge_page(struct page *hpage)
bool isolate_huge_page(struct page *page, struct list_head *list)
{
+ bool ret = true;
+
VM_BUG_ON_PAGE(!PageHead(page), page);
- if (!get_page_unless_zero(page))
- return false;
spin_lock(&hugetlb_lock);
+ if (!page_huge_active(page) || !get_page_unless_zero(page)) {
+ ret = false;
+ goto unlock;
+ }
+ clear_page_huge_active(page);
list_move_tail(&page->lru, list);
+unlock:
spin_unlock(&hugetlb_lock);
- return true;
+ return ret;
}
void putback_active_hugepage(struct page *page)
{
VM_BUG_ON_PAGE(!PageHead(page), page);
spin_lock(&hugetlb_lock);
+ set_page_huge_active(page);
list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
spin_unlock(&hugetlb_lock);
put_page(page);
}
-
-bool is_hugepage_active(struct page *page)
-{
- VM_BUG_ON_PAGE(!PageHuge(page), page);
- /*
- * This function can be called for a tail page because the caller,
- * scan_movable_pages, scans through a given pfn-range which typically
- * covers one memory block. In systems using gigantic hugepage (1GB
- * for x86_64,) a hugepage is larger than a memory block, and we don't
- * support migrating such large hugepages for now, so return false
- * when called for tail pages.
- */
- if (PageTail(page))
- return false;
- /*
- * Refcount of a hwpoisoned hugepages is 1, but they are not active,
- * so we should return false for them.
- */
- if (unlikely(PageHWPoison(page)))
- return false;
- return page_count(page) > 0;
-}
diff --git a/mm/internal.h b/mm/internal.h
index a96da5b0029d..a25e359a4039 100644
--- a/mm/internal.h
+++ b/mm/internal.h
@@ -200,6 +200,8 @@ isolate_freepages_range(struct compact_control *cc,
unsigned long
isolate_migratepages_range(struct compact_control *cc,
unsigned long low_pfn, unsigned long end_pfn);
+int find_suitable_fallback(struct free_area *area, unsigned int order,
+ int migratetype, bool only_stealable, bool *can_steal);
#endif
@@ -222,13 +224,13 @@ static inline unsigned long page_order(struct page *page)
* PageBuddy() should be checked first by the caller to minimize race window,
* and invalid values must be handled gracefully.
*
- * ACCESS_ONCE is used so that if the caller assigns the result into a local
+ * READ_ONCE is used so that if the caller assigns the result into a local
* variable and e.g. tests it for valid range before using, the compiler cannot
* decide to remove the variable and inline the page_private(page) multiple
* times, potentially observing different values in the tests and the actual
* use of the result.
*/
-#define page_order_unsafe(page) ACCESS_ONCE(page_private(page))
+#define page_order_unsafe(page) READ_ONCE(page_private(page))
static inline bool is_cow_mapping(vm_flags_t flags)
{
@@ -240,7 +242,7 @@ void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
struct vm_area_struct *prev, struct rb_node *rb_parent);
#ifdef CONFIG_MMU
-extern long __mlock_vma_pages_range(struct vm_area_struct *vma,
+extern long populate_vma_page_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end, int *nonblocking);
extern void munlock_vma_pages_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end);
diff --git a/mm/iov_iter.c b/mm/iov_iter.c
deleted file mode 100644
index 827732047da1..000000000000
--- a/mm/iov_iter.c
+++ /dev/null
@@ -1,753 +0,0 @@
-#include <linux/export.h>
-#include <linux/uio.h>
-#include <linux/pagemap.h>
-#include <linux/slab.h>
-#include <linux/vmalloc.h>
-#include <net/checksum.h>
-
-#define iterate_iovec(i, n, __v, __p, skip, STEP) { \
- size_t left; \
- size_t wanted = n; \
- __p = i->iov; \
- __v.iov_len = min(n, __p->iov_len - skip); \
- if (likely(__v.iov_len)) { \
- __v.iov_base = __p->iov_base + skip; \
- left = (STEP); \
- __v.iov_len -= left; \
- skip += __v.iov_len; \
- n -= __v.iov_len; \
- } else { \
- left = 0; \
- } \
- while (unlikely(!left && n)) { \
- __p++; \
- __v.iov_len = min(n, __p->iov_len); \
- if (unlikely(!__v.iov_len)) \
- continue; \
- __v.iov_base = __p->iov_base; \
- left = (STEP); \
- __v.iov_len -= left; \
- skip = __v.iov_len; \
- n -= __v.iov_len; \
- } \
- n = wanted - n; \
-}
-
-#define iterate_kvec(i, n, __v, __p, skip, STEP) { \
- size_t wanted = n; \
- __p = i->kvec; \
- __v.iov_len = min(n, __p->iov_len - skip); \
- if (likely(__v.iov_len)) { \
- __v.iov_base = __p->iov_base + skip; \
- (void)(STEP); \
- skip += __v.iov_len; \
- n -= __v.iov_len; \
- } \
- while (unlikely(n)) { \
- __p++; \
- __v.iov_len = min(n, __p->iov_len); \
- if (unlikely(!__v.iov_len)) \
- continue; \
- __v.iov_base = __p->iov_base; \
- (void)(STEP); \
- skip = __v.iov_len; \
- n -= __v.iov_len; \
- } \
- n = wanted; \
-}
-
-#define iterate_bvec(i, n, __v, __p, skip, STEP) { \
- size_t wanted = n; \
- __p = i->bvec; \
- __v.bv_len = min_t(size_t, n, __p->bv_len - skip); \
- if (likely(__v.bv_len)) { \
- __v.bv_page = __p->bv_page; \
- __v.bv_offset = __p->bv_offset + skip; \
- (void)(STEP); \
- skip += __v.bv_len; \
- n -= __v.bv_len; \
- } \
- while (unlikely(n)) { \
- __p++; \
- __v.bv_len = min_t(size_t, n, __p->bv_len); \
- if (unlikely(!__v.bv_len)) \
- continue; \
- __v.bv_page = __p->bv_page; \
- __v.bv_offset = __p->bv_offset; \
- (void)(STEP); \
- skip = __v.bv_len; \
- n -= __v.bv_len; \
- } \
- n = wanted; \
-}
-
-#define iterate_all_kinds(i, n, v, I, B, K) { \
- size_t skip = i->iov_offset; \
- if (unlikely(i->type & ITER_BVEC)) { \
- const struct bio_vec *bvec; \
- struct bio_vec v; \
- iterate_bvec(i, n, v, bvec, skip, (B)) \
- } else if (unlikely(i->type & ITER_KVEC)) { \
- const struct kvec *kvec; \
- struct kvec v; \
- iterate_kvec(i, n, v, kvec, skip, (K)) \
- } else { \
- const struct iovec *iov; \
- struct iovec v; \
- iterate_iovec(i, n, v, iov, skip, (I)) \
- } \
-}
-
-#define iterate_and_advance(i, n, v, I, B, K) { \
- size_t skip = i->iov_offset; \
- if (unlikely(i->type & ITER_BVEC)) { \
- const struct bio_vec *bvec; \
- struct bio_vec v; \
- iterate_bvec(i, n, v, bvec, skip, (B)) \
- if (skip == bvec->bv_len) { \
- bvec++; \
- skip = 0; \
- } \
- i->nr_segs -= bvec - i->bvec; \
- i->bvec = bvec; \
- } else if (unlikely(i->type & ITER_KVEC)) { \
- const struct kvec *kvec; \
- struct kvec v; \
- iterate_kvec(i, n, v, kvec, skip, (K)) \
- if (skip == kvec->iov_len) { \
- kvec++; \
- skip = 0; \
- } \
- i->nr_segs -= kvec - i->kvec; \
- i->kvec = kvec; \
- } else { \
- const struct iovec *iov; \
- struct iovec v; \
- iterate_iovec(i, n, v, iov, skip, (I)) \
- if (skip == iov->iov_len) { \
- iov++; \
- skip = 0; \
- } \
- i->nr_segs -= iov - i->iov; \
- i->iov = iov; \
- } \
- i->count -= n; \
- i->iov_offset = skip; \
-}
-
-static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
- struct iov_iter *i)
-{
- size_t skip, copy, left, wanted;
- const struct iovec *iov;
- char __user *buf;
- void *kaddr, *from;
-
- if (unlikely(bytes > i->count))
- bytes = i->count;
-
- if (unlikely(!bytes))
- return 0;
-
- wanted = bytes;
- iov = i->iov;
- skip = i->iov_offset;
- buf = iov->iov_base + skip;
- copy = min(bytes, iov->iov_len - skip);
-
- if (!fault_in_pages_writeable(buf, copy)) {
- kaddr = kmap_atomic(page);
- from = kaddr + offset;
-
- /* first chunk, usually the only one */
- left = __copy_to_user_inatomic(buf, from, copy);
- copy -= left;
- skip += copy;
- from += copy;
- bytes -= copy;
-
- while (unlikely(!left && bytes)) {
- iov++;
- buf = iov->iov_base;
- copy = min(bytes, iov->iov_len);
- left = __copy_to_user_inatomic(buf, from, copy);
- copy -= left;
- skip = copy;
- from += copy;
- bytes -= copy;
- }
- if (likely(!bytes)) {
- kunmap_atomic(kaddr);
- goto done;
- }
- offset = from - kaddr;
- buf += copy;
- kunmap_atomic(kaddr);
- copy = min(bytes, iov->iov_len - skip);
- }
- /* Too bad - revert to non-atomic kmap */
- kaddr = kmap(page);
- from = kaddr + offset;
- left = __copy_to_user(buf, from, copy);
- copy -= left;
- skip += copy;
- from += copy;
- bytes -= copy;
- while (unlikely(!left && bytes)) {
- iov++;
- buf = iov->iov_base;
- copy = min(bytes, iov->iov_len);
- left = __copy_to_user(buf, from, copy);
- copy -= left;
- skip = copy;
- from += copy;
- bytes -= copy;
- }
- kunmap(page);
-done:
- if (skip == iov->iov_len) {
- iov++;
- skip = 0;
- }
- i->count -= wanted - bytes;
- i->nr_segs -= iov - i->iov;
- i->iov = iov;
- i->iov_offset = skip;
- return wanted - bytes;
-}
-
-static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
- struct iov_iter *i)
-{
- size_t skip, copy, left, wanted;
- const struct iovec *iov;
- char __user *buf;
- void *kaddr, *to;
-
- if (unlikely(bytes > i->count))
- bytes = i->count;
-
- if (unlikely(!bytes))
- return 0;
-
- wanted = bytes;
- iov = i->iov;
- skip = i->iov_offset;
- buf = iov->iov_base + skip;
- copy = min(bytes, iov->iov_len - skip);
-
- if (!fault_in_pages_readable(buf, copy)) {
- kaddr = kmap_atomic(page);
- to = kaddr + offset;
-
- /* first chunk, usually the only one */
- left = __copy_from_user_inatomic(to, buf, copy);
- copy -= left;
- skip += copy;
- to += copy;
- bytes -= copy;
-
- while (unlikely(!left && bytes)) {
- iov++;
- buf = iov->iov_base;
- copy = min(bytes, iov->iov_len);
- left = __copy_from_user_inatomic(to, buf, copy);
- copy -= left;
- skip = copy;
- to += copy;
- bytes -= copy;
- }
- if (likely(!bytes)) {
- kunmap_atomic(kaddr);
- goto done;
- }
- offset = to - kaddr;
- buf += copy;
- kunmap_atomic(kaddr);
- copy = min(bytes, iov->iov_len - skip);
- }
- /* Too bad - revert to non-atomic kmap */
- kaddr = kmap(page);
- to = kaddr + offset;
- left = __copy_from_user(to, buf, copy);
- copy -= left;
- skip += copy;
- to += copy;
- bytes -= copy;
- while (unlikely(!left && bytes)) {
- iov++;
- buf = iov->iov_base;
- copy = min(bytes, iov->iov_len);
- left = __copy_from_user(to, buf, copy);
- copy -= left;
- skip = copy;
- to += copy;
- bytes -= copy;
- }
- kunmap(page);
-done:
- if (skip == iov->iov_len) {
- iov++;
- skip = 0;
- }
- i->count -= wanted - bytes;
- i->nr_segs -= iov - i->iov;
- i->iov = iov;
- i->iov_offset = skip;
- return wanted - bytes;
-}
-
-/*
- * Fault in the first iovec of the given iov_iter, to a maximum length
- * of bytes. Returns 0 on success, or non-zero if the memory could not be
- * accessed (ie. because it is an invalid address).
- *
- * writev-intensive code may want this to prefault several iovecs -- that
- * would be possible (callers must not rely on the fact that _only_ the
- * first iovec will be faulted with the current implementation).
- */
-int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
-{
- if (!(i->type & (ITER_BVEC|ITER_KVEC))) {
- char __user *buf = i->iov->iov_base + i->iov_offset;
- bytes = min(bytes, i->iov->iov_len - i->iov_offset);
- return fault_in_pages_readable(buf, bytes);
- }
- return 0;
-}
-EXPORT_SYMBOL(iov_iter_fault_in_readable);
-
-void iov_iter_init(struct iov_iter *i, int direction,
- const struct iovec *iov, unsigned long nr_segs,
- size_t count)
-{
- /* It will get better. Eventually... */
- if (segment_eq(get_fs(), KERNEL_DS)) {
- direction |= ITER_KVEC;
- i->type = direction;
- i->kvec = (struct kvec *)iov;
- } else {
- i->type = direction;
- i->iov = iov;
- }
- i->nr_segs = nr_segs;
- i->iov_offset = 0;
- i->count = count;
-}
-EXPORT_SYMBOL(iov_iter_init);
-
-static void memcpy_from_page(char *to, struct page *page, size_t offset, size_t len)
-{
- char *from = kmap_atomic(page);
- memcpy(to, from + offset, len);
- kunmap_atomic(from);
-}
-
-static void memcpy_to_page(struct page *page, size_t offset, char *from, size_t len)
-{
- char *to = kmap_atomic(page);
- memcpy(to + offset, from, len);
- kunmap_atomic(to);
-}
-
-static void memzero_page(struct page *page, size_t offset, size_t len)
-{
- char *addr = kmap_atomic(page);
- memset(addr + offset, 0, len);
- kunmap_atomic(addr);
-}
-
-size_t copy_to_iter(void *addr, size_t bytes, struct iov_iter *i)
-{
- char *from = addr;
- if (unlikely(bytes > i->count))
- bytes = i->count;
-
- if (unlikely(!bytes))
- return 0;
-
- iterate_and_advance(i, bytes, v,
- __copy_to_user(v.iov_base, (from += v.iov_len) - v.iov_len,
- v.iov_len),
- memcpy_to_page(v.bv_page, v.bv_offset,
- (from += v.bv_len) - v.bv_len, v.bv_len),
- memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len)
- )
-
- return bytes;
-}
-EXPORT_SYMBOL(copy_to_iter);
-
-size_t copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
-{
- char *to = addr;
- if (unlikely(bytes > i->count))
- bytes = i->count;
-
- if (unlikely(!bytes))
- return 0;
-
- iterate_and_advance(i, bytes, v,
- __copy_from_user((to += v.iov_len) - v.iov_len, v.iov_base,
- v.iov_len),
- memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
- v.bv_offset, v.bv_len),
- memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
- )
-
- return bytes;
-}
-EXPORT_SYMBOL(copy_from_iter);
-
-size_t copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
-{
- char *to = addr;
- if (unlikely(bytes > i->count))
- bytes = i->count;
-
- if (unlikely(!bytes))
- return 0;
-
- iterate_and_advance(i, bytes, v,
- __copy_from_user_nocache((to += v.iov_len) - v.iov_len,
- v.iov_base, v.iov_len),
- memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
- v.bv_offset, v.bv_len),
- memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
- )
-
- return bytes;
-}
-EXPORT_SYMBOL(copy_from_iter_nocache);
-
-size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
- struct iov_iter *i)
-{
- if (i->type & (ITER_BVEC|ITER_KVEC)) {
- void *kaddr = kmap_atomic(page);
- size_t wanted = copy_to_iter(kaddr + offset, bytes, i);
- kunmap_atomic(kaddr);
- return wanted;
- } else
- return copy_page_to_iter_iovec(page, offset, bytes, i);
-}
-EXPORT_SYMBOL(copy_page_to_iter);
-
-size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
- struct iov_iter *i)
-{
- if (i->type & (ITER_BVEC|ITER_KVEC)) {
- void *kaddr = kmap_atomic(page);
- size_t wanted = copy_from_iter(kaddr + offset, bytes, i);
- kunmap_atomic(kaddr);
- return wanted;
- } else
- return copy_page_from_iter_iovec(page, offset, bytes, i);
-}
-EXPORT_SYMBOL(copy_page_from_iter);
-
-size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
-{
- if (unlikely(bytes > i->count))
- bytes = i->count;
-
- if (unlikely(!bytes))
- return 0;
-
- iterate_and_advance(i, bytes, v,
- __clear_user(v.iov_base, v.iov_len),
- memzero_page(v.bv_page, v.bv_offset, v.bv_len),
- memset(v.iov_base, 0, v.iov_len)
- )
-
- return bytes;
-}
-EXPORT_SYMBOL(iov_iter_zero);
-
-size_t iov_iter_copy_from_user_atomic(struct page *page,
- struct iov_iter *i, unsigned long offset, size_t bytes)
-{
- char *kaddr = kmap_atomic(page), *p = kaddr + offset;
- iterate_all_kinds(i, bytes, v,
- __copy_from_user_inatomic((p += v.iov_len) - v.iov_len,
- v.iov_base, v.iov_len),
- memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page,
- v.bv_offset, v.bv_len),
- memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
- )
- kunmap_atomic(kaddr);
- return bytes;
-}
-EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
-
-void iov_iter_advance(struct iov_iter *i, size_t size)
-{
- iterate_and_advance(i, size, v, 0, 0, 0)
-}
-EXPORT_SYMBOL(iov_iter_advance);
-
-/*
- * Return the count of just the current iov_iter segment.
- */
-size_t iov_iter_single_seg_count(const struct iov_iter *i)
-{
- if (i->nr_segs == 1)
- return i->count;
- else if (i->type & ITER_BVEC)
- return min(i->count, i->bvec->bv_len - i->iov_offset);
- else
- return min(i->count, i->iov->iov_len - i->iov_offset);
-}
-EXPORT_SYMBOL(iov_iter_single_seg_count);
-
-void iov_iter_kvec(struct iov_iter *i, int direction,
- const struct kvec *kvec, unsigned long nr_segs,
- size_t count)
-{
- BUG_ON(!(direction & ITER_KVEC));
- i->type = direction;
- i->kvec = kvec;
- i->nr_segs = nr_segs;
- i->iov_offset = 0;
- i->count = count;
-}
-EXPORT_SYMBOL(iov_iter_kvec);
-
-void iov_iter_bvec(struct iov_iter *i, int direction,
- const struct bio_vec *bvec, unsigned long nr_segs,
- size_t count)
-{
- BUG_ON(!(direction & ITER_BVEC));
- i->type = direction;
- i->bvec = bvec;
- i->nr_segs = nr_segs;
- i->iov_offset = 0;
- i->count = count;
-}
-EXPORT_SYMBOL(iov_iter_bvec);
-
-unsigned long iov_iter_alignment(const struct iov_iter *i)
-{
- unsigned long res = 0;
- size_t size = i->count;
-
- if (!size)
- return 0;
-
- iterate_all_kinds(i, size, v,
- (res |= (unsigned long)v.iov_base | v.iov_len, 0),
- res |= v.bv_offset | v.bv_len,
- res |= (unsigned long)v.iov_base | v.iov_len
- )
- return res;
-}
-EXPORT_SYMBOL(iov_iter_alignment);
-
-ssize_t iov_iter_get_pages(struct iov_iter *i,
- struct page **pages, size_t maxsize, unsigned maxpages,
- size_t *start)
-{
- if (maxsize > i->count)
- maxsize = i->count;
-
- if (!maxsize)
- return 0;
-
- iterate_all_kinds(i, maxsize, v, ({
- unsigned long addr = (unsigned long)v.iov_base;
- size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
- int n;
- int res;
-
- if (len > maxpages * PAGE_SIZE)
- len = maxpages * PAGE_SIZE;
- addr &= ~(PAGE_SIZE - 1);
- n = DIV_ROUND_UP(len, PAGE_SIZE);
- res = get_user_pages_fast(addr, n, (i->type & WRITE) != WRITE, pages);
- if (unlikely(res < 0))
- return res;
- return (res == n ? len : res * PAGE_SIZE) - *start;
- 0;}),({
- /* can't be more than PAGE_SIZE */
- *start = v.bv_offset;
- get_page(*pages = v.bv_page);
- return v.bv_len;
- }),({
- return -EFAULT;
- })
- )
- return 0;
-}
-EXPORT_SYMBOL(iov_iter_get_pages);
-
-static struct page **get_pages_array(size_t n)
-{
- struct page **p = kmalloc(n * sizeof(struct page *), GFP_KERNEL);
- if (!p)
- p = vmalloc(n * sizeof(struct page *));
- return p;
-}
-
-ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
- struct page ***pages, size_t maxsize,
- size_t *start)
-{
- struct page **p;
-
- if (maxsize > i->count)
- maxsize = i->count;
-
- if (!maxsize)
- return 0;
-
- iterate_all_kinds(i, maxsize, v, ({
- unsigned long addr = (unsigned long)v.iov_base;
- size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
- int n;
- int res;
-
- addr &= ~(PAGE_SIZE - 1);
- n = DIV_ROUND_UP(len, PAGE_SIZE);
- p = get_pages_array(n);
- if (!p)
- return -ENOMEM;
- res = get_user_pages_fast(addr, n, (i->type & WRITE) != WRITE, p);
- if (unlikely(res < 0)) {
- kvfree(p);
- return res;
- }
- *pages = p;
- return (res == n ? len : res * PAGE_SIZE) - *start;
- 0;}),({
- /* can't be more than PAGE_SIZE */
- *start = v.bv_offset;
- *pages = p = get_pages_array(1);
- if (!p)
- return -ENOMEM;
- get_page(*p = v.bv_page);
- return v.bv_len;
- }),({
- return -EFAULT;
- })
- )
- return 0;
-}
-EXPORT_SYMBOL(iov_iter_get_pages_alloc);
-
-size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
- struct iov_iter *i)
-{
- char *to = addr;
- __wsum sum, next;
- size_t off = 0;
- if (unlikely(bytes > i->count))
- bytes = i->count;
-
- if (unlikely(!bytes))
- return 0;
-
- sum = *csum;
- iterate_and_advance(i, bytes, v, ({
- int err = 0;
- next = csum_and_copy_from_user(v.iov_base,
- (to += v.iov_len) - v.iov_len,
- v.iov_len, 0, &err);
- if (!err) {
- sum = csum_block_add(sum, next, off);
- off += v.iov_len;
- }
- err ? v.iov_len : 0;
- }), ({
- char *p = kmap_atomic(v.bv_page);
- next = csum_partial_copy_nocheck(p + v.bv_offset,
- (to += v.bv_len) - v.bv_len,
- v.bv_len, 0);
- kunmap_atomic(p);
- sum = csum_block_add(sum, next, off);
- off += v.bv_len;
- }),({
- next = csum_partial_copy_nocheck(v.iov_base,
- (to += v.iov_len) - v.iov_len,
- v.iov_len, 0);
- sum = csum_block_add(sum, next, off);
- off += v.iov_len;
- })
- )
- *csum = sum;
- return bytes;
-}
-EXPORT_SYMBOL(csum_and_copy_from_iter);
-
-size_t csum_and_copy_to_iter(void *addr, size_t bytes, __wsum *csum,
- struct iov_iter *i)
-{
- char *from = addr;
- __wsum sum, next;
- size_t off = 0;
- if (unlikely(bytes > i->count))
- bytes = i->count;
-
- if (unlikely(!bytes))
- return 0;
-
- sum = *csum;
- iterate_and_advance(i, bytes, v, ({
- int err = 0;
- next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len,
- v.iov_base,
- v.iov_len, 0, &err);
- if (!err) {
- sum = csum_block_add(sum, next, off);
- off += v.iov_len;
- }
- err ? v.iov_len : 0;
- }), ({
- char *p = kmap_atomic(v.bv_page);
- next = csum_partial_copy_nocheck((from += v.bv_len) - v.bv_len,
- p + v.bv_offset,
- v.bv_len, 0);
- kunmap_atomic(p);
- sum = csum_block_add(sum, next, off);
- off += v.bv_len;
- }),({
- next = csum_partial_copy_nocheck((from += v.iov_len) - v.iov_len,
- v.iov_base,
- v.iov_len, 0);
- sum = csum_block_add(sum, next, off);
- off += v.iov_len;
- })
- )
- *csum = sum;
- return bytes;
-}
-EXPORT_SYMBOL(csum_and_copy_to_iter);
-
-int iov_iter_npages(const struct iov_iter *i, int maxpages)
-{
- size_t size = i->count;
- int npages = 0;
-
- if (!size)
- return 0;
-
- iterate_all_kinds(i, size, v, ({
- unsigned long p = (unsigned long)v.iov_base;
- npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
- - p / PAGE_SIZE;
- if (npages >= maxpages)
- return maxpages;
- 0;}),({
- npages++;
- if (npages >= maxpages)
- return maxpages;
- }),({
- unsigned long p = (unsigned long)v.iov_base;
- npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
- - p / PAGE_SIZE;
- if (npages >= maxpages)
- return maxpages;
- })
- )
- return npages;
-}
-EXPORT_SYMBOL(iov_iter_npages);
diff --git a/mm/kasan/kasan.c b/mm/kasan/kasan.c
index 78fee632a7ee..6c513a63ea84 100644
--- a/mm/kasan/kasan.c
+++ b/mm/kasan/kasan.c
@@ -29,6 +29,7 @@
#include <linux/stacktrace.h>
#include <linux/string.h>
#include <linux/types.h>
+#include <linux/vmalloc.h>
#include <linux/kasan.h>
#include "kasan.h"
@@ -388,6 +389,19 @@ void kasan_krealloc(const void *object, size_t size)
kasan_kmalloc(page->slab_cache, object, size);
}
+void kasan_kfree(void *ptr)
+{
+ struct page *page;
+
+ page = virt_to_head_page(ptr);
+
+ if (unlikely(!PageSlab(page)))
+ kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
+ KASAN_FREE_PAGE);
+ else
+ kasan_slab_free(page->slab_cache, ptr);
+}
+
void kasan_kfree_large(const void *ptr)
{
struct page *page = virt_to_page(ptr);
@@ -414,12 +428,19 @@ int kasan_module_alloc(void *addr, size_t size)
GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
__builtin_return_address(0));
- return ret ? 0 : -ENOMEM;
+
+ if (ret) {
+ find_vm_area(addr)->flags |= VM_KASAN;
+ return 0;
+ }
+
+ return -ENOMEM;
}
-void kasan_module_free(void *addr)
+void kasan_free_shadow(const struct vm_struct *vm)
{
- vfree(kasan_mem_to_shadow(addr));
+ if (vm->flags & VM_KASAN)
+ vfree(kasan_mem_to_shadow(vm->addr));
}
static void register_global(struct kasan_global *global)
diff --git a/mm/ksm.c b/mm/ksm.c
index 4162dce2eb44..7ee101eaacdf 100644
--- a/mm/ksm.c
+++ b/mm/ksm.c
@@ -542,7 +542,7 @@ static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
expected_mapping = (void *)stable_node +
(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
again:
- kpfn = ACCESS_ONCE(stable_node->kpfn);
+ kpfn = READ_ONCE(stable_node->kpfn);
page = pfn_to_page(kpfn);
/*
@@ -551,7 +551,7 @@ again:
* but on Alpha we need to be more careful.
*/
smp_read_barrier_depends();
- if (ACCESS_ONCE(page->mapping) != expected_mapping)
+ if (READ_ONCE(page->mapping) != expected_mapping)
goto stale;
/*
@@ -577,14 +577,14 @@ again:
cpu_relax();
}
- if (ACCESS_ONCE(page->mapping) != expected_mapping) {
+ if (READ_ONCE(page->mapping) != expected_mapping) {
put_page(page);
goto stale;
}
if (lock_it) {
lock_page(page);
- if (ACCESS_ONCE(page->mapping) != expected_mapping) {
+ if (READ_ONCE(page->mapping) != expected_mapping) {
unlock_page(page);
put_page(page);
goto stale;
@@ -600,7 +600,7 @@ stale:
* before checking whether node->kpfn has been changed.
*/
smp_rmb();
- if (ACCESS_ONCE(stable_node->kpfn) != kpfn)
+ if (READ_ONCE(stable_node->kpfn) != kpfn)
goto again;
remove_node_from_stable_tree(stable_node);
return NULL;
diff --git a/mm/memblock.c b/mm/memblock.c
index 252b77bdf65e..9318b567ed79 100644
--- a/mm/memblock.c
+++ b/mm/memblock.c
@@ -580,10 +580,24 @@ int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
return memblock_add_range(&memblock.memory, base, size, nid, 0);
}
+static int __init_memblock memblock_add_region(phys_addr_t base,
+ phys_addr_t size,
+ int nid,
+ unsigned long flags)
+{
+ struct memblock_type *_rgn = &memblock.memory;
+
+ memblock_dbg("memblock_add: [%#016llx-%#016llx] flags %#02lx %pF\n",
+ (unsigned long long)base,
+ (unsigned long long)base + size - 1,
+ flags, (void *)_RET_IP_);
+
+ return memblock_add_range(_rgn, base, size, nid, flags);
+}
+
int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
{
- return memblock_add_range(&memblock.memory, base, size,
- MAX_NUMNODES, 0);
+ return memblock_add_region(base, size, MAX_NUMNODES, 0);
}
/**
@@ -699,14 +713,14 @@ static int __init_memblock memblock_reserve_region(phys_addr_t base,
int nid,
unsigned long flags)
{
- struct memblock_type *_rgn = &memblock.reserved;
+ struct memblock_type *type = &memblock.reserved;
memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
(unsigned long long)base,
(unsigned long long)base + size - 1,
flags, (void *)_RET_IP_);
- return memblock_add_range(_rgn, base, size, nid, flags);
+ return memblock_add_range(type, base, size, nid, flags);
}
int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index d18d3a6e7337..14c2f2017e37 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -14,6 +14,12 @@
* Copyright (C) 2012 Parallels Inc. and Google Inc.
* Authors: Glauber Costa and Suleiman Souhlal
*
+ * Native page reclaim
+ * Charge lifetime sanitation
+ * Lockless page tracking & accounting
+ * Unified hierarchy configuration model
+ * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
+ *
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
@@ -253,11 +259,6 @@ static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
* page cache and RSS per cgroup. We would eventually like to provide
* statistics based on the statistics developed by Rik Van Riel for clock-pro,
* to help the administrator determine what knobs to tune.
- *
- * TODO: Add a water mark for the memory controller. Reclaim will begin when
- * we hit the water mark. May be even add a low water mark, such that
- * no reclaim occurs from a cgroup at it's low water mark, this is
- * a feature that will be implemented much later in the future.
*/
struct mem_cgroup {
struct cgroup_subsys_state css;
@@ -454,6 +455,12 @@ static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
return memcg->css.id;
}
+/*
+ * A helper function to get mem_cgroup from ID. must be called under
+ * rcu_read_lock(). The caller is responsible for calling
+ * css_tryget_online() if the mem_cgroup is used for charging. (dropping
+ * refcnt from swap can be called against removed memcg.)
+ */
static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
struct cgroup_subsys_state *css;
@@ -667,7 +674,7 @@ static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
unsigned long nr_pages = page_counter_read(&memcg->memory);
- unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
+ unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
unsigned long excess = 0;
if (nr_pages > soft_limit)
@@ -1035,7 +1042,7 @@ struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
goto out_unlock;
do {
- pos = ACCESS_ONCE(iter->position);
+ pos = READ_ONCE(iter->position);
/*
* A racing update may change the position and
* put the last reference, hence css_tryget(),
@@ -1352,13 +1359,13 @@ static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
unsigned long limit;
count = page_counter_read(&memcg->memory);
- limit = ACCESS_ONCE(memcg->memory.limit);
+ limit = READ_ONCE(memcg->memory.limit);
if (count < limit)
margin = limit - count;
if (do_swap_account) {
count = page_counter_read(&memcg->memsw);
- limit = ACCESS_ONCE(memcg->memsw.limit);
+ limit = READ_ONCE(memcg->memsw.limit);
if (count <= limit)
margin = min(margin, limit - count);
}
@@ -1436,15 +1443,17 @@ void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
struct mem_cgroup *iter;
unsigned int i;
- if (!p)
- return;
-
mutex_lock(&oom_info_lock);
rcu_read_lock();
- pr_info("Task in ");
- pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
- pr_cont(" killed as a result of limit of ");
+ if (p) {
+ pr_info("Task in ");
+ pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
+ pr_cont(" killed as a result of limit of ");
+ } else {
+ pr_info("Memory limit reached of cgroup ");
+ }
+
pr_cont_cgroup_path(memcg->css.cgroup);
pr_cont("\n");
@@ -1531,7 +1540,7 @@ static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
return;
}
- check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
+ check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL, memcg);
totalpages = mem_cgroup_get_limit(memcg) ? : 1;
for_each_mem_cgroup_tree(iter, memcg) {
struct css_task_iter it;
@@ -2341,20 +2350,6 @@ static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
}
/*
- * A helper function to get mem_cgroup from ID. must be called under
- * rcu_read_lock(). The caller is responsible for calling
- * css_tryget_online() if the mem_cgroup is used for charging. (dropping
- * refcnt from swap can be called against removed memcg.)
- */
-static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
-{
- /* ID 0 is unused ID */
- if (!id)
- return NULL;
- return mem_cgroup_from_id(id);
-}
-
-/*
* try_get_mem_cgroup_from_page - look up page's memcg association
* @page: the page
*
@@ -2380,7 +2375,7 @@ struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
ent.val = page_private(page);
id = lookup_swap_cgroup_id(ent);
rcu_read_lock();
- memcg = mem_cgroup_lookup(id);
+ memcg = mem_cgroup_from_id(id);
if (memcg && !css_tryget_online(&memcg->css))
memcg = NULL;
rcu_read_unlock();
@@ -2642,7 +2637,7 @@ struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
return cachep;
memcg = get_mem_cgroup_from_mm(current->mm);
- kmemcg_id = ACCESS_ONCE(memcg->kmemcg_id);
+ kmemcg_id = READ_ONCE(memcg->kmemcg_id);
if (kmemcg_id < 0)
goto out;
@@ -2779,92 +2774,6 @@ void mem_cgroup_split_huge_fixup(struct page *head)
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
-/**
- * mem_cgroup_move_account - move account of the page
- * @page: the page
- * @nr_pages: number of regular pages (>1 for huge pages)
- * @from: mem_cgroup which the page is moved from.
- * @to: mem_cgroup which the page is moved to. @from != @to.
- *
- * The caller must confirm following.
- * - page is not on LRU (isolate_page() is useful.)
- * - compound_lock is held when nr_pages > 1
- *
- * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
- * from old cgroup.
- */
-static int mem_cgroup_move_account(struct page *page,
- unsigned int nr_pages,
- struct mem_cgroup *from,
- struct mem_cgroup *to)
-{
- unsigned long flags;
- int ret;
-
- VM_BUG_ON(from == to);
- VM_BUG_ON_PAGE(PageLRU(page), page);
- /*
- * The page is isolated from LRU. So, collapse function
- * will not handle this page. But page splitting can happen.
- * Do this check under compound_page_lock(). The caller should
- * hold it.
- */
- ret = -EBUSY;
- if (nr_pages > 1 && !PageTransHuge(page))
- goto out;
-
- /*
- * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
- * of its source page while we change it: page migration takes
- * both pages off the LRU, but page cache replacement doesn't.
- */
- if (!trylock_page(page))
- goto out;
-
- ret = -EINVAL;
- if (page->mem_cgroup != from)
- goto out_unlock;
-
- spin_lock_irqsave(&from->move_lock, flags);
-
- if (!PageAnon(page) && page_mapped(page)) {
- __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
- nr_pages);
- __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
- nr_pages);
- }
-
- if (PageWriteback(page)) {
- __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
- nr_pages);
- __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
- nr_pages);
- }
-
- /*
- * It is safe to change page->mem_cgroup here because the page
- * is referenced, charged, and isolated - we can't race with
- * uncharging, charging, migration, or LRU putback.
- */
-
- /* caller should have done css_get */
- page->mem_cgroup = to;
- spin_unlock_irqrestore(&from->move_lock, flags);
-
- ret = 0;
-
- local_irq_disable();
- mem_cgroup_charge_statistics(to, page, nr_pages);
- memcg_check_events(to, page);
- mem_cgroup_charge_statistics(from, page, -nr_pages);
- memcg_check_events(from, page);
- local_irq_enable();
-out_unlock:
- unlock_page(page);
-out:
- return ret;
-}
-
#ifdef CONFIG_MEMCG_SWAP
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
bool charge)
@@ -4816,6 +4725,92 @@ static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
return page;
}
+/**
+ * mem_cgroup_move_account - move account of the page
+ * @page: the page
+ * @nr_pages: number of regular pages (>1 for huge pages)
+ * @from: mem_cgroup which the page is moved from.
+ * @to: mem_cgroup which the page is moved to. @from != @to.
+ *
+ * The caller must confirm following.
+ * - page is not on LRU (isolate_page() is useful.)
+ * - compound_lock is held when nr_pages > 1
+ *
+ * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
+ * from old cgroup.
+ */
+static int mem_cgroup_move_account(struct page *page,
+ unsigned int nr_pages,
+ struct mem_cgroup *from,
+ struct mem_cgroup *to)
+{
+ unsigned long flags;
+ int ret;
+
+ VM_BUG_ON(from == to);
+ VM_BUG_ON_PAGE(PageLRU(page), page);
+ /*
+ * The page is isolated from LRU. So, collapse function
+ * will not handle this page. But page splitting can happen.
+ * Do this check under compound_page_lock(). The caller should
+ * hold it.
+ */
+ ret = -EBUSY;
+ if (nr_pages > 1 && !PageTransHuge(page))
+ goto out;
+
+ /*
+ * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
+ * of its source page while we change it: page migration takes
+ * both pages off the LRU, but page cache replacement doesn't.
+ */
+ if (!trylock_page(page))
+ goto out;
+
+ ret = -EINVAL;
+ if (page->mem_cgroup != from)
+ goto out_unlock;
+
+ spin_lock_irqsave(&from->move_lock, flags);
+
+ if (!PageAnon(page) && page_mapped(page)) {
+ __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
+ nr_pages);
+ __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
+ nr_pages);
+ }
+
+ if (PageWriteback(page)) {
+ __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
+ nr_pages);
+ __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
+ nr_pages);
+ }
+
+ /*
+ * It is safe to change page->mem_cgroup here because the page
+ * is referenced, charged, and isolated - we can't race with
+ * uncharging, charging, migration, or LRU putback.
+ */
+
+ /* caller should have done css_get */
+ page->mem_cgroup = to;
+ spin_unlock_irqrestore(&from->move_lock, flags);
+
+ ret = 0;
+
+ local_irq_disable();
+ mem_cgroup_charge_statistics(to, page, nr_pages);
+ memcg_check_events(to, page);
+ mem_cgroup_charge_statistics(from, page, -nr_pages);
+ memcg_check_events(from, page);
+ local_irq_enable();
+out_unlock:
+ unlock_page(page);
+out:
+ return ret;
+}
+
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
unsigned long addr, pte_t ptent, union mc_target *target)
{
@@ -5012,7 +5007,7 @@ static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
* tunable will only affect upcoming migrations, not the current one.
* So we need to save it, and keep it going.
*/
- move_flags = ACCESS_ONCE(memcg->move_charge_at_immigrate);
+ move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
if (move_flags) {
struct mm_struct *mm;
struct mem_cgroup *from = mem_cgroup_from_task(p);
@@ -5232,7 +5227,9 @@ static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
* on for the root memcg is enough.
*/
if (cgroup_on_dfl(root_css->cgroup))
- mem_cgroup_from_css(root_css)->use_hierarchy = true;
+ root_mem_cgroup->use_hierarchy = true;
+ else
+ root_mem_cgroup->use_hierarchy = false;
}
static u64 memory_current_read(struct cgroup_subsys_state *css,
@@ -5244,10 +5241,10 @@ static u64 memory_current_read(struct cgroup_subsys_state *css,
static int memory_low_show(struct seq_file *m, void *v)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
- unsigned long low = ACCESS_ONCE(memcg->low);
+ unsigned long low = READ_ONCE(memcg->low);
if (low == PAGE_COUNTER_MAX)
- seq_puts(m, "infinity\n");
+ seq_puts(m, "max\n");
else
seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
@@ -5262,7 +5259,7 @@ static ssize_t memory_low_write(struct kernfs_open_file *of,
int err;
buf = strstrip(buf);
- err = page_counter_memparse(buf, "infinity", &low);
+ err = page_counter_memparse(buf, "max", &low);
if (err)
return err;
@@ -5274,10 +5271,10 @@ static ssize_t memory_low_write(struct kernfs_open_file *of,
static int memory_high_show(struct seq_file *m, void *v)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
- unsigned long high = ACCESS_ONCE(memcg->high);
+ unsigned long high = READ_ONCE(memcg->high);
if (high == PAGE_COUNTER_MAX)
- seq_puts(m, "infinity\n");
+ seq_puts(m, "max\n");
else
seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
@@ -5292,7 +5289,7 @@ static ssize_t memory_high_write(struct kernfs_open_file *of,
int err;
buf = strstrip(buf);
- err = page_counter_memparse(buf, "infinity", &high);
+ err = page_counter_memparse(buf, "max", &high);
if (err)
return err;
@@ -5304,10 +5301,10 @@ static ssize_t memory_high_write(struct kernfs_open_file *of,
static int memory_max_show(struct seq_file *m, void *v)
{
struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
- unsigned long max = ACCESS_ONCE(memcg->memory.limit);
+ unsigned long max = READ_ONCE(memcg->memory.limit);
if (max == PAGE_COUNTER_MAX)
- seq_puts(m, "infinity\n");
+ seq_puts(m, "max\n");
else
seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
@@ -5322,7 +5319,7 @@ static ssize_t memory_max_write(struct kernfs_open_file *of,
int err;
buf = strstrip(buf);
- err = page_counter_memparse(buf, "infinity", &max);
+ err = page_counter_memparse(buf, "max", &max);
if (err)
return err;
@@ -5426,7 +5423,7 @@ bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
if (memcg == root_mem_cgroup)
return false;
- if (page_counter_read(&memcg->memory) > memcg->low)
+ if (page_counter_read(&memcg->memory) >= memcg->low)
return false;
while (memcg != root) {
@@ -5435,7 +5432,7 @@ bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
if (memcg == root_mem_cgroup)
break;
- if (page_counter_read(&memcg->memory) > memcg->low)
+ if (page_counter_read(&memcg->memory) >= memcg->low)
return false;
}
return true;
@@ -5859,7 +5856,7 @@ void mem_cgroup_uncharge_swap(swp_entry_t entry)
id = swap_cgroup_record(entry, 0);
rcu_read_lock();
- memcg = mem_cgroup_lookup(id);
+ memcg = mem_cgroup_from_id(id);
if (memcg) {
if (!mem_cgroup_is_root(memcg))
page_counter_uncharge(&memcg->memsw, 1);
diff --git a/mm/memory-failure.c b/mm/memory-failure.c
index d487f8dc6d39..d9359b770cd9 100644
--- a/mm/memory-failure.c
+++ b/mm/memory-failure.c
@@ -521,6 +521,52 @@ static const char *action_name[] = {
[RECOVERED] = "Recovered",
};
+enum action_page_type {
+ MSG_KERNEL,
+ MSG_KERNEL_HIGH_ORDER,
+ MSG_SLAB,
+ MSG_DIFFERENT_COMPOUND,
+ MSG_POISONED_HUGE,
+ MSG_HUGE,
+ MSG_FREE_HUGE,
+ MSG_UNMAP_FAILED,
+ MSG_DIRTY_SWAPCACHE,
+ MSG_CLEAN_SWAPCACHE,
+ MSG_DIRTY_MLOCKED_LRU,
+ MSG_CLEAN_MLOCKED_LRU,
+ MSG_DIRTY_UNEVICTABLE_LRU,
+ MSG_CLEAN_UNEVICTABLE_LRU,
+ MSG_DIRTY_LRU,
+ MSG_CLEAN_LRU,
+ MSG_TRUNCATED_LRU,
+ MSG_BUDDY,
+ MSG_BUDDY_2ND,
+ MSG_UNKNOWN,
+};
+
+static const char * const action_page_types[] = {
+ [MSG_KERNEL] = "reserved kernel page",
+ [MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
+ [MSG_SLAB] = "kernel slab page",
+ [MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
+ [MSG_POISONED_HUGE] = "huge page already hardware poisoned",
+ [MSG_HUGE] = "huge page",
+ [MSG_FREE_HUGE] = "free huge page",
+ [MSG_UNMAP_FAILED] = "unmapping failed page",
+ [MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
+ [MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
+ [MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
+ [MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
+ [MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
+ [MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
+ [MSG_DIRTY_LRU] = "dirty LRU page",
+ [MSG_CLEAN_LRU] = "clean LRU page",
+ [MSG_TRUNCATED_LRU] = "already truncated LRU page",
+ [MSG_BUDDY] = "free buddy page",
+ [MSG_BUDDY_2ND] = "free buddy page (2nd try)",
+ [MSG_UNKNOWN] = "unknown page",
+};
+
/*
* XXX: It is possible that a page is isolated from LRU cache,
* and then kept in swap cache or failed to remove from page cache.
@@ -777,10 +823,10 @@ static int me_huge_page(struct page *p, unsigned long pfn)
static struct page_state {
unsigned long mask;
unsigned long res;
- char *msg;
+ enum action_page_type type;
int (*action)(struct page *p, unsigned long pfn);
} error_states[] = {
- { reserved, reserved, "reserved kernel", me_kernel },
+ { reserved, reserved, MSG_KERNEL, me_kernel },
/*
* free pages are specially detected outside this table:
* PG_buddy pages only make a small fraction of all free pages.
@@ -791,31 +837,31 @@ static struct page_state {
* currently unused objects without touching them. But just
* treat it as standard kernel for now.
*/
- { slab, slab, "kernel slab", me_kernel },
+ { slab, slab, MSG_SLAB, me_kernel },
#ifdef CONFIG_PAGEFLAGS_EXTENDED
- { head, head, "huge", me_huge_page },
- { tail, tail, "huge", me_huge_page },
+ { head, head, MSG_HUGE, me_huge_page },
+ { tail, tail, MSG_HUGE, me_huge_page },
#else
- { compound, compound, "huge", me_huge_page },
+ { compound, compound, MSG_HUGE, me_huge_page },
#endif
- { sc|dirty, sc|dirty, "dirty swapcache", me_swapcache_dirty },
- { sc|dirty, sc, "clean swapcache", me_swapcache_clean },
+ { sc|dirty, sc|dirty, MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
+ { sc|dirty, sc, MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
- { mlock|dirty, mlock|dirty, "dirty mlocked LRU", me_pagecache_dirty },
- { mlock|dirty, mlock, "clean mlocked LRU", me_pagecache_clean },
+ { mlock|dirty, mlock|dirty, MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
+ { mlock|dirty, mlock, MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
- { unevict|dirty, unevict|dirty, "dirty unevictable LRU", me_pagecache_dirty },
- { unevict|dirty, unevict, "clean unevictable LRU", me_pagecache_clean },
+ { unevict|dirty, unevict|dirty, MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
+ { unevict|dirty, unevict, MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
- { lru|dirty, lru|dirty, "dirty LRU", me_pagecache_dirty },
- { lru|dirty, lru, "clean LRU", me_pagecache_clean },
+ { lru|dirty, lru|dirty, MSG_DIRTY_LRU, me_pagecache_dirty },
+ { lru|dirty, lru, MSG_CLEAN_LRU, me_pagecache_clean },
/*
* Catchall entry: must be at end.
*/
- { 0, 0, "unknown page state", me_unknown },
+ { 0, 0, MSG_UNKNOWN, me_unknown },
};
#undef dirty
@@ -835,10 +881,10 @@ static struct page_state {
* "Dirty/Clean" indication is not 100% accurate due to the possibility of
* setting PG_dirty outside page lock. See also comment above set_page_dirty().
*/
-static void action_result(unsigned long pfn, char *msg, int result)
+static void action_result(unsigned long pfn, enum action_page_type type, int result)
{
- pr_err("MCE %#lx: %s page recovery: %s\n",
- pfn, msg, action_name[result]);
+ pr_err("MCE %#lx: recovery action for %s: %s\n",
+ pfn, action_page_types[type], action_name[result]);
}
static int page_action(struct page_state *ps, struct page *p,
@@ -854,11 +900,11 @@ static int page_action(struct page_state *ps, struct page *p,
count--;
if (count != 0) {
printk(KERN_ERR
- "MCE %#lx: %s page still referenced by %d users\n",
- pfn, ps->msg, count);
+ "MCE %#lx: %s still referenced by %d users\n",
+ pfn, action_page_types[ps->type], count);
result = FAILED;
}
- action_result(pfn, ps->msg, result);
+ action_result(pfn, ps->type, result);
/* Could do more checks here if page looks ok */
/*
@@ -1106,7 +1152,7 @@ int memory_failure(unsigned long pfn, int trapno, int flags)
if (!(flags & MF_COUNT_INCREASED) &&
!get_page_unless_zero(hpage)) {
if (is_free_buddy_page(p)) {
- action_result(pfn, "free buddy", DELAYED);
+ action_result(pfn, MSG_BUDDY, DELAYED);
return 0;
} else if (PageHuge(hpage)) {
/*
@@ -1123,12 +1169,12 @@ int memory_failure(unsigned long pfn, int trapno, int flags)
}
set_page_hwpoison_huge_page(hpage);
res = dequeue_hwpoisoned_huge_page(hpage);
- action_result(pfn, "free huge",
+ action_result(pfn, MSG_FREE_HUGE,
res ? IGNORED : DELAYED);
unlock_page(hpage);
return res;
} else {
- action_result(pfn, "high order kernel", IGNORED);
+ action_result(pfn, MSG_KERNEL_HIGH_ORDER, IGNORED);
return -EBUSY;
}
}
@@ -1150,9 +1196,10 @@ int memory_failure(unsigned long pfn, int trapno, int flags)
*/
if (is_free_buddy_page(p)) {
if (flags & MF_COUNT_INCREASED)
- action_result(pfn, "free buddy", DELAYED);
+ action_result(pfn, MSG_BUDDY, DELAYED);
else
- action_result(pfn, "free buddy, 2nd try", DELAYED);
+ action_result(pfn, MSG_BUDDY_2ND,
+ DELAYED);
return 0;
}
}
@@ -1165,7 +1212,7 @@ int memory_failure(unsigned long pfn, int trapno, int flags)
* If this happens just bail out.
*/
if (compound_head(p) != hpage) {
- action_result(pfn, "different compound page after locking", IGNORED);
+ action_result(pfn, MSG_DIFFERENT_COMPOUND, IGNORED);
res = -EBUSY;
goto out;
}
@@ -1205,8 +1252,7 @@ int memory_failure(unsigned long pfn, int trapno, int flags)
* on the head page to show that the hugepage is hwpoisoned
*/
if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
- action_result(pfn, "hugepage already hardware poisoned",
- IGNORED);
+ action_result(pfn, MSG_POISONED_HUGE, IGNORED);
unlock_page(hpage);
put_page(hpage);
return 0;
@@ -1235,7 +1281,7 @@ int memory_failure(unsigned long pfn, int trapno, int flags)
*/
if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
!= SWAP_SUCCESS) {
- action_result(pfn, "unmapping failed", IGNORED);
+ action_result(pfn, MSG_UNMAP_FAILED, IGNORED);
res = -EBUSY;
goto out;
}
@@ -1244,7 +1290,7 @@ int memory_failure(unsigned long pfn, int trapno, int flags)
* Torn down by someone else?
*/
if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
- action_result(pfn, "already truncated LRU", IGNORED);
+ action_result(pfn, MSG_TRUNCATED_LRU, IGNORED);
res = -EBUSY;
goto out;
}
@@ -1540,8 +1586,18 @@ static int soft_offline_huge_page(struct page *page, int flags)
}
unlock_page(hpage);
- /* Keep page count to indicate a given hugepage is isolated. */
- list_move(&hpage->lru, &pagelist);
+ ret = isolate_huge_page(hpage, &pagelist);
+ if (ret) {
+ /*
+ * get_any_page() and isolate_huge_page() takes a refcount each,
+ * so need to drop one here.
+ */
+ put_page(hpage);
+ } else {
+ pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
+ return -EBUSY;
+ }
+
ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
MIGRATE_SYNC, MR_MEMORY_FAILURE);
if (ret) {
diff --git a/mm/memory.c b/mm/memory.c
index 8068893697bb..22e037e3364e 100644
--- a/mm/memory.c
+++ b/mm/memory.c
@@ -690,12 +690,11 @@ static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
/*
* Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
*/
- if (vma->vm_ops)
- printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
- vma->vm_ops->fault);
- if (vma->vm_file)
- printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
- vma->vm_file->f_op->mmap);
+ pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
+ vma->vm_file,
+ vma->vm_ops ? vma->vm_ops->fault : NULL,
+ vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
+ mapping ? mapping->a_ops->readpage : NULL);
dump_stack();
add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
}
@@ -1983,167 +1982,91 @@ static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
}
/*
- * This routine handles present pages, when users try to write
- * to a shared page. It is done by copying the page to a new address
- * and decrementing the shared-page counter for the old page.
+ * Handle write page faults for pages that can be reused in the current vma
*
- * Note that this routine assumes that the protection checks have been
- * done by the caller (the low-level page fault routine in most cases).
- * Thus we can safely just mark it writable once we've done any necessary
- * COW.
- *
- * We also mark the page dirty at this point even though the page will
- * change only once the write actually happens. This avoids a few races,
- * and potentially makes it more efficient.
- *
- * We enter with non-exclusive mmap_sem (to exclude vma changes,
- * but allow concurrent faults), with pte both mapped and locked.
- * We return with mmap_sem still held, but pte unmapped and unlocked.
+ * This can happen either due to the mapping being with the VM_SHARED flag,
+ * or due to us being the last reference standing to the page. In either
+ * case, all we need to do here is to mark the page as writable and update
+ * any related book-keeping.
*/
-static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
- unsigned long address, pte_t *page_table, pmd_t *pmd,
- spinlock_t *ptl, pte_t orig_pte)
+static inline int wp_page_reuse(struct mm_struct *mm,
+ struct vm_area_struct *vma, unsigned long address,
+ pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
+ struct page *page, int page_mkwrite,
+ int dirty_shared)
__releases(ptl)
{
- struct page *old_page, *new_page = NULL;
pte_t entry;
- int ret = 0;
- int page_mkwrite = 0;
- bool dirty_shared = false;
- unsigned long mmun_start = 0; /* For mmu_notifiers */
- unsigned long mmun_end = 0; /* For mmu_notifiers */
- struct mem_cgroup *memcg;
-
- old_page = vm_normal_page(vma, address, orig_pte);
- if (!old_page) {
- /*
- * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
- * VM_PFNMAP VMA.
- *
- * We should not cow pages in a shared writeable mapping.
- * Just mark the pages writable as we can't do any dirty
- * accounting on raw pfn maps.
- */
- if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
- (VM_WRITE|VM_SHARED))
- goto reuse;
- goto gotten;
- }
-
/*
- * Take out anonymous pages first, anonymous shared vmas are
- * not dirty accountable.
+ * Clear the pages cpupid information as the existing
+ * information potentially belongs to a now completely
+ * unrelated process.
*/
- if (PageAnon(old_page) && !PageKsm(old_page)) {
- if (!trylock_page(old_page)) {
- page_cache_get(old_page);
- pte_unmap_unlock(page_table, ptl);
- lock_page(old_page);
- page_table = pte_offset_map_lock(mm, pmd, address,
- &ptl);
- if (!pte_same(*page_table, orig_pte)) {
- unlock_page(old_page);
- goto unlock;
- }
- page_cache_release(old_page);
- }
- if (reuse_swap_page(old_page)) {
- /*
- * The page is all ours. Move it to our anon_vma so
- * the rmap code will not search our parent or siblings.
- * Protected against the rmap code by the page lock.
- */
- page_move_anon_rmap(old_page, vma, address);
- unlock_page(old_page);
- goto reuse;
- }
- unlock_page(old_page);
- } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
- (VM_WRITE|VM_SHARED))) {
- page_cache_get(old_page);
- /*
- * Only catch write-faults on shared writable pages,
- * read-only shared pages can get COWed by
- * get_user_pages(.write=1, .force=1).
- */
- if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
- int tmp;
-
- pte_unmap_unlock(page_table, ptl);
- tmp = do_page_mkwrite(vma, old_page, address);
- if (unlikely(!tmp || (tmp &
- (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
- page_cache_release(old_page);
- return tmp;
- }
- /*
- * Since we dropped the lock we need to revalidate
- * the PTE as someone else may have changed it. If
- * they did, we just return, as we can count on the
- * MMU to tell us if they didn't also make it writable.
- */
- page_table = pte_offset_map_lock(mm, pmd, address,
- &ptl);
- if (!pte_same(*page_table, orig_pte)) {
- unlock_page(old_page);
- goto unlock;
- }
- page_mkwrite = 1;
- }
-
- dirty_shared = true;
-
-reuse:
- /*
- * Clear the pages cpupid information as the existing
- * information potentially belongs to a now completely
- * unrelated process.
- */
- if (old_page)
- page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
-
- flush_cache_page(vma, address, pte_pfn(orig_pte));
- entry = pte_mkyoung(orig_pte);
- entry = maybe_mkwrite(pte_mkdirty(entry), vma);
- if (ptep_set_access_flags(vma, address, page_table, entry,1))
- update_mmu_cache(vma, address, page_table);
- pte_unmap_unlock(page_table, ptl);
- ret |= VM_FAULT_WRITE;
+ if (page)
+ page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
- if (dirty_shared) {
- struct address_space *mapping;
- int dirtied;
+ flush_cache_page(vma, address, pte_pfn(orig_pte));
+ entry = pte_mkyoung(orig_pte);
+ entry = maybe_mkwrite(pte_mkdirty(entry), vma);
+ if (ptep_set_access_flags(vma, address, page_table, entry, 1))
+ update_mmu_cache(vma, address, page_table);
+ pte_unmap_unlock(page_table, ptl);
- if (!page_mkwrite)
- lock_page(old_page);
+ if (dirty_shared) {
+ struct address_space *mapping;
+ int dirtied;
- dirtied = set_page_dirty(old_page);
- VM_BUG_ON_PAGE(PageAnon(old_page), old_page);
- mapping = old_page->mapping;
- unlock_page(old_page);
- page_cache_release(old_page);
+ if (!page_mkwrite)
+ lock_page(page);
- if ((dirtied || page_mkwrite) && mapping) {
- /*
- * Some device drivers do not set page.mapping
- * but still dirty their pages
- */
- balance_dirty_pages_ratelimited(mapping);
- }
+ dirtied = set_page_dirty(page);
+ VM_BUG_ON_PAGE(PageAnon(page), page);
+ mapping = page->mapping;
+ unlock_page(page);
+ page_cache_release(page);
- if (!page_mkwrite)
- file_update_time(vma->vm_file);
+ if ((dirtied || page_mkwrite) && mapping) {
+ /*
+ * Some device drivers do not set page.mapping
+ * but still dirty their pages
+ */
+ balance_dirty_pages_ratelimited(mapping);
}
- return ret;
+ if (!page_mkwrite)
+ file_update_time(vma->vm_file);
}
- /*
- * Ok, we need to copy. Oh, well..
- */
- page_cache_get(old_page);
-gotten:
- pte_unmap_unlock(page_table, ptl);
+ return VM_FAULT_WRITE;
+}
+
+/*
+ * Handle the case of a page which we actually need to copy to a new page.
+ *
+ * Called with mmap_sem locked and the old page referenced, but
+ * without the ptl held.
+ *
+ * High level logic flow:
+ *
+ * - Allocate a page, copy the content of the old page to the new one.
+ * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
+ * - Take the PTL. If the pte changed, bail out and release the allocated page
+ * - If the pte is still the way we remember it, update the page table and all
+ * relevant references. This includes dropping the reference the page-table
+ * held to the old page, as well as updating the rmap.
+ * - In any case, unlock the PTL and drop the reference we took to the old page.
+ */
+static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
+ unsigned long address, pte_t *page_table, pmd_t *pmd,
+ pte_t orig_pte, struct page *old_page)
+{
+ struct page *new_page = NULL;
+ spinlock_t *ptl = NULL;
+ pte_t entry;
+ int page_copied = 0;
+ const unsigned long mmun_start = address & PAGE_MASK; /* For mmu_notifiers */
+ const unsigned long mmun_end = mmun_start + PAGE_SIZE; /* For mmu_notifiers */
+ struct mem_cgroup *memcg;
if (unlikely(anon_vma_prepare(vma)))
goto oom;
@@ -2163,8 +2086,6 @@ gotten:
if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
goto oom_free_new;
- mmun_start = address & PAGE_MASK;
- mmun_end = mmun_start + PAGE_SIZE;
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
/*
@@ -2177,8 +2098,9 @@ gotten:
dec_mm_counter_fast(mm, MM_FILEPAGES);
inc_mm_counter_fast(mm, MM_ANONPAGES);
}
- } else
+ } else {
inc_mm_counter_fast(mm, MM_ANONPAGES);
+ }
flush_cache_page(vma, address, pte_pfn(orig_pte));
entry = mk_pte(new_page, vma->vm_page_prot);
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
@@ -2227,29 +2149,29 @@ gotten:
/* Free the old page.. */
new_page = old_page;
- ret |= VM_FAULT_WRITE;
- } else
+ page_copied = 1;
+ } else {
mem_cgroup_cancel_charge(new_page, memcg);
+ }
if (new_page)
page_cache_release(new_page);
-unlock:
+
pte_unmap_unlock(page_table, ptl);
- if (mmun_end > mmun_start)
- mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
+ mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
if (old_page) {
/*
* Don't let another task, with possibly unlocked vma,
* keep the mlocked page.
*/
- if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
+ if (page_copied && (vma->vm_flags & VM_LOCKED)) {
lock_page(old_page); /* LRU manipulation */
munlock_vma_page(old_page);
unlock_page(old_page);
}
page_cache_release(old_page);
}
- return ret;
+ return page_copied ? VM_FAULT_WRITE : 0;
oom_free_new:
page_cache_release(new_page);
oom:
@@ -2258,6 +2180,179 @@ oom:
return VM_FAULT_OOM;
}
+/*
+ * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
+ * mapping
+ */
+static int wp_pfn_shared(struct mm_struct *mm,
+ struct vm_area_struct *vma, unsigned long address,
+ pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
+ pmd_t *pmd)
+{
+ if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
+ struct vm_fault vmf = {
+ .page = NULL,
+ .pgoff = linear_page_index(vma, address),
+ .virtual_address = (void __user *)(address & PAGE_MASK),
+ .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
+ };
+ int ret;
+
+ pte_unmap_unlock(page_table, ptl);
+ ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
+ if (ret & VM_FAULT_ERROR)
+ return ret;
+ page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
+ /*
+ * We might have raced with another page fault while we
+ * released the pte_offset_map_lock.
+ */
+ if (!pte_same(*page_table, orig_pte)) {
+ pte_unmap_unlock(page_table, ptl);
+ return 0;
+ }
+ }
+ return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
+ NULL, 0, 0);
+}
+
+static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
+ unsigned long address, pte_t *page_table,
+ pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
+ struct page *old_page)
+ __releases(ptl)
+{
+ int page_mkwrite = 0;
+
+ page_cache_get(old_page);
+
+ /*
+ * Only catch write-faults on shared writable pages,
+ * read-only shared pages can get COWed by
+ * get_user_pages(.write=1, .force=1).
+ */
+ if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
+ int tmp;
+
+ pte_unmap_unlock(page_table, ptl);
+ tmp = do_page_mkwrite(vma, old_page, address);
+ if (unlikely(!tmp || (tmp &
+ (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
+ page_cache_release(old_page);
+ return tmp;
+ }
+ /*
+ * Since we dropped the lock we need to revalidate
+ * the PTE as someone else may have changed it. If
+ * they did, we just return, as we can count on the
+ * MMU to tell us if they didn't also make it writable.
+ */
+ page_table = pte_offset_map_lock(mm, pmd, address,
+ &ptl);
+ if (!pte_same(*page_table, orig_pte)) {
+ unlock_page(old_page);
+ pte_unmap_unlock(page_table, ptl);
+ page_cache_release(old_page);
+ return 0;
+ }
+ page_mkwrite = 1;
+ }
+
+ return wp_page_reuse(mm, vma, address, page_table, ptl,
+ orig_pte, old_page, page_mkwrite, 1);
+}
+
+/*
+ * This routine handles present pages, when users try to write
+ * to a shared page. It is done by copying the page to a new address
+ * and decrementing the shared-page counter for the old page.
+ *
+ * Note that this routine assumes that the protection checks have been
+ * done by the caller (the low-level page fault routine in most cases).
+ * Thus we can safely just mark it writable once we've done any necessary
+ * COW.
+ *
+ * We also mark the page dirty at this point even though the page will
+ * change only once the write actually happens. This avoids a few races,
+ * and potentially makes it more efficient.
+ *
+ * We enter with non-exclusive mmap_sem (to exclude vma changes,
+ * but allow concurrent faults), with pte both mapped and locked.
+ * We return with mmap_sem still held, but pte unmapped and unlocked.
+ */
+static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
+ unsigned long address, pte_t *page_table, pmd_t *pmd,
+ spinlock_t *ptl, pte_t orig_pte)
+ __releases(ptl)
+{
+ struct page *old_page;
+
+ old_page = vm_normal_page(vma, address, orig_pte);
+ if (!old_page) {
+ /*
+ * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
+ * VM_PFNMAP VMA.
+ *
+ * We should not cow pages in a shared writeable mapping.
+ * Just mark the pages writable and/or call ops->pfn_mkwrite.
+ */
+ if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
+ (VM_WRITE|VM_SHARED))
+ return wp_pfn_shared(mm, vma, address, page_table, ptl,
+ orig_pte, pmd);
+
+ pte_unmap_unlock(page_table, ptl);
+ return wp_page_copy(mm, vma, address, page_table, pmd,
+ orig_pte, old_page);
+ }
+
+ /*
+ * Take out anonymous pages first, anonymous shared vmas are
+ * not dirty accountable.
+ */
+ if (PageAnon(old_page) && !PageKsm(old_page)) {
+ if (!trylock_page(old_page)) {
+ page_cache_get(old_page);
+ pte_unmap_unlock(page_table, ptl);
+ lock_page(old_page);
+ page_table = pte_offset_map_lock(mm, pmd, address,
+ &ptl);
+ if (!pte_same(*page_table, orig_pte)) {
+ unlock_page(old_page);
+ pte_unmap_unlock(page_table, ptl);
+ page_cache_release(old_page);
+ return 0;
+ }
+ page_cache_release(old_page);
+ }
+ if (reuse_swap_page(old_page)) {
+ /*
+ * The page is all ours. Move it to our anon_vma so
+ * the rmap code will not search our parent or siblings.
+ * Protected against the rmap code by the page lock.
+ */
+ page_move_anon_rmap(old_page, vma, address);
+ unlock_page(old_page);
+ return wp_page_reuse(mm, vma, address, page_table, ptl,
+ orig_pte, old_page, 0, 0);
+ }
+ unlock_page(old_page);
+ } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
+ (VM_WRITE|VM_SHARED))) {
+ return wp_page_shared(mm, vma, address, page_table, pmd,
+ ptl, orig_pte, old_page);
+ }
+
+ /*
+ * Ok, we need to copy. Oh, well..
+ */
+ page_cache_get(old_page);
+
+ pte_unmap_unlock(page_table, ptl);
+ return wp_page_copy(mm, vma, address, page_table, pmd,
+ orig_pte, old_page);
+}
+
static void unmap_mapping_range_vma(struct vm_area_struct *vma,
unsigned long start_addr, unsigned long end_addr,
struct zap_details *details)
@@ -2784,7 +2879,7 @@ static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
struct vm_fault vmf;
int off;
- nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT;
+ nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
start_addr = max(address & mask, vma->vm_start);
@@ -3035,6 +3130,7 @@ static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
int last_cpupid;
int target_nid;
bool migrated = false;
+ bool was_writable = pte_write(pte);
int flags = 0;
/* A PROT_NONE fault should not end up here */
@@ -3059,6 +3155,8 @@ static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
/* Make it present again */
pte = pte_modify(pte, vma->vm_page_prot);
pte = pte_mkyoung(pte);
+ if (was_writable)
+ pte = pte_mkwrite(pte);
set_pte_at(mm, addr, ptep, pte);
update_mmu_cache(vma, addr, ptep);
@@ -3069,11 +3167,14 @@ static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
}
/*
- * Avoid grouping on DSO/COW pages in specific and RO pages
- * in general, RO pages shouldn't hurt as much anyway since
- * they can be in shared cache state.
+ * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
+ * much anyway since they can be in shared cache state. This misses
+ * the case where a mapping is writable but the process never writes
+ * to it but pte_write gets cleared during protection updates and
+ * pte_dirty has unpredictable behaviour between PTE scan updates,
+ * background writeback, dirty balancing and application behaviour.
*/
- if (!pte_write(pte))
+ if (!(vma->vm_flags & VM_WRITE))
flags |= TNF_NO_GROUP;
/*
@@ -3097,7 +3198,8 @@ static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
if (migrated) {
page_nid = target_nid;
flags |= TNF_MIGRATED;
- }
+ } else
+ flags |= TNF_MIGRATE_FAIL;
out:
if (page_nid != -1)
diff --git a/mm/memory_hotplug.c b/mm/memory_hotplug.c
index 9fab10795bea..457bde530cbe 100644
--- a/mm/memory_hotplug.c
+++ b/mm/memory_hotplug.c
@@ -104,7 +104,7 @@ void put_online_mems(void)
}
-static void mem_hotplug_begin(void)
+void mem_hotplug_begin(void)
{
mem_hotplug.active_writer = current;
@@ -119,7 +119,7 @@ static void mem_hotplug_begin(void)
}
}
-static void mem_hotplug_done(void)
+void mem_hotplug_done(void)
{
mem_hotplug.active_writer = NULL;
mutex_unlock(&mem_hotplug.lock);
@@ -502,7 +502,7 @@ int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn,
end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
for (i = start_sec; i <= end_sec; i++) {
- err = __add_section(nid, zone, i << PFN_SECTION_SHIFT);
+ err = __add_section(nid, zone, section_nr_to_pfn(i));
/*
* EEXIST is finally dealt with by ioresource collision
@@ -959,6 +959,7 @@ static void node_states_set_node(int node, struct memory_notify *arg)
}
+/* Must be protected by mem_hotplug_begin() */
int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
{
unsigned long flags;
@@ -969,7 +970,6 @@ int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_typ
int ret;
struct memory_notify arg;
- mem_hotplug_begin();
/*
* This doesn't need a lock to do pfn_to_page().
* The section can't be removed here because of the
@@ -977,21 +977,20 @@ int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_typ
*/
zone = page_zone(pfn_to_page(pfn));
- ret = -EINVAL;
if ((zone_idx(zone) > ZONE_NORMAL ||
online_type == MMOP_ONLINE_MOVABLE) &&
!can_online_high_movable(zone))
- goto out;
+ return -EINVAL;
if (online_type == MMOP_ONLINE_KERNEL &&
zone_idx(zone) == ZONE_MOVABLE) {
if (move_pfn_range_left(zone - 1, zone, pfn, pfn + nr_pages))
- goto out;
+ return -EINVAL;
}
if (online_type == MMOP_ONLINE_MOVABLE &&
zone_idx(zone) == ZONE_MOVABLE - 1) {
if (move_pfn_range_right(zone, zone + 1, pfn, pfn + nr_pages))
- goto out;
+ return -EINVAL;
}
/* Previous code may changed the zone of the pfn range */
@@ -1007,7 +1006,7 @@ int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_typ
ret = notifier_to_errno(ret);
if (ret) {
memory_notify(MEM_CANCEL_ONLINE, &arg);
- goto out;
+ return ret;
}
/*
* If this zone is not populated, then it is not in zonelist.
@@ -1031,7 +1030,7 @@ int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_typ
(((unsigned long long) pfn + nr_pages)
<< PAGE_SHIFT) - 1);
memory_notify(MEM_CANCEL_ONLINE, &arg);
- goto out;
+ return ret;
}
zone->present_pages += onlined_pages;
@@ -1061,9 +1060,7 @@ int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_typ
if (onlined_pages)
memory_notify(MEM_ONLINE, &arg);
-out:
- mem_hotplug_done();
- return ret;
+ return 0;
}
#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
@@ -1092,6 +1089,10 @@ static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
return NULL;
arch_refresh_nodedata(nid, pgdat);
+ } else {
+ /* Reset the nr_zones and classzone_idx to 0 before reuse */
+ pgdat->nr_zones = 0;
+ pgdat->classzone_idx = 0;
}
/* we can use NODE_DATA(nid) from here */
@@ -1372,7 +1373,7 @@ static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
if (PageLRU(page))
return pfn;
if (PageHuge(page)) {
- if (is_hugepage_active(page))
+ if (page_huge_active(page))
return pfn;
else
pfn = round_up(pfn + 1,
@@ -1684,21 +1685,18 @@ static int __ref __offline_pages(unsigned long start_pfn,
if (!test_pages_in_a_zone(start_pfn, end_pfn))
return -EINVAL;
- mem_hotplug_begin();
-
zone = page_zone(pfn_to_page(start_pfn));
node = zone_to_nid(zone);
nr_pages = end_pfn - start_pfn;
- ret = -EINVAL;
if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages))
- goto out;
+ return -EINVAL;
/* set above range as isolated */
ret = start_isolate_page_range(start_pfn, end_pfn,
MIGRATE_MOVABLE, true);
if (ret)
- goto out;
+ return ret;
arg.start_pfn = start_pfn;
arg.nr_pages = nr_pages;
@@ -1791,7 +1789,6 @@ repeat:
writeback_set_ratelimit();
memory_notify(MEM_OFFLINE, &arg);
- mem_hotplug_done();
return 0;
failed_removal:
@@ -1801,12 +1798,10 @@ failed_removal:
memory_notify(MEM_CANCEL_OFFLINE, &arg);
/* pushback to free area */
undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
-
-out:
- mem_hotplug_done();
return ret;
}
+/* Must be protected by mem_hotplug_begin() */
int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
{
return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ);
@@ -1977,15 +1972,6 @@ void try_offline_node(int nid)
if (is_vmalloc_addr(zone->wait_table))
vfree(zone->wait_table);
}
-
- /*
- * Since there is no way to guarentee the address of pgdat/zone is not
- * on stack of any kernel threads or used by other kernel objects
- * without reference counting or other symchronizing method, do not
- * reset node_data and free pgdat here. Just reset it to 0 and reuse
- * the memory when the node is online again.
- */
- memset(pgdat, 0, sizeof(*pgdat));
}
EXPORT_SYMBOL(try_offline_node);
diff --git a/mm/mempolicy.c b/mm/mempolicy.c
index 4721046a134a..ede26291d4aa 100644
--- a/mm/mempolicy.c
+++ b/mm/mempolicy.c
@@ -945,7 +945,8 @@ static struct page *new_node_page(struct page *page, unsigned long node, int **x
return alloc_huge_page_node(page_hstate(compound_head(page)),
node);
else
- return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
+ return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE |
+ __GFP_THISNODE, 0);
}
/*
@@ -1985,7 +1986,8 @@ retry_cpuset:
nmask = policy_nodemask(gfp, pol);
if (!nmask || node_isset(node, *nmask)) {
mpol_cond_put(pol);
- page = alloc_pages_exact_node(node, gfp, order);
+ page = alloc_pages_exact_node(node,
+ gfp | __GFP_THISNODE, order);
goto out;
}
}
diff --git a/mm/mempool.c b/mm/mempool.c
index e209c98c7203..2cc08de8b1db 100644
--- a/mm/mempool.c
+++ b/mm/mempool.c
@@ -6,26 +6,138 @@
* extreme VM load.
*
* started by Ingo Molnar, Copyright (C) 2001
+ * debugging by David Rientjes, Copyright (C) 2015
*/
#include <linux/mm.h>
#include <linux/slab.h>
+#include <linux/highmem.h>
+#include <linux/kasan.h>
#include <linux/kmemleak.h>
#include <linux/export.h>
#include <linux/mempool.h>
#include <linux/blkdev.h>
#include <linux/writeback.h>
+#include "slab.h"
+
+#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
+static void poison_error(mempool_t *pool, void *element, size_t size,
+ size_t byte)
+{
+ const int nr = pool->curr_nr;
+ const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0);
+ const int end = min_t(int, byte + (BITS_PER_LONG / 8), size);
+ int i;
+
+ pr_err("BUG: mempool element poison mismatch\n");
+ pr_err("Mempool %p size %zu\n", pool, size);
+ pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : "");
+ for (i = start; i < end; i++)
+ pr_cont("%x ", *(u8 *)(element + i));
+ pr_cont("%s\n", end < size ? "..." : "");
+ dump_stack();
+}
+
+static void __check_element(mempool_t *pool, void *element, size_t size)
+{
+ u8 *obj = element;
+ size_t i;
+
+ for (i = 0; i < size; i++) {
+ u8 exp = (i < size - 1) ? POISON_FREE : POISON_END;
+
+ if (obj[i] != exp) {
+ poison_error(pool, element, size, i);
+ return;
+ }
+ }
+ memset(obj, POISON_INUSE, size);
+}
+
+static void check_element(mempool_t *pool, void *element)
+{
+ /* Mempools backed by slab allocator */
+ if (pool->free == mempool_free_slab || pool->free == mempool_kfree)
+ __check_element(pool, element, ksize(element));
+
+ /* Mempools backed by page allocator */
+ if (pool->free == mempool_free_pages) {
+ int order = (int)(long)pool->pool_data;
+ void *addr = kmap_atomic((struct page *)element);
+
+ __check_element(pool, addr, 1UL << (PAGE_SHIFT + order));
+ kunmap_atomic(addr);
+ }
+}
+
+static void __poison_element(void *element, size_t size)
+{
+ u8 *obj = element;
+
+ memset(obj, POISON_FREE, size - 1);
+ obj[size - 1] = POISON_END;
+}
+
+static void poison_element(mempool_t *pool, void *element)
+{
+ /* Mempools backed by slab allocator */
+ if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
+ __poison_element(element, ksize(element));
+
+ /* Mempools backed by page allocator */
+ if (pool->alloc == mempool_alloc_pages) {
+ int order = (int)(long)pool->pool_data;
+ void *addr = kmap_atomic((struct page *)element);
+
+ __poison_element(addr, 1UL << (PAGE_SHIFT + order));
+ kunmap_atomic(addr);
+ }
+}
+#else /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
+static inline void check_element(mempool_t *pool, void *element)
+{
+}
+static inline void poison_element(mempool_t *pool, void *element)
+{
+}
+#endif /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
+
+static void kasan_poison_element(mempool_t *pool, void *element)
+{
+ if (pool->alloc == mempool_alloc_slab)
+ kasan_slab_free(pool->pool_data, element);
+ if (pool->alloc == mempool_kmalloc)
+ kasan_kfree(element);
+ if (pool->alloc == mempool_alloc_pages)
+ kasan_free_pages(element, (unsigned long)pool->pool_data);
+}
+
+static void kasan_unpoison_element(mempool_t *pool, void *element)
+{
+ if (pool->alloc == mempool_alloc_slab)
+ kasan_slab_alloc(pool->pool_data, element);
+ if (pool->alloc == mempool_kmalloc)
+ kasan_krealloc(element, (size_t)pool->pool_data);
+ if (pool->alloc == mempool_alloc_pages)
+ kasan_alloc_pages(element, (unsigned long)pool->pool_data);
+}
static void add_element(mempool_t *pool, void *element)
{
BUG_ON(pool->curr_nr >= pool->min_nr);
+ poison_element(pool, element);
+ kasan_poison_element(pool, element);
pool->elements[pool->curr_nr++] = element;
}
static void *remove_element(mempool_t *pool)
{
- BUG_ON(pool->curr_nr <= 0);
- return pool->elements[--pool->curr_nr];
+ void *element = pool->elements[--pool->curr_nr];
+
+ BUG_ON(pool->curr_nr < 0);
+ check_element(pool, element);
+ kasan_unpoison_element(pool, element);
+ return element;
}
/**
@@ -113,23 +225,24 @@ EXPORT_SYMBOL(mempool_create_node);
* mempool_create().
* @new_min_nr: the new minimum number of elements guaranteed to be
* allocated for this pool.
- * @gfp_mask: the usual allocation bitmask.
*
* This function shrinks/grows the pool. In the case of growing,
* it cannot be guaranteed that the pool will be grown to the new
* size immediately, but new mempool_free() calls will refill it.
+ * This function may sleep.
*
* Note, the caller must guarantee that no mempool_destroy is called
* while this function is running. mempool_alloc() & mempool_free()
* might be called (eg. from IRQ contexts) while this function executes.
*/
-int mempool_resize(mempool_t *pool, int new_min_nr, gfp_t gfp_mask)
+int mempool_resize(mempool_t *pool, int new_min_nr)
{
void *element;
void **new_elements;
unsigned long flags;
BUG_ON(new_min_nr <= 0);
+ might_sleep();
spin_lock_irqsave(&pool->lock, flags);
if (new_min_nr <= pool->min_nr) {
@@ -145,7 +258,8 @@ int mempool_resize(mempool_t *pool, int new_min_nr, gfp_t gfp_mask)
spin_unlock_irqrestore(&pool->lock, flags);
/* Grow the pool */
- new_elements = kmalloc(new_min_nr * sizeof(*new_elements), gfp_mask);
+ new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements),
+ GFP_KERNEL);
if (!new_elements)
return -ENOMEM;
@@ -164,7 +278,7 @@ int mempool_resize(mempool_t *pool, int new_min_nr, gfp_t gfp_mask)
while (pool->curr_nr < pool->min_nr) {
spin_unlock_irqrestore(&pool->lock, flags);
- element = pool->alloc(gfp_mask, pool->pool_data);
+ element = pool->alloc(GFP_KERNEL, pool->pool_data);
if (!element)
goto out;
spin_lock_irqsave(&pool->lock, flags);
@@ -332,6 +446,7 @@ EXPORT_SYMBOL(mempool_free);
void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
{
struct kmem_cache *mem = pool_data;
+ VM_BUG_ON(mem->ctor);
return kmem_cache_alloc(mem, gfp_mask);
}
EXPORT_SYMBOL(mempool_alloc_slab);
diff --git a/mm/memtest.c b/mm/memtest.c
new file mode 100644
index 000000000000..1997d934b13b
--- /dev/null
+++ b/mm/memtest.c
@@ -0,0 +1,118 @@
+#include <linux/kernel.h>
+#include <linux/errno.h>
+#include <linux/string.h>
+#include <linux/types.h>
+#include <linux/mm.h>
+#include <linux/smp.h>
+#include <linux/init.h>
+#include <linux/pfn.h>
+#include <linux/memblock.h>
+
+static u64 patterns[] __initdata = {
+ /* The first entry has to be 0 to leave memtest with zeroed memory */
+ 0,
+ 0xffffffffffffffffULL,
+ 0x5555555555555555ULL,
+ 0xaaaaaaaaaaaaaaaaULL,
+ 0x1111111111111111ULL,
+ 0x2222222222222222ULL,
+ 0x4444444444444444ULL,
+ 0x8888888888888888ULL,
+ 0x3333333333333333ULL,
+ 0x6666666666666666ULL,
+ 0x9999999999999999ULL,
+ 0xccccccccccccccccULL,
+ 0x7777777777777777ULL,
+ 0xbbbbbbbbbbbbbbbbULL,
+ 0xddddddddddddddddULL,
+ 0xeeeeeeeeeeeeeeeeULL,
+ 0x7a6c7258554e494cULL, /* yeah ;-) */
+};
+
+static void __init reserve_bad_mem(u64 pattern, phys_addr_t start_bad, phys_addr_t end_bad)
+{
+ printk(KERN_INFO " %016llx bad mem addr %010llx - %010llx reserved\n",
+ (unsigned long long) pattern,
+ (unsigned long long) start_bad,
+ (unsigned long long) end_bad);
+ memblock_reserve(start_bad, end_bad - start_bad);
+}
+
+static void __init memtest(u64 pattern, phys_addr_t start_phys, phys_addr_t size)
+{
+ u64 *p, *start, *end;
+ phys_addr_t start_bad, last_bad;
+ phys_addr_t start_phys_aligned;
+ const size_t incr = sizeof(pattern);
+
+ start_phys_aligned = ALIGN(start_phys, incr);
+ start = __va(start_phys_aligned);
+ end = start + (size - (start_phys_aligned - start_phys)) / incr;
+ start_bad = 0;
+ last_bad = 0;
+
+ for (p = start; p < end; p++)
+ *p = pattern;
+
+ for (p = start; p < end; p++, start_phys_aligned += incr) {
+ if (*p == pattern)
+ continue;
+ if (start_phys_aligned == last_bad + incr) {
+ last_bad += incr;
+ continue;
+ }
+ if (start_bad)
+ reserve_bad_mem(pattern, start_bad, last_bad + incr);
+ start_bad = last_bad = start_phys_aligned;
+ }
+ if (start_bad)
+ reserve_bad_mem(pattern, start_bad, last_bad + incr);
+}
+
+static void __init do_one_pass(u64 pattern, phys_addr_t start, phys_addr_t end)
+{
+ u64 i;
+ phys_addr_t this_start, this_end;
+
+ for_each_free_mem_range(i, NUMA_NO_NODE, &this_start, &this_end, NULL) {
+ this_start = clamp(this_start, start, end);
+ this_end = clamp(this_end, start, end);
+ if (this_start < this_end) {
+ printk(KERN_INFO " %010llx - %010llx pattern %016llx\n",
+ (unsigned long long)this_start,
+ (unsigned long long)this_end,
+ (unsigned long long)cpu_to_be64(pattern));
+ memtest(pattern, this_start, this_end - this_start);
+ }
+ }
+}
+
+/* default is disabled */
+static int memtest_pattern __initdata;
+
+static int __init parse_memtest(char *arg)
+{
+ if (arg)
+ memtest_pattern = simple_strtoul(arg, NULL, 0);
+ else
+ memtest_pattern = ARRAY_SIZE(patterns);
+
+ return 0;
+}
+
+early_param("memtest", parse_memtest);
+
+void __init early_memtest(phys_addr_t start, phys_addr_t end)
+{
+ unsigned int i;
+ unsigned int idx = 0;
+
+ if (!memtest_pattern)
+ return;
+
+ printk(KERN_INFO "early_memtest: # of tests: %d\n", memtest_pattern);
+ for (i = memtest_pattern-1; i < UINT_MAX; --i) {
+ idx = i % ARRAY_SIZE(patterns);
+ do_one_pass(patterns[idx], start, end);
+ }
+}
diff --git a/mm/migrate.c b/mm/migrate.c
index 85e042686031..f53838fe3dfe 100644
--- a/mm/migrate.c
+++ b/mm/migrate.c
@@ -537,7 +537,8 @@ void migrate_page_copy(struct page *newpage, struct page *page)
* Please do not reorder this without considering how mm/ksm.c's
* get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
*/
- ClearPageSwapCache(page);
+ if (PageSwapCache(page))
+ ClearPageSwapCache(page);
ClearPagePrivate(page);
set_page_private(page, 0);
@@ -901,12 +902,23 @@ out:
}
/*
+ * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
+ * around it.
+ */
+#if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
+#define ICE_noinline noinline
+#else
+#define ICE_noinline
+#endif
+
+/*
* Obtain the lock on page, remove all ptes and migrate the page
* to the newly allocated page in newpage.
*/
-static int unmap_and_move(new_page_t get_new_page, free_page_t put_new_page,
- unsigned long private, struct page *page, int force,
- enum migrate_mode mode)
+static ICE_noinline int unmap_and_move(new_page_t get_new_page,
+ free_page_t put_new_page,
+ unsigned long private, struct page *page,
+ int force, enum migrate_mode mode)
{
int rc = 0;
int *result = NULL;
@@ -1554,30 +1566,10 @@ static struct page *alloc_misplaced_dst_page(struct page *page,
* page migration rate limiting control.
* Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
* window of time. Default here says do not migrate more than 1280M per second.
- * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
- * as it is faults that reset the window, pte updates will happen unconditionally
- * if there has not been a fault since @pteupdate_interval_millisecs after the
- * throttle window closed.
*/
static unsigned int migrate_interval_millisecs __read_mostly = 100;
-static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
-/* Returns true if NUMA migration is currently rate limited */
-bool migrate_ratelimited(int node)
-{
- pg_data_t *pgdat = NODE_DATA(node);
-
- if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
- msecs_to_jiffies(pteupdate_interval_millisecs)))
- return false;
-
- if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
- return false;
-
- return true;
-}
-
/* Returns true if the node is migrate rate-limited after the update */
static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
unsigned long nr_pages)
diff --git a/mm/mlock.c b/mm/mlock.c
index 73cf0987088c..6fd2cf15e868 100644
--- a/mm/mlock.c
+++ b/mm/mlock.c
@@ -26,10 +26,10 @@
int can_do_mlock(void)
{
- if (capable(CAP_IPC_LOCK))
- return 1;
if (rlimit(RLIMIT_MEMLOCK) != 0)
return 1;
+ if (capable(CAP_IPC_LOCK))
+ return 1;
return 0;
}
EXPORT_SYMBOL(can_do_mlock);
@@ -205,62 +205,6 @@ out:
return nr_pages - 1;
}
-/**
- * __mlock_vma_pages_range() - mlock a range of pages in the vma.
- * @vma: target vma
- * @start: start address
- * @end: end address
- * @nonblocking:
- *
- * This takes care of making the pages present too.
- *
- * return 0 on success, negative error code on error.
- *
- * vma->vm_mm->mmap_sem must be held.
- *
- * If @nonblocking is NULL, it may be held for read or write and will
- * be unperturbed.
- *
- * If @nonblocking is non-NULL, it must held for read only and may be
- * released. If it's released, *@nonblocking will be set to 0.
- */
-long __mlock_vma_pages_range(struct vm_area_struct *vma,
- unsigned long start, unsigned long end, int *nonblocking)
-{
- struct mm_struct *mm = vma->vm_mm;
- unsigned long nr_pages = (end - start) / PAGE_SIZE;
- int gup_flags;
-
- VM_BUG_ON(start & ~PAGE_MASK);
- VM_BUG_ON(end & ~PAGE_MASK);
- VM_BUG_ON_VMA(start < vma->vm_start, vma);
- VM_BUG_ON_VMA(end > vma->vm_end, vma);
- VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
-
- gup_flags = FOLL_TOUCH | FOLL_MLOCK;
- /*
- * We want to touch writable mappings with a write fault in order
- * to break COW, except for shared mappings because these don't COW
- * and we would not want to dirty them for nothing.
- */
- if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
- gup_flags |= FOLL_WRITE;
-
- /*
- * We want mlock to succeed for regions that have any permissions
- * other than PROT_NONE.
- */
- if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
- gup_flags |= FOLL_FORCE;
-
- /*
- * We made sure addr is within a VMA, so the following will
- * not result in a stack expansion that recurses back here.
- */
- return __get_user_pages(current, mm, start, nr_pages, gup_flags,
- NULL, NULL, nonblocking);
-}
-
/*
* convert get_user_pages() return value to posix mlock() error
*/
@@ -596,7 +540,7 @@ success:
/*
* vm_flags is protected by the mmap_sem held in write mode.
* It's okay if try_to_unmap_one unmaps a page just after we
- * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
+ * set VM_LOCKED, populate_vma_page_range will bring it back.
*/
if (lock)
@@ -660,69 +604,6 @@ static int do_mlock(unsigned long start, size_t len, int on)
return error;
}
-/*
- * __mm_populate - populate and/or mlock pages within a range of address space.
- *
- * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
- * flags. VMAs must be already marked with the desired vm_flags, and
- * mmap_sem must not be held.
- */
-int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
-{
- struct mm_struct *mm = current->mm;
- unsigned long end, nstart, nend;
- struct vm_area_struct *vma = NULL;
- int locked = 0;
- long ret = 0;
-
- VM_BUG_ON(start & ~PAGE_MASK);
- VM_BUG_ON(len != PAGE_ALIGN(len));
- end = start + len;
-
- for (nstart = start; nstart < end; nstart = nend) {
- /*
- * We want to fault in pages for [nstart; end) address range.
- * Find first corresponding VMA.
- */
- if (!locked) {
- locked = 1;
- down_read(&mm->mmap_sem);
- vma = find_vma(mm, nstart);
- } else if (nstart >= vma->vm_end)
- vma = vma->vm_next;
- if (!vma || vma->vm_start >= end)
- break;
- /*
- * Set [nstart; nend) to intersection of desired address
- * range with the first VMA. Also, skip undesirable VMA types.
- */
- nend = min(end, vma->vm_end);
- if (vma->vm_flags & (VM_IO | VM_PFNMAP))
- continue;
- if (nstart < vma->vm_start)
- nstart = vma->vm_start;
- /*
- * Now fault in a range of pages. __mlock_vma_pages_range()
- * double checks the vma flags, so that it won't mlock pages
- * if the vma was already munlocked.
- */
- ret = __mlock_vma_pages_range(vma, nstart, nend, &locked);
- if (ret < 0) {
- if (ignore_errors) {
- ret = 0;
- continue; /* continue at next VMA */
- }
- ret = __mlock_posix_error_return(ret);
- break;
- }
- nend = nstart + ret * PAGE_SIZE;
- ret = 0;
- }
- if (locked)
- up_read(&mm->mmap_sem);
- return ret; /* 0 or negative error code */
-}
-
SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
{
unsigned long locked;
@@ -750,9 +631,13 @@ SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
error = do_mlock(start, len, 1);
up_write(&current->mm->mmap_sem);
- if (!error)
- error = __mm_populate(start, len, 0);
- return error;
+ if (error)
+ return error;
+
+ error = __mm_populate(start, len, 0);
+ if (error)
+ return __mlock_posix_error_return(error);
+ return 0;
}
SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
diff --git a/mm/mmap.c b/mm/mmap.c
index da9990acc08b..bb50cacc3ea5 100644
--- a/mm/mmap.c
+++ b/mm/mmap.c
@@ -774,10 +774,8 @@ again: remove_next = 1 + (end > next->vm_end);
importer->anon_vma = exporter->anon_vma;
error = anon_vma_clone(importer, exporter);
- if (error) {
- importer->anon_vma = NULL;
+ if (error)
return error;
- }
}
}
@@ -1135,7 +1133,7 @@ static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *
* by another page fault trying to merge _that_. But that's ok: if it
* is being set up, that automatically means that it will be a singleton
* acceptable for merging, so we can do all of this optimistically. But
- * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
+ * we do that READ_ONCE() to make sure that we never re-load the pointer.
*
* IOW: that the "list_is_singular()" test on the anon_vma_chain only
* matters for the 'stable anon_vma' case (ie the thing we want to avoid
@@ -1149,7 +1147,7 @@ static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *
static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
{
if (anon_vma_compatible(a, b)) {
- struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
+ struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
if (anon_vma && list_is_singular(&old->anon_vma_chain))
return anon_vma;
@@ -1553,11 +1551,10 @@ unsigned long mmap_region(struct file *file, unsigned long addr,
/* Clear old maps */
error = -ENOMEM;
-munmap_back:
- if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
+ while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
+ &rb_parent)) {
if (do_munmap(mm, addr, len))
return -ENOMEM;
- goto munmap_back;
}
/*
@@ -1573,7 +1570,8 @@ munmap_back:
/*
* Can we just expand an old mapping?
*/
- vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
+ vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff,
+ NULL);
if (vma)
goto out;
@@ -2102,7 +2100,7 @@ static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, uns
actual_size = size;
if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
actual_size -= PAGE_SIZE;
- if (actual_size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
+ if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
return -ENOMEM;
/* mlock limit tests */
@@ -2110,7 +2108,7 @@ static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, uns
unsigned long locked;
unsigned long limit;
locked = mm->locked_vm + grow;
- limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
+ limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
limit >>= PAGE_SHIFT;
if (locked > limit && !capable(CAP_IPC_LOCK))
return -ENOMEM;
@@ -2318,7 +2316,7 @@ find_extend_vma(struct mm_struct *mm, unsigned long addr)
if (!prev || expand_stack(prev, addr))
return NULL;
if (prev->vm_flags & VM_LOCKED)
- __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
+ populate_vma_page_range(prev, addr, prev->vm_end, NULL);
return prev;
}
#else
@@ -2353,7 +2351,7 @@ find_extend_vma(struct mm_struct *mm, unsigned long addr)
if (expand_stack(vma, addr))
return NULL;
if (vma->vm_flags & VM_LOCKED)
- __mlock_vma_pages_range(vma, addr, start, NULL);
+ populate_vma_page_range(vma, addr, start, NULL);
return vma;
}
#endif
@@ -2741,11 +2739,10 @@ static unsigned long do_brk(unsigned long addr, unsigned long len)
/*
* Clear old maps. this also does some error checking for us
*/
- munmap_back:
- if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
+ while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
+ &rb_parent)) {
if (do_munmap(mm, addr, len))
return -ENOMEM;
- goto munmap_back;
}
/* Check against address space limits *after* clearing old maps... */
diff --git a/mm/mprotect.c b/mm/mprotect.c
index 44727811bf4c..88584838e704 100644
--- a/mm/mprotect.c
+++ b/mm/mprotect.c
@@ -75,6 +75,7 @@ static unsigned long change_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
oldpte = *pte;
if (pte_present(oldpte)) {
pte_t ptent;
+ bool preserve_write = prot_numa && pte_write(oldpte);
/*
* Avoid trapping faults against the zero or KSM
@@ -94,6 +95,8 @@ static unsigned long change_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
ptent = ptep_modify_prot_start(mm, addr, pte);
ptent = pte_modify(ptent, newprot);
+ if (preserve_write)
+ ptent = pte_mkwrite(ptent);
/* Avoid taking write faults for known dirty pages */
if (dirty_accountable && pte_dirty(ptent) &&
diff --git a/mm/mremap.c b/mm/mremap.c
index 57dadc025c64..034e2d360652 100644
--- a/mm/mremap.c
+++ b/mm/mremap.c
@@ -286,8 +286,14 @@ static unsigned long move_vma(struct vm_area_struct *vma,
old_len = new_len;
old_addr = new_addr;
new_addr = -ENOMEM;
- } else if (vma->vm_file && vma->vm_file->f_op->mremap)
- vma->vm_file->f_op->mremap(vma->vm_file, new_vma);
+ } else if (vma->vm_file && vma->vm_file->f_op->mremap) {
+ err = vma->vm_file->f_op->mremap(vma->vm_file, new_vma);
+ if (err < 0) {
+ move_page_tables(new_vma, new_addr, vma, old_addr,
+ moved_len, true);
+ return err;
+ }
+ }
/* Conceal VM_ACCOUNT so old reservation is not undone */
if (vm_flags & VM_ACCOUNT) {
@@ -339,25 +345,25 @@ static struct vm_area_struct *vma_to_resize(unsigned long addr,
struct vm_area_struct *vma = find_vma(mm, addr);
if (!vma || vma->vm_start > addr)
- goto Efault;
+ return ERR_PTR(-EFAULT);
if (is_vm_hugetlb_page(vma))
- goto Einval;
+ return ERR_PTR(-EINVAL);
/* We can't remap across vm area boundaries */
if (old_len > vma->vm_end - addr)
- goto Efault;
+ return ERR_PTR(-EFAULT);
/* Need to be careful about a growing mapping */
if (new_len > old_len) {
unsigned long pgoff;
if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))
- goto Efault;
+ return ERR_PTR(-EFAULT);
pgoff = (addr - vma->vm_start) >> PAGE_SHIFT;
pgoff += vma->vm_pgoff;
if (pgoff + (new_len >> PAGE_SHIFT) < pgoff)
- goto Einval;
+ return ERR_PTR(-EINVAL);
}
if (vma->vm_flags & VM_LOCKED) {
@@ -366,29 +372,20 @@ static struct vm_area_struct *vma_to_resize(unsigned long addr,
lock_limit = rlimit(RLIMIT_MEMLOCK);
locked += new_len - old_len;
if (locked > lock_limit && !capable(CAP_IPC_LOCK))
- goto Eagain;
+ return ERR_PTR(-EAGAIN);
}
if (!may_expand_vm(mm, (new_len - old_len) >> PAGE_SHIFT))
- goto Enomem;
+ return ERR_PTR(-ENOMEM);
if (vma->vm_flags & VM_ACCOUNT) {
unsigned long charged = (new_len - old_len) >> PAGE_SHIFT;
if (security_vm_enough_memory_mm(mm, charged))
- goto Efault;
+ return ERR_PTR(-ENOMEM);
*p = charged;
}
return vma;
-
-Efault: /* very odd choice for most of the cases, but... */
- return ERR_PTR(-EFAULT);
-Einval:
- return ERR_PTR(-EINVAL);
-Enomem:
- return ERR_PTR(-ENOMEM);
-Eagain:
- return ERR_PTR(-EAGAIN);
}
static unsigned long mremap_to(unsigned long addr, unsigned long old_len,
diff --git a/mm/nommu.c b/mm/nommu.c
index 7296360fc057..e544508e2a4b 100644
--- a/mm/nommu.c
+++ b/mm/nommu.c
@@ -62,6 +62,7 @@ void *high_memory;
EXPORT_SYMBOL(high_memory);
struct page *mem_map;
unsigned long max_mapnr;
+EXPORT_SYMBOL(max_mapnr);
unsigned long highest_memmap_pfn;
struct percpu_counter vm_committed_as;
int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
@@ -1015,7 +1016,7 @@ static int validate_mmap_request(struct file *file,
* device */
if (!file->f_op->get_unmapped_area)
capabilities &= ~NOMMU_MAP_DIRECT;
- if (!file->f_op->read)
+ if (!(file->f_mode & FMODE_CAN_READ))
capabilities &= ~NOMMU_MAP_COPY;
/* The file shall have been opened with read permission. */
@@ -1213,11 +1214,9 @@ static int do_mmap_private(struct vm_area_struct *vma,
if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
total = point;
kdebug("try to alloc exact %lu pages", total);
- base = alloc_pages_exact(len, GFP_KERNEL);
- } else {
- base = (void *)__get_free_pages(GFP_KERNEL, order);
}
+ base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
if (!base)
goto enomem;
@@ -1241,7 +1240,7 @@ static int do_mmap_private(struct vm_area_struct *vma,
old_fs = get_fs();
set_fs(KERNEL_DS);
- ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
+ ret = __vfs_read(vma->vm_file, base, len, &fpos);
set_fs(old_fs);
if (ret < 0)
diff --git a/mm/oom_kill.c b/mm/oom_kill.c
index 642f38cb175a..2b665da1b3c9 100644
--- a/mm/oom_kill.c
+++ b/mm/oom_kill.c
@@ -408,7 +408,7 @@ bool oom_killer_disabled __read_mostly;
static DECLARE_RWSEM(oom_sem);
/**
- * mark_tsk_oom_victim - marks the given taks as OOM victim.
+ * mark_tsk_oom_victim - marks the given task as OOM victim.
* @tsk: task to mark
*
* Has to be called with oom_sem taken for read and never after
@@ -612,7 +612,8 @@ void oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
* Determines whether the kernel must panic because of the panic_on_oom sysctl.
*/
void check_panic_on_oom(enum oom_constraint constraint, gfp_t gfp_mask,
- int order, const nodemask_t *nodemask)
+ int order, const nodemask_t *nodemask,
+ struct mem_cgroup *memcg)
{
if (likely(!sysctl_panic_on_oom))
return;
@@ -625,7 +626,7 @@ void check_panic_on_oom(enum oom_constraint constraint, gfp_t gfp_mask,
if (constraint != CONSTRAINT_NONE)
return;
}
- dump_header(NULL, gfp_mask, order, NULL, nodemask);
+ dump_header(NULL, gfp_mask, order, memcg, nodemask);
panic("Out of memory: %s panic_on_oom is enabled\n",
sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
}
@@ -740,7 +741,7 @@ static void __out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask,
constraint = constrained_alloc(zonelist, gfp_mask, nodemask,
&totalpages);
mpol_mask = (constraint == CONSTRAINT_MEMORY_POLICY) ? nodemask : NULL;
- check_panic_on_oom(constraint, gfp_mask, order, mpol_mask);
+ check_panic_on_oom(constraint, gfp_mask, order, mpol_mask, NULL);
if (sysctl_oom_kill_allocating_task && current->mm &&
!oom_unkillable_task(current, NULL, nodemask) &&
diff --git a/mm/page-writeback.c b/mm/page-writeback.c
index 45e187b2d971..5daf5568b9e1 100644
--- a/mm/page-writeback.c
+++ b/mm/page-writeback.c
@@ -857,8 +857,11 @@ static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
* bw * elapsed + write_bandwidth * (period - elapsed)
* write_bandwidth = ---------------------------------------------------
* period
+ *
+ * @written may have decreased due to account_page_redirty().
+ * Avoid underflowing @bw calculation.
*/
- bw = written - bdi->written_stamp;
+ bw = written - min(written, bdi->written_stamp);
bw *= HZ;
if (unlikely(elapsed > period)) {
do_div(bw, elapsed);
@@ -922,7 +925,7 @@ static void global_update_bandwidth(unsigned long thresh,
unsigned long now)
{
static DEFINE_SPINLOCK(dirty_lock);
- static unsigned long update_time;
+ static unsigned long update_time = INITIAL_JIFFIES;
/*
* check locklessly first to optimize away locking for the most time
@@ -2108,6 +2111,25 @@ void account_page_dirtied(struct page *page, struct address_space *mapping)
EXPORT_SYMBOL(account_page_dirtied);
/*
+ * Helper function for deaccounting dirty page without writeback.
+ *
+ * Doing this should *normally* only ever be done when a page
+ * is truncated, and is not actually mapped anywhere at all. However,
+ * fs/buffer.c does this when it notices that somebody has cleaned
+ * out all the buffers on a page without actually doing it through
+ * the VM. Can you say "ext3 is horribly ugly"? Thought you could.
+ */
+void account_page_cleaned(struct page *page, struct address_space *mapping)
+{
+ if (mapping_cap_account_dirty(mapping)) {
+ dec_zone_page_state(page, NR_FILE_DIRTY);
+ dec_bdi_stat(inode_to_bdi(mapping->host), BDI_RECLAIMABLE);
+ task_io_account_cancelled_write(PAGE_CACHE_SIZE);
+ }
+}
+EXPORT_SYMBOL(account_page_cleaned);
+
+/*
* For address_spaces which do not use buffers. Just tag the page as dirty in
* its radix tree.
*
@@ -2206,7 +2228,8 @@ int set_page_dirty(struct page *page)
* it will confuse readahead and make it restart the size rampup
* process. But it's a trivial problem.
*/
- ClearPageReclaim(page);
+ if (PageReclaim(page))
+ ClearPageReclaim(page);
#ifdef CONFIG_BLOCK
if (!spd)
spd = __set_page_dirty_buffers;
diff --git a/mm/page_alloc.c b/mm/page_alloc.c
index a47f0b229a1a..ebffa0e4a9c0 100644
--- a/mm/page_alloc.c
+++ b/mm/page_alloc.c
@@ -1032,11 +1032,9 @@ struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
static int fallbacks[MIGRATE_TYPES][4] = {
[MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
+ [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
#ifdef CONFIG_CMA
- [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
[MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
-#else
- [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
#endif
[MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
#ifdef CONFIG_MEMORY_ISOLATION
@@ -1044,6 +1042,17 @@ static int fallbacks[MIGRATE_TYPES][4] = {
#endif
};
+#ifdef CONFIG_CMA
+static struct page *__rmqueue_cma_fallback(struct zone *zone,
+ unsigned int order)
+{
+ return __rmqueue_smallest(zone, order, MIGRATE_CMA);
+}
+#else
+static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
+ unsigned int order) { return NULL; }
+#endif
+
/*
* Move the free pages in a range to the free lists of the requested type.
* Note that start_page and end_pages are not aligned on a pageblock
@@ -1136,14 +1145,40 @@ static void change_pageblock_range(struct page *pageblock_page,
* as fragmentation caused by those allocations polluting movable pageblocks
* is worse than movable allocations stealing from unmovable and reclaimable
* pageblocks.
- *
- * If we claim more than half of the pageblock, change pageblock's migratetype
- * as well.
*/
-static void try_to_steal_freepages(struct zone *zone, struct page *page,
- int start_type, int fallback_type)
+static bool can_steal_fallback(unsigned int order, int start_mt)
+{
+ /*
+ * Leaving this order check is intended, although there is
+ * relaxed order check in next check. The reason is that
+ * we can actually steal whole pageblock if this condition met,
+ * but, below check doesn't guarantee it and that is just heuristic
+ * so could be changed anytime.
+ */
+ if (order >= pageblock_order)
+ return true;
+
+ if (order >= pageblock_order / 2 ||
+ start_mt == MIGRATE_RECLAIMABLE ||
+ start_mt == MIGRATE_UNMOVABLE ||
+ page_group_by_mobility_disabled)
+ return true;
+
+ return false;
+}
+
+/*
+ * This function implements actual steal behaviour. If order is large enough,
+ * we can steal whole pageblock. If not, we first move freepages in this
+ * pageblock and check whether half of pages are moved or not. If half of
+ * pages are moved, we can change migratetype of pageblock and permanently
+ * use it's pages as requested migratetype in the future.
+ */
+static void steal_suitable_fallback(struct zone *zone, struct page *page,
+ int start_type)
{
int current_order = page_order(page);
+ int pages;
/* Take ownership for orders >= pageblock_order */
if (current_order >= pageblock_order) {
@@ -1151,19 +1186,49 @@ static void try_to_steal_freepages(struct zone *zone, struct page *page,
return;
}
- if (current_order >= pageblock_order / 2 ||
- start_type == MIGRATE_RECLAIMABLE ||
- start_type == MIGRATE_UNMOVABLE ||
- page_group_by_mobility_disabled) {
- int pages;
+ pages = move_freepages_block(zone, page, start_type);
+
+ /* Claim the whole block if over half of it is free */
+ if (pages >= (1 << (pageblock_order-1)) ||
+ page_group_by_mobility_disabled)
+ set_pageblock_migratetype(page, start_type);
+}
+
+/*
+ * Check whether there is a suitable fallback freepage with requested order.
+ * If only_stealable is true, this function returns fallback_mt only if
+ * we can steal other freepages all together. This would help to reduce
+ * fragmentation due to mixed migratetype pages in one pageblock.
+ */
+int find_suitable_fallback(struct free_area *area, unsigned int order,
+ int migratetype, bool only_stealable, bool *can_steal)
+{
+ int i;
+ int fallback_mt;
+
+ if (area->nr_free == 0)
+ return -1;
- pages = move_freepages_block(zone, page, start_type);
+ *can_steal = false;
+ for (i = 0;; i++) {
+ fallback_mt = fallbacks[migratetype][i];
+ if (fallback_mt == MIGRATE_RESERVE)
+ break;
+
+ if (list_empty(&area->free_list[fallback_mt]))
+ continue;
+
+ if (can_steal_fallback(order, migratetype))
+ *can_steal = true;
+
+ if (!only_stealable)
+ return fallback_mt;
- /* Claim the whole block if over half of it is free */
- if (pages >= (1 << (pageblock_order-1)) ||
- page_group_by_mobility_disabled)
- set_pageblock_migratetype(page, start_type);
+ if (*can_steal)
+ return fallback_mt;
}
+
+ return -1;
}
/* Remove an element from the buddy allocator from the fallback list */
@@ -1173,64 +1238,45 @@ __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
struct free_area *area;
unsigned int current_order;
struct page *page;
+ int fallback_mt;
+ bool can_steal;
/* Find the largest possible block of pages in the other list */
for (current_order = MAX_ORDER-1;
current_order >= order && current_order <= MAX_ORDER-1;
--current_order) {
- int i;
- for (i = 0;; i++) {
- int migratetype = fallbacks[start_migratetype][i];
- int buddy_type = start_migratetype;
-
- /* MIGRATE_RESERVE handled later if necessary */
- if (migratetype == MIGRATE_RESERVE)
- break;
-
- area = &(zone->free_area[current_order]);
- if (list_empty(&area->free_list[migratetype]))
- continue;
-
- page = list_entry(area->free_list[migratetype].next,
- struct page, lru);
- area->nr_free--;
-
- if (!is_migrate_cma(migratetype)) {
- try_to_steal_freepages(zone, page,
- start_migratetype,
- migratetype);
- } else {
- /*
- * When borrowing from MIGRATE_CMA, we need to
- * release the excess buddy pages to CMA
- * itself, and we do not try to steal extra
- * free pages.
- */
- buddy_type = migratetype;
- }
+ area = &(zone->free_area[current_order]);
+ fallback_mt = find_suitable_fallback(area, current_order,
+ start_migratetype, false, &can_steal);
+ if (fallback_mt == -1)
+ continue;
- /* Remove the page from the freelists */
- list_del(&page->lru);
- rmv_page_order(page);
+ page = list_entry(area->free_list[fallback_mt].next,
+ struct page, lru);
+ if (can_steal)
+ steal_suitable_fallback(zone, page, start_migratetype);
- expand(zone, page, order, current_order, area,
- buddy_type);
+ /* Remove the page from the freelists */
+ area->nr_free--;
+ list_del(&page->lru);
+ rmv_page_order(page);
- /*
- * The freepage_migratetype may differ from pageblock's
- * migratetype depending on the decisions in
- * try_to_steal_freepages(). This is OK as long as it
- * does not differ for MIGRATE_CMA pageblocks. For CMA
- * we need to make sure unallocated pages flushed from
- * pcp lists are returned to the correct freelist.
- */
- set_freepage_migratetype(page, buddy_type);
+ expand(zone, page, order, current_order, area,
+ start_migratetype);
+ /*
+ * The freepage_migratetype may differ from pageblock's
+ * migratetype depending on the decisions in
+ * try_to_steal_freepages(). This is OK as long as it
+ * does not differ for MIGRATE_CMA pageblocks. For CMA
+ * we need to make sure unallocated pages flushed from
+ * pcp lists are returned to the correct freelist.
+ */
+ set_freepage_migratetype(page, start_migratetype);
- trace_mm_page_alloc_extfrag(page, order, current_order,
- start_migratetype, migratetype);
+ trace_mm_page_alloc_extfrag(page, order, current_order,
+ start_migratetype, fallback_mt);
- return page;
- }
+ return page;
}
return NULL;
@@ -1249,7 +1295,11 @@ retry_reserve:
page = __rmqueue_smallest(zone, order, migratetype);
if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
- page = __rmqueue_fallback(zone, order, migratetype);
+ if (migratetype == MIGRATE_MOVABLE)
+ page = __rmqueue_cma_fallback(zone, order);
+
+ if (!page)
+ page = __rmqueue_fallback(zone, order, migratetype);
/*
* Use MIGRATE_RESERVE rather than fail an allocation. goto
@@ -1321,7 +1371,7 @@ void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
int to_drain, batch;
local_irq_save(flags);
- batch = ACCESS_ONCE(pcp->batch);
+ batch = READ_ONCE(pcp->batch);
to_drain = min(pcp->count, batch);
if (to_drain > 0) {
free_pcppages_bulk(zone, to_drain, pcp);
@@ -1520,7 +1570,7 @@ void free_hot_cold_page(struct page *page, bool cold)
list_add_tail(&page->lru, &pcp->lists[migratetype]);
pcp->count++;
if (pcp->count >= pcp->high) {
- unsigned long batch = ACCESS_ONCE(pcp->batch);
+ unsigned long batch = READ_ONCE(pcp->batch);
free_pcppages_bulk(zone, batch, pcp);
pcp->count -= batch;
}
@@ -2353,20 +2403,22 @@ __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
if (ac->high_zoneidx < ZONE_NORMAL)
goto out;
/* The OOM killer does not compensate for light reclaim */
- if (!(gfp_mask & __GFP_FS))
+ if (!(gfp_mask & __GFP_FS)) {
+ /*
+ * XXX: Page reclaim didn't yield anything,
+ * and the OOM killer can't be invoked, but
+ * keep looping as per should_alloc_retry().
+ */
+ *did_some_progress = 1;
goto out;
- /*
- * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
- * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
- * The caller should handle page allocation failure by itself if
- * it specifies __GFP_THISNODE.
- * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
- */
+ }
+ /* The OOM killer may not free memory on a specific node */
if (gfp_mask & __GFP_THISNODE)
goto out;
}
/* Exhausted what can be done so it's blamo time */
- if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false))
+ if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false)
+ || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
*did_some_progress = 1;
out:
oom_zonelist_unlock(ac->zonelist, gfp_mask);
@@ -2615,15 +2667,11 @@ __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
}
/*
- * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
- * __GFP_NOWARN set) should not cause reclaim since the subsystem
- * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
- * using a larger set of nodes after it has established that the
- * allowed per node queues are empty and that nodes are
- * over allocated.
+ * If this allocation cannot block and it is for a specific node, then
+ * fail early. There's no need to wakeup kswapd or retry for a
+ * speculative node-specific allocation.
*/
- if (IS_ENABLED(CONFIG_NUMA) &&
- (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
+ if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !wait)
goto nopage;
retry:
@@ -2816,7 +2864,7 @@ __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
/*
* Check the zones suitable for the gfp_mask contain at least one
* valid zone. It's possible to have an empty zonelist as a result
- * of GFP_THISNODE and a memoryless node
+ * of __GFP_THISNODE and a memoryless node
*/
if (unlikely(!zonelist->_zonerefs->zone))
return NULL;
@@ -3193,38 +3241,31 @@ static void show_migration_types(unsigned char type)
* Show free area list (used inside shift_scroll-lock stuff)
* We also calculate the percentage fragmentation. We do this by counting the
* memory on each free list with the exception of the first item on the list.
- * Suppresses nodes that are not allowed by current's cpuset if
- * SHOW_MEM_FILTER_NODES is passed.
+ *
+ * Bits in @filter:
+ * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
+ * cpuset.
*/
void show_free_areas(unsigned int filter)
{
+ unsigned long free_pcp = 0;
int cpu;
struct zone *zone;
for_each_populated_zone(zone) {
if (skip_free_areas_node(filter, zone_to_nid(zone)))
continue;
- show_node(zone);
- printk("%s per-cpu:\n", zone->name);
-
- for_each_online_cpu(cpu) {
- struct per_cpu_pageset *pageset;
- pageset = per_cpu_ptr(zone->pageset, cpu);
-
- printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
- cpu, pageset->pcp.high,
- pageset->pcp.batch, pageset->pcp.count);
- }
+ for_each_online_cpu(cpu)
+ free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
}
printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
- " unevictable:%lu"
- " dirty:%lu writeback:%lu unstable:%lu\n"
- " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
+ " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
+ " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
- " free_cma:%lu\n",
+ " free:%lu free_pcp:%lu free_cma:%lu\n",
global_page_state(NR_ACTIVE_ANON),
global_page_state(NR_INACTIVE_ANON),
global_page_state(NR_ISOLATED_ANON),
@@ -3235,13 +3276,14 @@ void show_free_areas(unsigned int filter)
global_page_state(NR_FILE_DIRTY),
global_page_state(NR_WRITEBACK),
global_page_state(NR_UNSTABLE_NFS),
- global_page_state(NR_FREE_PAGES),
global_page_state(NR_SLAB_RECLAIMABLE),
global_page_state(NR_SLAB_UNRECLAIMABLE),
global_page_state(NR_FILE_MAPPED),
global_page_state(NR_SHMEM),
global_page_state(NR_PAGETABLE),
global_page_state(NR_BOUNCE),
+ global_page_state(NR_FREE_PAGES),
+ free_pcp,
global_page_state(NR_FREE_CMA_PAGES));
for_each_populated_zone(zone) {
@@ -3249,6 +3291,11 @@ void show_free_areas(unsigned int filter)
if (skip_free_areas_node(filter, zone_to_nid(zone)))
continue;
+
+ free_pcp = 0;
+ for_each_online_cpu(cpu)
+ free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
+
show_node(zone);
printk("%s"
" free:%lukB"
@@ -3275,6 +3322,8 @@ void show_free_areas(unsigned int filter)
" pagetables:%lukB"
" unstable:%lukB"
" bounce:%lukB"
+ " free_pcp:%lukB"
+ " local_pcp:%ukB"
" free_cma:%lukB"
" writeback_tmp:%lukB"
" pages_scanned:%lu"
@@ -3306,6 +3355,8 @@ void show_free_areas(unsigned int filter)
K(zone_page_state(zone, NR_PAGETABLE)),
K(zone_page_state(zone, NR_UNSTABLE_NFS)),
K(zone_page_state(zone, NR_BOUNCE)),
+ K(free_pcp),
+ K(this_cpu_read(zone->pageset->pcp.count)),
K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
K(zone_page_state(zone, NR_PAGES_SCANNED)),
@@ -5709,7 +5760,7 @@ static void __setup_per_zone_wmarks(void)
* value here.
*
* The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
- * deltas controls asynch page reclaim, and so should
+ * deltas control asynch page reclaim, and so should
* not be capped for highmem.
*/
unsigned long min_pages;
@@ -6156,7 +6207,7 @@ void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
mask <<= (BITS_PER_LONG - bitidx - 1);
flags <<= (BITS_PER_LONG - bitidx - 1);
- word = ACCESS_ONCE(bitmap[word_bitidx]);
+ word = READ_ONCE(bitmap[word_bitidx]);
for (;;) {
old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
if (word == old_word)
diff --git a/mm/page_io.c b/mm/page_io.c
index e6045804c8d8..6424869e275e 100644
--- a/mm/page_io.c
+++ b/mm/page_io.c
@@ -20,8 +20,8 @@
#include <linux/buffer_head.h>
#include <linux/writeback.h>
#include <linux/frontswap.h>
-#include <linux/aio.h>
#include <linux/blkdev.h>
+#include <linux/uio.h>
#include <asm/pgtable.h>
static struct bio *get_swap_bio(gfp_t gfp_flags,
@@ -274,13 +274,10 @@ int __swap_writepage(struct page *page, struct writeback_control *wbc,
iov_iter_bvec(&from, ITER_BVEC | WRITE, &bv, 1, PAGE_SIZE);
init_sync_kiocb(&kiocb, swap_file);
kiocb.ki_pos = page_file_offset(page);
- kiocb.ki_nbytes = PAGE_SIZE;
set_page_writeback(page);
unlock_page(page);
- ret = mapping->a_ops->direct_IO(ITER_BVEC | WRITE,
- &kiocb, &from,
- kiocb.ki_pos);
+ ret = mapping->a_ops->direct_IO(&kiocb, &from, kiocb.ki_pos);
if (ret == PAGE_SIZE) {
count_vm_event(PSWPOUT);
ret = 0;
diff --git a/mm/page_isolation.c b/mm/page_isolation.c
index 72f5ac381ab3..755a42c76eb4 100644
--- a/mm/page_isolation.c
+++ b/mm/page_isolation.c
@@ -103,6 +103,7 @@ void unset_migratetype_isolate(struct page *page, unsigned migratetype)
if (!is_migrate_isolate_page(buddy)) {
__isolate_free_page(page, order);
+ kernel_map_pages(page, (1 << order), 1);
set_page_refcounted(page);
isolated_page = page;
}
diff --git a/mm/pagewalk.c b/mm/pagewalk.c
index 75c1f2878519..29f2f8b853ae 100644
--- a/mm/pagewalk.c
+++ b/mm/pagewalk.c
@@ -265,8 +265,15 @@ int walk_page_range(unsigned long start, unsigned long end,
vma = vma->vm_next;
err = walk_page_test(start, next, walk);
- if (err > 0)
+ if (err > 0) {
+ /*
+ * positive return values are purely for
+ * controlling the pagewalk, so should never
+ * be passed to the callers.
+ */
+ err = 0;
continue;
+ }
if (err < 0)
break;
}
diff --git a/mm/percpu.c b/mm/percpu.c
index 73c97a5f4495..dfd02484e8de 100644
--- a/mm/percpu.c
+++ b/mm/percpu.c
@@ -1310,7 +1310,7 @@ bool is_kernel_percpu_address(unsigned long addr)
* and, from the second one, the backing allocator (currently either vm or
* km) provides translation.
*
- * The addr can be tranlated simply without checking if it falls into the
+ * The addr can be translated simply without checking if it falls into the
* first chunk. But the current code reflects better how percpu allocator
* actually works, and the verification can discover both bugs in percpu
* allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
@@ -1762,7 +1762,7 @@ early_param("percpu_alloc", percpu_alloc_setup);
* and other parameters considering needed percpu size, allocation
* atom size and distances between CPUs.
*
- * Groups are always mutliples of atom size and CPUs which are of
+ * Groups are always multiples of atom size and CPUs which are of
* LOCAL_DISTANCE both ways are grouped together and share space for
* units in the same group. The returned configuration is guaranteed
* to have CPUs on different nodes on different groups and >=75% usage
diff --git a/mm/process_vm_access.c b/mm/process_vm_access.c
index b1597690530c..e88d071648c2 100644
--- a/mm/process_vm_access.c
+++ b/mm/process_vm_access.c
@@ -257,22 +257,18 @@ static ssize_t process_vm_rw(pid_t pid,
struct iovec *iov_r = iovstack_r;
struct iov_iter iter;
ssize_t rc;
+ int dir = vm_write ? WRITE : READ;
if (flags != 0)
return -EINVAL;
/* Check iovecs */
- if (vm_write)
- rc = rw_copy_check_uvector(WRITE, lvec, liovcnt, UIO_FASTIOV,
- iovstack_l, &iov_l);
- else
- rc = rw_copy_check_uvector(READ, lvec, liovcnt, UIO_FASTIOV,
- iovstack_l, &iov_l);
- if (rc <= 0)
+ rc = import_iovec(dir, lvec, liovcnt, UIO_FASTIOV, &iov_l, &iter);
+ if (rc < 0)
+ return rc;
+ if (!iov_iter_count(&iter))
goto free_iovecs;
- iov_iter_init(&iter, vm_write ? WRITE : READ, iov_l, liovcnt, rc);
-
rc = rw_copy_check_uvector(CHECK_IOVEC_ONLY, rvec, riovcnt, UIO_FASTIOV,
iovstack_r, &iov_r);
if (rc <= 0)
@@ -283,8 +279,7 @@ static ssize_t process_vm_rw(pid_t pid,
free_iovecs:
if (iov_r != iovstack_r)
kfree(iov_r);
- if (iov_l != iovstack_l)
- kfree(iov_l);
+ kfree(iov_l);
return rc;
}
@@ -320,21 +315,16 @@ compat_process_vm_rw(compat_pid_t pid,
struct iovec *iov_r = iovstack_r;
struct iov_iter iter;
ssize_t rc = -EFAULT;
+ int dir = vm_write ? WRITE : READ;
if (flags != 0)
return -EINVAL;
- if (vm_write)
- rc = compat_rw_copy_check_uvector(WRITE, lvec, liovcnt,
- UIO_FASTIOV, iovstack_l,
- &iov_l);
- else
- rc = compat_rw_copy_check_uvector(READ, lvec, liovcnt,
- UIO_FASTIOV, iovstack_l,
- &iov_l);
- if (rc <= 0)
+ rc = compat_import_iovec(dir, lvec, liovcnt, UIO_FASTIOV, &iov_l, &iter);
+ if (rc < 0)
+ return rc;
+ if (!iov_iter_count(&iter))
goto free_iovecs;
- iov_iter_init(&iter, vm_write ? WRITE : READ, iov_l, liovcnt, rc);
rc = compat_rw_copy_check_uvector(CHECK_IOVEC_ONLY, rvec, riovcnt,
UIO_FASTIOV, iovstack_r,
&iov_r);
@@ -346,8 +336,7 @@ compat_process_vm_rw(compat_pid_t pid,
free_iovecs:
if (iov_r != iovstack_r)
kfree(iov_r);
- if (iov_l != iovstack_l)
- kfree(iov_l);
+ kfree(iov_l);
return rc;
}
diff --git a/mm/rmap.c b/mm/rmap.c
index 5e3e09081164..24dd3f9fee27 100644
--- a/mm/rmap.c
+++ b/mm/rmap.c
@@ -287,6 +287,13 @@ int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
return 0;
enomem_failure:
+ /*
+ * dst->anon_vma is dropped here otherwise its degree can be incorrectly
+ * decremented in unlink_anon_vmas().
+ * We can safely do this because callers of anon_vma_clone() don't care
+ * about dst->anon_vma if anon_vma_clone() failed.
+ */
+ dst->anon_vma = NULL;
unlink_anon_vmas(dst);
return -ENOMEM;
}
@@ -449,7 +456,7 @@ struct anon_vma *page_get_anon_vma(struct page *page)
unsigned long anon_mapping;
rcu_read_lock();
- anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
+ anon_mapping = (unsigned long)READ_ONCE(page->mapping);
if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
goto out;
if (!page_mapped(page))
@@ -493,14 +500,14 @@ struct anon_vma *page_lock_anon_vma_read(struct page *page)
unsigned long anon_mapping;
rcu_read_lock();
- anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
+ anon_mapping = (unsigned long)READ_ONCE(page->mapping);
if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
goto out;
if (!page_mapped(page))
goto out;
anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
- root_anon_vma = ACCESS_ONCE(anon_vma->root);
+ root_anon_vma = READ_ONCE(anon_vma->root);
if (down_read_trylock(&root_anon_vma->rwsem)) {
/*
* If the page is still mapped, then this anon_vma is still
diff --git a/mm/shmem.c b/mm/shmem.c
index 2f17cb5f00a4..de981370fbc5 100644
--- a/mm/shmem.c
+++ b/mm/shmem.c
@@ -31,7 +31,7 @@
#include <linux/mm.h>
#include <linux/export.h>
#include <linux/swap.h>
-#include <linux/aio.h>
+#include <linux/uio.h>
static struct vfsmount *shm_mnt;
@@ -544,7 +544,7 @@ EXPORT_SYMBOL_GPL(shmem_truncate_range);
static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
{
- struct inode *inode = dentry->d_inode;
+ struct inode *inode = d_inode(dentry);
struct shmem_inode_info *info = SHMEM_I(inode);
int error;
@@ -1455,6 +1455,9 @@ static struct inode *shmem_get_inode(struct super_block *sb, const struct inode
bool shmem_mapping(struct address_space *mapping)
{
+ if (!mapping->host)
+ return false;
+
return mapping->host->i_sb->s_op == &shmem_ops;
}
@@ -2271,7 +2274,7 @@ static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
*/
static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
{
- struct inode *inode = old_dentry->d_inode;
+ struct inode *inode = d_inode(old_dentry);
int ret;
/*
@@ -2295,7 +2298,7 @@ out:
static int shmem_unlink(struct inode *dir, struct dentry *dentry)
{
- struct inode *inode = dentry->d_inode;
+ struct inode *inode = d_inode(dentry);
if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
shmem_free_inode(inode->i_sb);
@@ -2312,7 +2315,7 @@ static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
if (!simple_empty(dentry))
return -ENOTEMPTY;
- drop_nlink(dentry->d_inode);
+ drop_nlink(d_inode(dentry));
drop_nlink(dir);
return shmem_unlink(dir, dentry);
}
@@ -2333,8 +2336,8 @@ static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, stru
}
old_dir->i_ctime = old_dir->i_mtime =
new_dir->i_ctime = new_dir->i_mtime =
- old_dentry->d_inode->i_ctime =
- new_dentry->d_inode->i_ctime = CURRENT_TIME;
+ d_inode(old_dentry)->i_ctime =
+ d_inode(new_dentry)->i_ctime = CURRENT_TIME;
return 0;
}
@@ -2373,7 +2376,7 @@ static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
*/
static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
{
- struct inode *inode = old_dentry->d_inode;
+ struct inode *inode = d_inode(old_dentry);
int they_are_dirs = S_ISDIR(inode->i_mode);
if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
@@ -2393,10 +2396,10 @@ static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struc
return error;
}
- if (new_dentry->d_inode) {
+ if (d_really_is_positive(new_dentry)) {
(void) shmem_unlink(new_dir, new_dentry);
if (they_are_dirs) {
- drop_nlink(new_dentry->d_inode);
+ drop_nlink(d_inode(new_dentry));
drop_nlink(old_dir);
}
} else if (they_are_dirs) {
@@ -2473,14 +2476,14 @@ static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *s
static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
{
- nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
+ nd_set_link(nd, SHMEM_I(d_inode(dentry))->symlink);
return NULL;
}
static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
{
struct page *page = NULL;
- int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
+ int error = shmem_getpage(d_inode(dentry), 0, &page, SGP_READ, NULL);
nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
if (page)
unlock_page(page);
@@ -2571,7 +2574,7 @@ static int shmem_xattr_validate(const char *name)
static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
void *buffer, size_t size)
{
- struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
+ struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
int err;
/*
@@ -2592,7 +2595,7 @@ static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
static int shmem_setxattr(struct dentry *dentry, const char *name,
const void *value, size_t size, int flags)
{
- struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
+ struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
int err;
/*
@@ -2612,7 +2615,7 @@ static int shmem_setxattr(struct dentry *dentry, const char *name,
static int shmem_removexattr(struct dentry *dentry, const char *name)
{
- struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
+ struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
int err;
/*
@@ -2632,7 +2635,7 @@ static int shmem_removexattr(struct dentry *dentry, const char *name)
static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
{
- struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
+ struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
return simple_xattr_list(&info->xattrs, buffer, size);
}
#endif /* CONFIG_TMPFS_XATTR */
@@ -3115,8 +3118,6 @@ static const struct file_operations shmem_file_operations = {
.mmap = shmem_mmap,
#ifdef CONFIG_TMPFS
.llseek = shmem_file_llseek,
- .read = new_sync_read,
- .write = new_sync_write,
.read_iter = shmem_file_read_iter,
.write_iter = generic_file_write_iter,
.fsync = noop_fsync,
diff --git a/mm/slab.c b/mm/slab.c
index c4b89eaf4c96..7eb38dd1cefa 100644
--- a/mm/slab.c
+++ b/mm/slab.c
@@ -857,6 +857,11 @@ static inline void *____cache_alloc_node(struct kmem_cache *cachep,
return NULL;
}
+static inline gfp_t gfp_exact_node(gfp_t flags)
+{
+ return flags;
+}
+
#else /* CONFIG_NUMA */
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
@@ -1023,6 +1028,15 @@ static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
return __cache_free_alien(cachep, objp, node, page_node);
}
+
+/*
+ * Construct gfp mask to allocate from a specific node but do not invoke reclaim
+ * or warn about failures.
+ */
+static inline gfp_t gfp_exact_node(gfp_t flags)
+{
+ return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~__GFP_WAIT;
+}
#endif
/*
@@ -2825,7 +2839,7 @@ alloc_done:
if (unlikely(!ac->avail)) {
int x;
force_grow:
- x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
+ x = cache_grow(cachep, gfp_exact_node(flags), node, NULL);
/* cache_grow can reenable interrupts, then ac could change. */
ac = cpu_cache_get(cachep);
@@ -3019,7 +3033,7 @@ retry:
get_node(cache, nid) &&
get_node(cache, nid)->free_objects) {
obj = ____cache_alloc_node(cache,
- flags | GFP_THISNODE, nid);
+ gfp_exact_node(flags), nid);
if (obj)
break;
}
@@ -3047,7 +3061,7 @@ retry:
nid = page_to_nid(page);
if (cache_grow(cache, flags, nid, page)) {
obj = ____cache_alloc_node(cache,
- flags | GFP_THISNODE, nid);
+ gfp_exact_node(flags), nid);
if (!obj)
/*
* Another processor may allocate the
@@ -3118,7 +3132,7 @@ retry:
must_grow:
spin_unlock(&n->list_lock);
- x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
+ x = cache_grow(cachep, gfp_exact_node(flags), nodeid, NULL);
if (x)
goto retry;
diff --git a/mm/slob.c b/mm/slob.c
index 94a7fede6d48..4765f65019c7 100644
--- a/mm/slob.c
+++ b/mm/slob.c
@@ -532,7 +532,7 @@ int __kmem_cache_create(struct kmem_cache *c, unsigned long flags)
return 0;
}
-void *slob_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
+static void *slob_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
{
void *b;
@@ -558,7 +558,6 @@ void *slob_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
return b;
}
-EXPORT_SYMBOL(slob_alloc_node);
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
diff --git a/mm/slub.c b/mm/slub.c
index 6832c4eab104..54c0876b43d5 100644
--- a/mm/slub.c
+++ b/mm/slub.c
@@ -374,7 +374,7 @@ static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page
if (cmpxchg_double(&page->freelist, &page->counters,
freelist_old, counters_old,
freelist_new, counters_new))
- return 1;
+ return true;
} else
#endif
{
@@ -384,7 +384,7 @@ static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page
page->freelist = freelist_new;
set_page_slub_counters(page, counters_new);
slab_unlock(page);
- return 1;
+ return true;
}
slab_unlock(page);
}
@@ -396,7 +396,7 @@ static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page
pr_info("%s %s: cmpxchg double redo ", n, s->name);
#endif
- return 0;
+ return false;
}
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
@@ -410,7 +410,7 @@ static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
if (cmpxchg_double(&page->freelist, &page->counters,
freelist_old, counters_old,
freelist_new, counters_new))
- return 1;
+ return true;
} else
#endif
{
@@ -424,7 +424,7 @@ static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
set_page_slub_counters(page, counters_new);
slab_unlock(page);
local_irq_restore(flags);
- return 1;
+ return true;
}
slab_unlock(page);
local_irq_restore(flags);
@@ -437,7 +437,7 @@ static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
pr_info("%s %s: cmpxchg double redo ", n, s->name);
#endif
- return 0;
+ return false;
}
#ifdef CONFIG_SLUB_DEBUG
@@ -1137,15 +1137,6 @@ static int __init setup_slub_debug(char *str)
*/
goto check_slabs;
- if (tolower(*str) == 'o') {
- /*
- * Avoid enabling debugging on caches if its minimum order
- * would increase as a result.
- */
- disable_higher_order_debug = 1;
- goto out;
- }
-
slub_debug = 0;
if (*str == '-')
/*
@@ -1176,6 +1167,13 @@ static int __init setup_slub_debug(char *str)
case 'a':
slub_debug |= SLAB_FAILSLAB;
break;
+ case 'o':
+ /*
+ * Avoid enabling debugging on caches if its minimum
+ * order would increase as a result.
+ */
+ disable_higher_order_debug = 1;
+ break;
default:
pr_err("slub_debug option '%c' unknown. skipped\n",
*str);
@@ -2449,7 +2447,8 @@ redo:
do {
tid = this_cpu_read(s->cpu_slab->tid);
c = raw_cpu_ptr(s->cpu_slab);
- } while (IS_ENABLED(CONFIG_PREEMPT) && unlikely(tid != c->tid));
+ } while (IS_ENABLED(CONFIG_PREEMPT) &&
+ unlikely(tid != READ_ONCE(c->tid)));
/*
* Irqless object alloc/free algorithm used here depends on sequence
@@ -2718,7 +2717,8 @@ redo:
do {
tid = this_cpu_read(s->cpu_slab->tid);
c = raw_cpu_ptr(s->cpu_slab);
- } while (IS_ENABLED(CONFIG_PREEMPT) && unlikely(tid != c->tid));
+ } while (IS_ENABLED(CONFIG_PREEMPT) &&
+ unlikely(tid != READ_ONCE(c->tid)));
/* Same with comment on barrier() in slab_alloc_node() */
barrier();
@@ -4277,7 +4277,7 @@ static ssize_t show_slab_objects(struct kmem_cache *s,
int node;
struct page *page;
- page = ACCESS_ONCE(c->page);
+ page = READ_ONCE(c->page);
if (!page)
continue;
@@ -4292,7 +4292,7 @@ static ssize_t show_slab_objects(struct kmem_cache *s,
total += x;
nodes[node] += x;
- page = ACCESS_ONCE(c->partial);
+ page = READ_ONCE(c->partial);
if (page) {
node = page_to_nid(page);
if (flags & SO_TOTAL)
diff --git a/mm/swap.c b/mm/swap.c
index cd3a5e64cea9..a7251a8ed532 100644
--- a/mm/swap.c
+++ b/mm/swap.c
@@ -31,6 +31,7 @@
#include <linux/memcontrol.h>
#include <linux/gfp.h>
#include <linux/uio.h>
+#include <linux/hugetlb.h>
#include "internal.h"
@@ -42,7 +43,7 @@ int page_cluster;
static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
-static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
+static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
/*
* This path almost never happens for VM activity - pages are normally
@@ -75,7 +76,14 @@ static void __put_compound_page(struct page *page)
{
compound_page_dtor *dtor;
- __page_cache_release(page);
+ /*
+ * __page_cache_release() is supposed to be called for thp, not for
+ * hugetlb. This is because hugetlb page does never have PageLRU set
+ * (it's never listed to any LRU lists) and no memcg routines should
+ * be called for hugetlb (it has a separate hugetlb_cgroup.)
+ */
+ if (!PageHuge(page))
+ __page_cache_release(page);
dtor = get_compound_page_dtor(page);
(*dtor)(page);
}
@@ -743,7 +751,7 @@ void lru_cache_add_active_or_unevictable(struct page *page,
* be write it out by flusher threads as this is much more effective
* than the single-page writeout from reclaim.
*/
-static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
+static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
void *arg)
{
int lru, file;
@@ -811,36 +819,36 @@ void lru_add_drain_cpu(int cpu)
local_irq_restore(flags);
}
- pvec = &per_cpu(lru_deactivate_pvecs, cpu);
+ pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
if (pagevec_count(pvec))
- pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
+ pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
activate_page_drain(cpu);
}
/**
- * deactivate_page - forcefully deactivate a page
+ * deactivate_file_page - forcefully deactivate a file page
* @page: page to deactivate
*
* This function hints the VM that @page is a good reclaim candidate,
* for example if its invalidation fails due to the page being dirty
* or under writeback.
*/
-void deactivate_page(struct page *page)
+void deactivate_file_page(struct page *page)
{
/*
- * In a workload with many unevictable page such as mprotect, unevictable
- * page deactivation for accelerating reclaim is pointless.
+ * In a workload with many unevictable page such as mprotect,
+ * unevictable page deactivation for accelerating reclaim is pointless.
*/
if (PageUnevictable(page))
return;
if (likely(get_page_unless_zero(page))) {
- struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
+ struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
if (!pagevec_add(pvec, page))
- pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
- put_cpu_var(lru_deactivate_pvecs);
+ pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
+ put_cpu_var(lru_deactivate_file_pvecs);
}
}
@@ -872,7 +880,7 @@ void lru_add_drain_all(void)
if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
- pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
+ pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
need_activate_page_drain(cpu)) {
INIT_WORK(work, lru_add_drain_per_cpu);
schedule_work_on(cpu, work);
diff --git a/mm/swap_state.c b/mm/swap_state.c
index 405923f77334..8bc8e66138da 100644
--- a/mm/swap_state.c
+++ b/mm/swap_state.c
@@ -390,7 +390,7 @@ static unsigned long swapin_nr_pages(unsigned long offset)
unsigned int pages, max_pages, last_ra;
static atomic_t last_readahead_pages;
- max_pages = 1 << ACCESS_ONCE(page_cluster);
+ max_pages = 1 << READ_ONCE(page_cluster);
if (max_pages <= 1)
return 1;
diff --git a/mm/swapfile.c b/mm/swapfile.c
index 63f55ccb9b26..a7e72103f23b 100644
--- a/mm/swapfile.c
+++ b/mm/swapfile.c
@@ -1312,7 +1312,7 @@ static unsigned int find_next_to_unuse(struct swap_info_struct *si,
else
continue;
}
- count = ACCESS_ONCE(si->swap_map[i]);
+ count = READ_ONCE(si->swap_map[i]);
if (count && swap_count(count) != SWAP_MAP_BAD)
break;
}
diff --git a/mm/truncate.c b/mm/truncate.c
index ddec5a5966d7..66af9031fae8 100644
--- a/mm/truncate.c
+++ b/mm/truncate.c
@@ -93,35 +93,6 @@ void do_invalidatepage(struct page *page, unsigned int offset,
}
/*
- * This cancels just the dirty bit on the kernel page itself, it
- * does NOT actually remove dirty bits on any mmap's that may be
- * around. It also leaves the page tagged dirty, so any sync
- * activity will still find it on the dirty lists, and in particular,
- * clear_page_dirty_for_io() will still look at the dirty bits in
- * the VM.
- *
- * Doing this should *normally* only ever be done when a page
- * is truncated, and is not actually mapped anywhere at all. However,
- * fs/buffer.c does this when it notices that somebody has cleaned
- * out all the buffers on a page without actually doing it through
- * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
- */
-void cancel_dirty_page(struct page *page, unsigned int account_size)
-{
- if (TestClearPageDirty(page)) {
- struct address_space *mapping = page->mapping;
- if (mapping && mapping_cap_account_dirty(mapping)) {
- dec_zone_page_state(page, NR_FILE_DIRTY);
- dec_bdi_stat(inode_to_bdi(mapping->host),
- BDI_RECLAIMABLE);
- if (account_size)
- task_io_account_cancelled_write(account_size);
- }
- }
-}
-EXPORT_SYMBOL(cancel_dirty_page);
-
-/*
* If truncate cannot remove the fs-private metadata from the page, the page
* becomes orphaned. It will be left on the LRU and may even be mapped into
* user pagetables if we're racing with filemap_fault().
@@ -140,7 +111,13 @@ truncate_complete_page(struct address_space *mapping, struct page *page)
if (page_has_private(page))
do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
- cancel_dirty_page(page, PAGE_CACHE_SIZE);
+ /*
+ * Some filesystems seem to re-dirty the page even after
+ * the VM has canceled the dirty bit (eg ext3 journaling).
+ * Hence dirty accounting check is placed after invalidation.
+ */
+ if (TestClearPageDirty(page))
+ account_page_cleaned(page, mapping);
ClearPageMappedToDisk(page);
delete_from_page_cache(page);
@@ -513,7 +490,7 @@ unsigned long invalidate_mapping_pages(struct address_space *mapping,
* of interest and try to speed up its reclaim.
*/
if (!ret)
- deactivate_page(page);
+ deactivate_file_page(page);
count += ret;
}
pagevec_remove_exceptionals(&pvec);
diff --git a/mm/util.c b/mm/util.c
index 3981ae9d1b15..68ff8a5361e7 100644
--- a/mm/util.c
+++ b/mm/util.c
@@ -325,9 +325,37 @@ void kvfree(const void *addr)
}
EXPORT_SYMBOL(kvfree);
+static inline void *__page_rmapping(struct page *page)
+{
+ unsigned long mapping;
+
+ mapping = (unsigned long)page->mapping;
+ mapping &= ~PAGE_MAPPING_FLAGS;
+
+ return (void *)mapping;
+}
+
+/* Neutral page->mapping pointer to address_space or anon_vma or other */
+void *page_rmapping(struct page *page)
+{
+ page = compound_head(page);
+ return __page_rmapping(page);
+}
+
+struct anon_vma *page_anon_vma(struct page *page)
+{
+ unsigned long mapping;
+
+ page = compound_head(page);
+ mapping = (unsigned long)page->mapping;
+ if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
+ return NULL;
+ return __page_rmapping(page);
+}
+
struct address_space *page_mapping(struct page *page)
{
- struct address_space *mapping = page->mapping;
+ unsigned long mapping;
/* This happens if someone calls flush_dcache_page on slab page */
if (unlikely(PageSlab(page)))
@@ -337,10 +365,13 @@ struct address_space *page_mapping(struct page *page)
swp_entry_t entry;
entry.val = page_private(page);
- mapping = swap_address_space(entry);
- } else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
- mapping = NULL;
- return mapping;
+ return swap_address_space(entry);
+ }
+
+ mapping = (unsigned long)page->mapping;
+ if (mapping & PAGE_MAPPING_FLAGS)
+ return NULL;
+ return page->mapping;
}
int overcommit_ratio_handler(struct ctl_table *table, int write,
diff --git a/mm/vmalloc.c b/mm/vmalloc.c
index 35b25e1340ca..2faaa2976447 100644
--- a/mm/vmalloc.c
+++ b/mm/vmalloc.c
@@ -29,6 +29,7 @@
#include <linux/atomic.h>
#include <linux/compiler.h>
#include <linux/llist.h>
+#include <linux/bitops.h>
#include <asm/uaccess.h>
#include <asm/tlbflush.h>
@@ -74,6 +75,8 @@ static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
pmd = pmd_offset(pud, addr);
do {
next = pmd_addr_end(addr, end);
+ if (pmd_clear_huge(pmd))
+ continue;
if (pmd_none_or_clear_bad(pmd))
continue;
vunmap_pte_range(pmd, addr, next);
@@ -88,6 +91,8 @@ static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
pud = pud_offset(pgd, addr);
do {
next = pud_addr_end(addr, end);
+ if (pud_clear_huge(pud))
+ continue;
if (pud_none_or_clear_bad(pud))
continue;
vunmap_pmd_range(pud, addr, next);
@@ -760,7 +765,7 @@ struct vmap_block {
spinlock_t lock;
struct vmap_area *va;
unsigned long free, dirty;
- DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
+ unsigned long dirty_min, dirty_max; /*< dirty range */
struct list_head free_list;
struct rcu_head rcu_head;
struct list_head purge;
@@ -791,13 +796,31 @@ static unsigned long addr_to_vb_idx(unsigned long addr)
return addr;
}
-static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
+static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
+{
+ unsigned long addr;
+
+ addr = va_start + (pages_off << PAGE_SHIFT);
+ BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
+ return (void *)addr;
+}
+
+/**
+ * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
+ * block. Of course pages number can't exceed VMAP_BBMAP_BITS
+ * @order: how many 2^order pages should be occupied in newly allocated block
+ * @gfp_mask: flags for the page level allocator
+ *
+ * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
+ */
+static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
{
struct vmap_block_queue *vbq;
struct vmap_block *vb;
struct vmap_area *va;
unsigned long vb_idx;
int node, err;
+ void *vaddr;
node = numa_node_id();
@@ -821,11 +844,15 @@ static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
return ERR_PTR(err);
}
+ vaddr = vmap_block_vaddr(va->va_start, 0);
spin_lock_init(&vb->lock);
vb->va = va;
- vb->free = VMAP_BBMAP_BITS;
+ /* At least something should be left free */
+ BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
+ vb->free = VMAP_BBMAP_BITS - (1UL << order);
vb->dirty = 0;
- bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
+ vb->dirty_min = VMAP_BBMAP_BITS;
+ vb->dirty_max = 0;
INIT_LIST_HEAD(&vb->free_list);
vb_idx = addr_to_vb_idx(va->va_start);
@@ -837,11 +864,11 @@ static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
vbq = &get_cpu_var(vmap_block_queue);
spin_lock(&vbq->lock);
- list_add_rcu(&vb->free_list, &vbq->free);
+ list_add_tail_rcu(&vb->free_list, &vbq->free);
spin_unlock(&vbq->lock);
put_cpu_var(vmap_block_queue);
- return vb;
+ return vaddr;
}
static void free_vmap_block(struct vmap_block *vb)
@@ -876,7 +903,8 @@ static void purge_fragmented_blocks(int cpu)
if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
vb->free = 0; /* prevent further allocs after releasing lock */
vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
- bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
+ vb->dirty_min = 0;
+ vb->dirty_max = VMAP_BBMAP_BITS;
spin_lock(&vbq->lock);
list_del_rcu(&vb->free_list);
spin_unlock(&vbq->lock);
@@ -905,7 +933,7 @@ static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
{
struct vmap_block_queue *vbq;
struct vmap_block *vb;
- unsigned long addr = 0;
+ void *vaddr = NULL;
unsigned int order;
BUG_ON(size & ~PAGE_MASK);
@@ -920,43 +948,38 @@ static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
}
order = get_order(size);
-again:
rcu_read_lock();
vbq = &get_cpu_var(vmap_block_queue);
list_for_each_entry_rcu(vb, &vbq->free, free_list) {
- int i;
+ unsigned long pages_off;
spin_lock(&vb->lock);
- if (vb->free < 1UL << order)
- goto next;
+ if (vb->free < (1UL << order)) {
+ spin_unlock(&vb->lock);
+ continue;
+ }
- i = VMAP_BBMAP_BITS - vb->free;
- addr = vb->va->va_start + (i << PAGE_SHIFT);
- BUG_ON(addr_to_vb_idx(addr) !=
- addr_to_vb_idx(vb->va->va_start));
+ pages_off = VMAP_BBMAP_BITS - vb->free;
+ vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
vb->free -= 1UL << order;
if (vb->free == 0) {
spin_lock(&vbq->lock);
list_del_rcu(&vb->free_list);
spin_unlock(&vbq->lock);
}
+
spin_unlock(&vb->lock);
break;
-next:
- spin_unlock(&vb->lock);
}
put_cpu_var(vmap_block_queue);
rcu_read_unlock();
- if (!addr) {
- vb = new_vmap_block(gfp_mask);
- if (IS_ERR(vb))
- return vb;
- goto again;
- }
+ /* Allocate new block if nothing was found */
+ if (!vaddr)
+ vaddr = new_vmap_block(order, gfp_mask);
- return (void *)addr;
+ return vaddr;
}
static void vb_free(const void *addr, unsigned long size)
@@ -974,6 +997,7 @@ static void vb_free(const void *addr, unsigned long size)
order = get_order(size);
offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
+ offset >>= PAGE_SHIFT;
vb_idx = addr_to_vb_idx((unsigned long)addr);
rcu_read_lock();
@@ -984,7 +1008,10 @@ static void vb_free(const void *addr, unsigned long size)
vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
spin_lock(&vb->lock);
- BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
+
+ /* Expand dirty range */
+ vb->dirty_min = min(vb->dirty_min, offset);
+ vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
vb->dirty += 1UL << order;
if (vb->dirty == VMAP_BBMAP_BITS) {
@@ -1023,25 +1050,18 @@ void vm_unmap_aliases(void)
rcu_read_lock();
list_for_each_entry_rcu(vb, &vbq->free, free_list) {
- int i, j;
-
spin_lock(&vb->lock);
- i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
- if (i < VMAP_BBMAP_BITS) {
+ if (vb->dirty) {
+ unsigned long va_start = vb->va->va_start;
unsigned long s, e;
- j = find_last_bit(vb->dirty_map,
- VMAP_BBMAP_BITS);
- j = j + 1; /* need exclusive index */
+ s = va_start + (vb->dirty_min << PAGE_SHIFT);
+ e = va_start + (vb->dirty_max << PAGE_SHIFT);
- s = vb->va->va_start + (i << PAGE_SHIFT);
- e = vb->va->va_start + (j << PAGE_SHIFT);
- flush = 1;
+ start = min(s, start);
+ end = max(e, end);
- if (s < start)
- start = s;
- if (e > end)
- end = e;
+ flush = 1;
}
spin_unlock(&vb->lock);
}
@@ -1314,7 +1334,8 @@ static struct vm_struct *__get_vm_area_node(unsigned long size,
BUG_ON(in_interrupt());
if (flags & VM_IOREMAP)
- align = 1ul << clamp(fls(size), PAGE_SHIFT, IOREMAP_MAX_ORDER);
+ align = 1ul << clamp_t(int, fls_long(size),
+ PAGE_SHIFT, IOREMAP_MAX_ORDER);
size = PAGE_ALIGN(size);
if (unlikely(!size))
@@ -1418,6 +1439,7 @@ struct vm_struct *remove_vm_area(const void *addr)
spin_unlock(&vmap_area_lock);
vmap_debug_free_range(va->va_start, va->va_end);
+ kasan_free_shadow(vm);
free_unmap_vmap_area(va);
vm->size -= PAGE_SIZE;
diff --git a/mm/zsmalloc.c b/mm/zsmalloc.c
index 0dec1fa5f656..08bd7a3d464a 100644
--- a/mm/zsmalloc.c
+++ b/mm/zsmalloc.c
@@ -12,35 +12,6 @@
*/
/*
- * This allocator is designed for use with zram. Thus, the allocator is
- * supposed to work well under low memory conditions. In particular, it
- * never attempts higher order page allocation which is very likely to
- * fail under memory pressure. On the other hand, if we just use single
- * (0-order) pages, it would suffer from very high fragmentation --
- * any object of size PAGE_SIZE/2 or larger would occupy an entire page.
- * This was one of the major issues with its predecessor (xvmalloc).
- *
- * To overcome these issues, zsmalloc allocates a bunch of 0-order pages
- * and links them together using various 'struct page' fields. These linked
- * pages act as a single higher-order page i.e. an object can span 0-order
- * page boundaries. The code refers to these linked pages as a single entity
- * called zspage.
- *
- * For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE
- * since this satisfies the requirements of all its current users (in the
- * worst case, page is incompressible and is thus stored "as-is" i.e. in
- * uncompressed form). For allocation requests larger than this size, failure
- * is returned (see zs_malloc).
- *
- * Additionally, zs_malloc() does not return a dereferenceable pointer.
- * Instead, it returns an opaque handle (unsigned long) which encodes actual
- * location of the allocated object. The reason for this indirection is that
- * zsmalloc does not keep zspages permanently mapped since that would cause
- * issues on 32-bit systems where the VA region for kernel space mappings
- * is very small. So, before using the allocating memory, the object has to
- * be mapped using zs_map_object() to get a usable pointer and subsequently
- * unmapped using zs_unmap_object().
- *
* Following is how we use various fields and flags of underlying
* struct page(s) to form a zspage.
*
@@ -57,6 +28,8 @@
*
* page->private (union with page->first_page): refers to the
* component page after the first page
+ * If the page is first_page for huge object, it stores handle.
+ * Look at size_class->huge.
* page->freelist: points to the first free object in zspage.
* Free objects are linked together using in-place
* metadata.
@@ -78,6 +51,7 @@
#include <linux/module.h>
#include <linux/kernel.h>
+#include <linux/sched.h>
#include <linux/bitops.h>
#include <linux/errno.h>
#include <linux/highmem.h>
@@ -110,6 +84,8 @@
#define ZS_MAX_ZSPAGE_ORDER 2
#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
+#define ZS_HANDLE_SIZE (sizeof(unsigned long))
+
/*
* Object location (<PFN>, <obj_idx>) is encoded as
* as single (unsigned long) handle value.
@@ -133,13 +109,33 @@
#endif
#endif
#define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
-#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS)
+
+/*
+ * Memory for allocating for handle keeps object position by
+ * encoding <page, obj_idx> and the encoded value has a room
+ * in least bit(ie, look at obj_to_location).
+ * We use the bit to synchronize between object access by
+ * user and migration.
+ */
+#define HANDLE_PIN_BIT 0
+
+/*
+ * Head in allocated object should have OBJ_ALLOCATED_TAG
+ * to identify the object was allocated or not.
+ * It's okay to add the status bit in the least bit because
+ * header keeps handle which is 4byte-aligned address so we
+ * have room for two bit at least.
+ */
+#define OBJ_ALLOCATED_TAG 1
+#define OBJ_TAG_BITS 1
+#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
#define MAX(a, b) ((a) >= (b) ? (a) : (b))
/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
#define ZS_MIN_ALLOC_SIZE \
MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
+/* each chunk includes extra space to keep handle */
#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
/*
@@ -172,6 +168,8 @@ enum fullness_group {
enum zs_stat_type {
OBJ_ALLOCATED,
OBJ_USED,
+ CLASS_ALMOST_FULL,
+ CLASS_ALMOST_EMPTY,
NR_ZS_STAT_TYPE,
};
@@ -216,6 +214,8 @@ struct size_class {
/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
int pages_per_zspage;
+ /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
+ bool huge;
#ifdef CONFIG_ZSMALLOC_STAT
struct zs_size_stat stats;
@@ -233,14 +233,24 @@ struct size_class {
* This must be power of 2 and less than or equal to ZS_ALIGN
*/
struct link_free {
- /* Handle of next free chunk (encodes <PFN, obj_idx>) */
- void *next;
+ union {
+ /*
+ * Position of next free chunk (encodes <PFN, obj_idx>)
+ * It's valid for non-allocated object
+ */
+ void *next;
+ /*
+ * Handle of allocated object.
+ */
+ unsigned long handle;
+ };
};
struct zs_pool {
char *name;
struct size_class **size_class;
+ struct kmem_cache *handle_cachep;
gfp_t flags; /* allocation flags used when growing pool */
atomic_long_t pages_allocated;
@@ -267,8 +277,37 @@ struct mapping_area {
#endif
char *vm_addr; /* address of kmap_atomic()'ed pages */
enum zs_mapmode vm_mm; /* mapping mode */
+ bool huge;
};
+static int create_handle_cache(struct zs_pool *pool)
+{
+ pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
+ 0, 0, NULL);
+ return pool->handle_cachep ? 0 : 1;
+}
+
+static void destroy_handle_cache(struct zs_pool *pool)
+{
+ kmem_cache_destroy(pool->handle_cachep);
+}
+
+static unsigned long alloc_handle(struct zs_pool *pool)
+{
+ return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
+ pool->flags & ~__GFP_HIGHMEM);
+}
+
+static void free_handle(struct zs_pool *pool, unsigned long handle)
+{
+ kmem_cache_free(pool->handle_cachep, (void *)handle);
+}
+
+static void record_obj(unsigned long handle, unsigned long obj)
+{
+ *(unsigned long *)handle = obj;
+}
+
/* zpool driver */
#ifdef CONFIG_ZPOOL
@@ -346,6 +385,11 @@ static struct zpool_driver zs_zpool_driver = {
MODULE_ALIAS("zpool-zsmalloc");
#endif /* CONFIG_ZPOOL */
+static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
+{
+ return pages_per_zspage * PAGE_SIZE / size;
+}
+
/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
@@ -396,9 +440,182 @@ static int get_size_class_index(int size)
idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
ZS_SIZE_CLASS_DELTA);
- return idx;
+ return min(zs_size_classes - 1, idx);
+}
+
+#ifdef CONFIG_ZSMALLOC_STAT
+
+static inline void zs_stat_inc(struct size_class *class,
+ enum zs_stat_type type, unsigned long cnt)
+{
+ class->stats.objs[type] += cnt;
+}
+
+static inline void zs_stat_dec(struct size_class *class,
+ enum zs_stat_type type, unsigned long cnt)
+{
+ class->stats.objs[type] -= cnt;
+}
+
+static inline unsigned long zs_stat_get(struct size_class *class,
+ enum zs_stat_type type)
+{
+ return class->stats.objs[type];
+}
+
+static int __init zs_stat_init(void)
+{
+ if (!debugfs_initialized())
+ return -ENODEV;
+
+ zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
+ if (!zs_stat_root)
+ return -ENOMEM;
+
+ return 0;
+}
+
+static void __exit zs_stat_exit(void)
+{
+ debugfs_remove_recursive(zs_stat_root);
+}
+
+static int zs_stats_size_show(struct seq_file *s, void *v)
+{
+ int i;
+ struct zs_pool *pool = s->private;
+ struct size_class *class;
+ int objs_per_zspage;
+ unsigned long class_almost_full, class_almost_empty;
+ unsigned long obj_allocated, obj_used, pages_used;
+ unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
+ unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
+
+ seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s\n",
+ "class", "size", "almost_full", "almost_empty",
+ "obj_allocated", "obj_used", "pages_used",
+ "pages_per_zspage");
+
+ for (i = 0; i < zs_size_classes; i++) {
+ class = pool->size_class[i];
+
+ if (class->index != i)
+ continue;
+
+ spin_lock(&class->lock);
+ class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
+ class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
+ obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
+ obj_used = zs_stat_get(class, OBJ_USED);
+ spin_unlock(&class->lock);
+
+ objs_per_zspage = get_maxobj_per_zspage(class->size,
+ class->pages_per_zspage);
+ pages_used = obj_allocated / objs_per_zspage *
+ class->pages_per_zspage;
+
+ seq_printf(s, " %5u %5u %11lu %12lu %13lu %10lu %10lu %16d\n",
+ i, class->size, class_almost_full, class_almost_empty,
+ obj_allocated, obj_used, pages_used,
+ class->pages_per_zspage);
+
+ total_class_almost_full += class_almost_full;
+ total_class_almost_empty += class_almost_empty;
+ total_objs += obj_allocated;
+ total_used_objs += obj_used;
+ total_pages += pages_used;
+ }
+
+ seq_puts(s, "\n");
+ seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu\n",
+ "Total", "", total_class_almost_full,
+ total_class_almost_empty, total_objs,
+ total_used_objs, total_pages);
+
+ return 0;
+}
+
+static int zs_stats_size_open(struct inode *inode, struct file *file)
+{
+ return single_open(file, zs_stats_size_show, inode->i_private);
+}
+
+static const struct file_operations zs_stat_size_ops = {
+ .open = zs_stats_size_open,
+ .read = seq_read,
+ .llseek = seq_lseek,
+ .release = single_release,
+};
+
+static int zs_pool_stat_create(char *name, struct zs_pool *pool)
+{
+ struct dentry *entry;
+
+ if (!zs_stat_root)
+ return -ENODEV;
+
+ entry = debugfs_create_dir(name, zs_stat_root);
+ if (!entry) {
+ pr_warn("debugfs dir <%s> creation failed\n", name);
+ return -ENOMEM;
+ }
+ pool->stat_dentry = entry;
+
+ entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
+ pool->stat_dentry, pool, &zs_stat_size_ops);
+ if (!entry) {
+ pr_warn("%s: debugfs file entry <%s> creation failed\n",
+ name, "classes");
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+static void zs_pool_stat_destroy(struct zs_pool *pool)
+{
+ debugfs_remove_recursive(pool->stat_dentry);
+}
+
+#else /* CONFIG_ZSMALLOC_STAT */
+
+static inline void zs_stat_inc(struct size_class *class,
+ enum zs_stat_type type, unsigned long cnt)
+{
+}
+
+static inline void zs_stat_dec(struct size_class *class,
+ enum zs_stat_type type, unsigned long cnt)
+{
+}
+
+static inline unsigned long zs_stat_get(struct size_class *class,
+ enum zs_stat_type type)
+{
+ return 0;
+}
+
+static int __init zs_stat_init(void)
+{
+ return 0;
+}
+
+static void __exit zs_stat_exit(void)
+{
+}
+
+static inline int zs_pool_stat_create(char *name, struct zs_pool *pool)
+{
+ return 0;
+}
+
+static inline void zs_pool_stat_destroy(struct zs_pool *pool)
+{
}
+#endif
+
+
/*
* For each size class, zspages are divided into different groups
* depending on how "full" they are. This was done so that we could
@@ -419,7 +636,7 @@ static enum fullness_group get_fullness_group(struct page *page)
fg = ZS_EMPTY;
else if (inuse == max_objects)
fg = ZS_FULL;
- else if (inuse <= max_objects / fullness_threshold_frac)
+ else if (inuse <= 3 * max_objects / fullness_threshold_frac)
fg = ZS_ALMOST_EMPTY;
else
fg = ZS_ALMOST_FULL;
@@ -448,6 +665,8 @@ static void insert_zspage(struct page *page, struct size_class *class,
list_add_tail(&page->lru, &(*head)->lru);
*head = page;
+ zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
+ CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
}
/*
@@ -473,6 +692,8 @@ static void remove_zspage(struct page *page, struct size_class *class,
struct page, lru);
list_del_init(&page->lru);
+ zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
+ CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
}
/*
@@ -484,11 +705,10 @@ static void remove_zspage(struct page *page, struct size_class *class,
* page from the freelist of the old fullness group to that of the new
* fullness group.
*/
-static enum fullness_group fix_fullness_group(struct zs_pool *pool,
+static enum fullness_group fix_fullness_group(struct size_class *class,
struct page *page)
{
int class_idx;
- struct size_class *class;
enum fullness_group currfg, newfg;
BUG_ON(!is_first_page(page));
@@ -498,7 +718,6 @@ static enum fullness_group fix_fullness_group(struct zs_pool *pool,
if (newfg == currfg)
goto out;
- class = pool->size_class[class_idx];
remove_zspage(page, class, currfg);
insert_zspage(page, class, newfg);
set_zspage_mapping(page, class_idx, newfg);
@@ -512,7 +731,8 @@ out:
* to form a zspage for each size class. This is important
* to reduce wastage due to unusable space left at end of
* each zspage which is given as:
- * wastage = Zp - Zp % size_class
+ * wastage = Zp % class_size
+ * usage = Zp - wastage
* where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
*
* For example, for size class of 3/8 * PAGE_SIZE, we should
@@ -571,35 +791,50 @@ static struct page *get_next_page(struct page *page)
/*
* Encode <page, obj_idx> as a single handle value.
- * On hardware platforms with physical memory starting at 0x0 the pfn
- * could be 0 so we ensure that the handle will never be 0 by adjusting the
- * encoded obj_idx value before encoding.
+ * We use the least bit of handle for tagging.
*/
-static void *obj_location_to_handle(struct page *page, unsigned long obj_idx)
+static void *location_to_obj(struct page *page, unsigned long obj_idx)
{
- unsigned long handle;
+ unsigned long obj;
if (!page) {
BUG_ON(obj_idx);
return NULL;
}
- handle = page_to_pfn(page) << OBJ_INDEX_BITS;
- handle |= ((obj_idx + 1) & OBJ_INDEX_MASK);
+ obj = page_to_pfn(page) << OBJ_INDEX_BITS;
+ obj |= ((obj_idx) & OBJ_INDEX_MASK);
+ obj <<= OBJ_TAG_BITS;
- return (void *)handle;
+ return (void *)obj;
}
/*
* Decode <page, obj_idx> pair from the given object handle. We adjust the
* decoded obj_idx back to its original value since it was adjusted in
- * obj_location_to_handle().
+ * location_to_obj().
*/
-static void obj_handle_to_location(unsigned long handle, struct page **page,
+static void obj_to_location(unsigned long obj, struct page **page,
unsigned long *obj_idx)
{
- *page = pfn_to_page(handle >> OBJ_INDEX_BITS);
- *obj_idx = (handle & OBJ_INDEX_MASK) - 1;
+ obj >>= OBJ_TAG_BITS;
+ *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
+ *obj_idx = (obj & OBJ_INDEX_MASK);
+}
+
+static unsigned long handle_to_obj(unsigned long handle)
+{
+ return *(unsigned long *)handle;
+}
+
+static unsigned long obj_to_head(struct size_class *class, struct page *page,
+ void *obj)
+{
+ if (class->huge) {
+ VM_BUG_ON(!is_first_page(page));
+ return *(unsigned long *)page_private(page);
+ } else
+ return *(unsigned long *)obj;
}
static unsigned long obj_idx_to_offset(struct page *page,
@@ -613,6 +848,25 @@ static unsigned long obj_idx_to_offset(struct page *page,
return off + obj_idx * class_size;
}
+static inline int trypin_tag(unsigned long handle)
+{
+ unsigned long *ptr = (unsigned long *)handle;
+
+ return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
+}
+
+static void pin_tag(unsigned long handle)
+{
+ while (!trypin_tag(handle));
+}
+
+static void unpin_tag(unsigned long handle)
+{
+ unsigned long *ptr = (unsigned long *)handle;
+
+ clear_bit_unlock(HANDLE_PIN_BIT, ptr);
+}
+
static void reset_page(struct page *page)
{
clear_bit(PG_private, &page->flags);
@@ -674,7 +928,7 @@ static void init_zspage(struct page *first_page, struct size_class *class)
link = (struct link_free *)vaddr + off / sizeof(*link);
while ((off += class->size) < PAGE_SIZE) {
- link->next = obj_location_to_handle(page, i++);
+ link->next = location_to_obj(page, i++);
link += class->size / sizeof(*link);
}
@@ -684,7 +938,7 @@ static void init_zspage(struct page *first_page, struct size_class *class)
* page (if present)
*/
next_page = get_next_page(page);
- link->next = obj_location_to_handle(next_page, 0);
+ link->next = location_to_obj(next_page, 0);
kunmap_atomic(vaddr);
page = next_page;
off %= PAGE_SIZE;
@@ -738,7 +992,7 @@ static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
init_zspage(first_page, class);
- first_page->freelist = obj_location_to_handle(first_page, 0);
+ first_page->freelist = location_to_obj(first_page, 0);
/* Maximum number of objects we can store in this zspage */
first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
@@ -860,12 +1114,19 @@ static void __zs_unmap_object(struct mapping_area *area,
{
int sizes[2];
void *addr;
- char *buf = area->vm_buf;
+ char *buf;
/* no write fastpath */
if (area->vm_mm == ZS_MM_RO)
goto out;
+ buf = area->vm_buf;
+ if (!area->huge) {
+ buf = buf + ZS_HANDLE_SIZE;
+ size -= ZS_HANDLE_SIZE;
+ off += ZS_HANDLE_SIZE;
+ }
+
sizes[0] = PAGE_SIZE - off;
sizes[1] = size - sizes[0];
@@ -952,11 +1213,6 @@ static void init_zs_size_classes(void)
zs_size_classes = nr;
}
-static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
-{
- return pages_per_zspage * PAGE_SIZE / size;
-}
-
static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
{
if (prev->pages_per_zspage != pages_per_zspage)
@@ -969,166 +1225,13 @@ static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
return true;
}
-#ifdef CONFIG_ZSMALLOC_STAT
-
-static inline void zs_stat_inc(struct size_class *class,
- enum zs_stat_type type, unsigned long cnt)
-{
- class->stats.objs[type] += cnt;
-}
-
-static inline void zs_stat_dec(struct size_class *class,
- enum zs_stat_type type, unsigned long cnt)
-{
- class->stats.objs[type] -= cnt;
-}
-
-static inline unsigned long zs_stat_get(struct size_class *class,
- enum zs_stat_type type)
-{
- return class->stats.objs[type];
-}
-
-static int __init zs_stat_init(void)
-{
- if (!debugfs_initialized())
- return -ENODEV;
-
- zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
- if (!zs_stat_root)
- return -ENOMEM;
-
- return 0;
-}
-
-static void __exit zs_stat_exit(void)
-{
- debugfs_remove_recursive(zs_stat_root);
-}
-
-static int zs_stats_size_show(struct seq_file *s, void *v)
+static bool zspage_full(struct page *page)
{
- int i;
- struct zs_pool *pool = s->private;
- struct size_class *class;
- int objs_per_zspage;
- unsigned long obj_allocated, obj_used, pages_used;
- unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
-
- seq_printf(s, " %5s %5s %13s %10s %10s\n", "class", "size",
- "obj_allocated", "obj_used", "pages_used");
-
- for (i = 0; i < zs_size_classes; i++) {
- class = pool->size_class[i];
-
- if (class->index != i)
- continue;
-
- spin_lock(&class->lock);
- obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
- obj_used = zs_stat_get(class, OBJ_USED);
- spin_unlock(&class->lock);
-
- objs_per_zspage = get_maxobj_per_zspage(class->size,
- class->pages_per_zspage);
- pages_used = obj_allocated / objs_per_zspage *
- class->pages_per_zspage;
-
- seq_printf(s, " %5u %5u %10lu %10lu %10lu\n", i,
- class->size, obj_allocated, obj_used, pages_used);
-
- total_objs += obj_allocated;
- total_used_objs += obj_used;
- total_pages += pages_used;
- }
-
- seq_puts(s, "\n");
- seq_printf(s, " %5s %5s %10lu %10lu %10lu\n", "Total", "",
- total_objs, total_used_objs, total_pages);
-
- return 0;
-}
-
-static int zs_stats_size_open(struct inode *inode, struct file *file)
-{
- return single_open(file, zs_stats_size_show, inode->i_private);
-}
-
-static const struct file_operations zs_stat_size_ops = {
- .open = zs_stats_size_open,
- .read = seq_read,
- .llseek = seq_lseek,
- .release = single_release,
-};
-
-static int zs_pool_stat_create(char *name, struct zs_pool *pool)
-{
- struct dentry *entry;
-
- if (!zs_stat_root)
- return -ENODEV;
-
- entry = debugfs_create_dir(name, zs_stat_root);
- if (!entry) {
- pr_warn("debugfs dir <%s> creation failed\n", name);
- return -ENOMEM;
- }
- pool->stat_dentry = entry;
-
- entry = debugfs_create_file("obj_in_classes", S_IFREG | S_IRUGO,
- pool->stat_dentry, pool, &zs_stat_size_ops);
- if (!entry) {
- pr_warn("%s: debugfs file entry <%s> creation failed\n",
- name, "obj_in_classes");
- return -ENOMEM;
- }
-
- return 0;
-}
-
-static void zs_pool_stat_destroy(struct zs_pool *pool)
-{
- debugfs_remove_recursive(pool->stat_dentry);
-}
-
-#else /* CONFIG_ZSMALLOC_STAT */
-
-static inline void zs_stat_inc(struct size_class *class,
- enum zs_stat_type type, unsigned long cnt)
-{
-}
-
-static inline void zs_stat_dec(struct size_class *class,
- enum zs_stat_type type, unsigned long cnt)
-{
-}
-
-static inline unsigned long zs_stat_get(struct size_class *class,
- enum zs_stat_type type)
-{
- return 0;
-}
-
-static int __init zs_stat_init(void)
-{
- return 0;
-}
-
-static void __exit zs_stat_exit(void)
-{
-}
-
-static inline int zs_pool_stat_create(char *name, struct zs_pool *pool)
-{
- return 0;
-}
+ BUG_ON(!is_first_page(page));
-static inline void zs_pool_stat_destroy(struct zs_pool *pool)
-{
+ return page->inuse == page->objects;
}
-#endif
-
unsigned long zs_get_total_pages(struct zs_pool *pool)
{
return atomic_long_read(&pool->pages_allocated);
@@ -1153,13 +1256,14 @@ void *zs_map_object(struct zs_pool *pool, unsigned long handle,
enum zs_mapmode mm)
{
struct page *page;
- unsigned long obj_idx, off;
+ unsigned long obj, obj_idx, off;
unsigned int class_idx;
enum fullness_group fg;
struct size_class *class;
struct mapping_area *area;
struct page *pages[2];
+ void *ret;
BUG_ON(!handle);
@@ -1170,7 +1274,11 @@ void *zs_map_object(struct zs_pool *pool, unsigned long handle,
*/
BUG_ON(in_interrupt());
- obj_handle_to_location(handle, &page, &obj_idx);
+ /* From now on, migration cannot move the object */
+ pin_tag(handle);
+
+ obj = handle_to_obj(handle);
+ obj_to_location(obj, &page, &obj_idx);
get_zspage_mapping(get_first_page(page), &class_idx, &fg);
class = pool->size_class[class_idx];
off = obj_idx_to_offset(page, obj_idx, class->size);
@@ -1180,7 +1288,8 @@ void *zs_map_object(struct zs_pool *pool, unsigned long handle,
if (off + class->size <= PAGE_SIZE) {
/* this object is contained entirely within a page */
area->vm_addr = kmap_atomic(page);
- return area->vm_addr + off;
+ ret = area->vm_addr + off;
+ goto out;
}
/* this object spans two pages */
@@ -1188,14 +1297,19 @@ void *zs_map_object(struct zs_pool *pool, unsigned long handle,
pages[1] = get_next_page(page);
BUG_ON(!pages[1]);
- return __zs_map_object(area, pages, off, class->size);
+ ret = __zs_map_object(area, pages, off, class->size);
+out:
+ if (!class->huge)
+ ret += ZS_HANDLE_SIZE;
+
+ return ret;
}
EXPORT_SYMBOL_GPL(zs_map_object);
void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
{
struct page *page;
- unsigned long obj_idx, off;
+ unsigned long obj, obj_idx, off;
unsigned int class_idx;
enum fullness_group fg;
@@ -1204,7 +1318,8 @@ void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
BUG_ON(!handle);
- obj_handle_to_location(handle, &page, &obj_idx);
+ obj = handle_to_obj(handle);
+ obj_to_location(obj, &page, &obj_idx);
get_zspage_mapping(get_first_page(page), &class_idx, &fg);
class = pool->size_class[class_idx];
off = obj_idx_to_offset(page, obj_idx, class->size);
@@ -1222,9 +1337,42 @@ void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
__zs_unmap_object(area, pages, off, class->size);
}
put_cpu_var(zs_map_area);
+ unpin_tag(handle);
}
EXPORT_SYMBOL_GPL(zs_unmap_object);
+static unsigned long obj_malloc(struct page *first_page,
+ struct size_class *class, unsigned long handle)
+{
+ unsigned long obj;
+ struct link_free *link;
+
+ struct page *m_page;
+ unsigned long m_objidx, m_offset;
+ void *vaddr;
+
+ handle |= OBJ_ALLOCATED_TAG;
+ obj = (unsigned long)first_page->freelist;
+ obj_to_location(obj, &m_page, &m_objidx);
+ m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
+
+ vaddr = kmap_atomic(m_page);
+ link = (struct link_free *)vaddr + m_offset / sizeof(*link);
+ first_page->freelist = link->next;
+ if (!class->huge)
+ /* record handle in the header of allocated chunk */
+ link->handle = handle;
+ else
+ /* record handle in first_page->private */
+ set_page_private(first_page, handle);
+ kunmap_atomic(vaddr);
+ first_page->inuse++;
+ zs_stat_inc(class, OBJ_USED, 1);
+
+ return obj;
+}
+
+
/**
* zs_malloc - Allocate block of given size from pool.
* @pool: pool to allocate from
@@ -1236,17 +1384,19 @@ EXPORT_SYMBOL_GPL(zs_unmap_object);
*/
unsigned long zs_malloc(struct zs_pool *pool, size_t size)
{
- unsigned long obj;
- struct link_free *link;
+ unsigned long handle, obj;
struct size_class *class;
- void *vaddr;
-
- struct page *first_page, *m_page;
- unsigned long m_objidx, m_offset;
+ struct page *first_page;
if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
return 0;
+ handle = alloc_handle(pool);
+ if (!handle)
+ return 0;
+
+ /* extra space in chunk to keep the handle */
+ size += ZS_HANDLE_SIZE;
class = pool->size_class[get_size_class_index(size)];
spin_lock(&class->lock);
@@ -1255,8 +1405,10 @@ unsigned long zs_malloc(struct zs_pool *pool, size_t size)
if (!first_page) {
spin_unlock(&class->lock);
first_page = alloc_zspage(class, pool->flags);
- if (unlikely(!first_page))
+ if (unlikely(!first_page)) {
+ free_handle(pool, handle);
return 0;
+ }
set_zspage_mapping(first_page, class->index, ZS_EMPTY);
atomic_long_add(class->pages_per_zspage,
@@ -1267,73 +1419,360 @@ unsigned long zs_malloc(struct zs_pool *pool, size_t size)
class->size, class->pages_per_zspage));
}
- obj = (unsigned long)first_page->freelist;
- obj_handle_to_location(obj, &m_page, &m_objidx);
- m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
-
- vaddr = kmap_atomic(m_page);
- link = (struct link_free *)vaddr + m_offset / sizeof(*link);
- first_page->freelist = link->next;
- memset(link, POISON_INUSE, sizeof(*link));
- kunmap_atomic(vaddr);
-
- first_page->inuse++;
- zs_stat_inc(class, OBJ_USED, 1);
+ obj = obj_malloc(first_page, class, handle);
/* Now move the zspage to another fullness group, if required */
- fix_fullness_group(pool, first_page);
+ fix_fullness_group(class, first_page);
+ record_obj(handle, obj);
spin_unlock(&class->lock);
- return obj;
+ return handle;
}
EXPORT_SYMBOL_GPL(zs_malloc);
-void zs_free(struct zs_pool *pool, unsigned long obj)
+static void obj_free(struct zs_pool *pool, struct size_class *class,
+ unsigned long obj)
{
struct link_free *link;
struct page *first_page, *f_page;
unsigned long f_objidx, f_offset;
void *vaddr;
-
int class_idx;
- struct size_class *class;
enum fullness_group fullness;
- if (unlikely(!obj))
- return;
+ BUG_ON(!obj);
- obj_handle_to_location(obj, &f_page, &f_objidx);
+ obj &= ~OBJ_ALLOCATED_TAG;
+ obj_to_location(obj, &f_page, &f_objidx);
first_page = get_first_page(f_page);
get_zspage_mapping(first_page, &class_idx, &fullness);
- class = pool->size_class[class_idx];
f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
- spin_lock(&class->lock);
+ vaddr = kmap_atomic(f_page);
/* Insert this object in containing zspage's freelist */
- vaddr = kmap_atomic(f_page);
link = (struct link_free *)(vaddr + f_offset);
link->next = first_page->freelist;
+ if (class->huge)
+ set_page_private(first_page, 0);
kunmap_atomic(vaddr);
first_page->freelist = (void *)obj;
-
first_page->inuse--;
- fullness = fix_fullness_group(pool, first_page);
-
zs_stat_dec(class, OBJ_USED, 1);
- if (fullness == ZS_EMPTY)
+}
+
+void zs_free(struct zs_pool *pool, unsigned long handle)
+{
+ struct page *first_page, *f_page;
+ unsigned long obj, f_objidx;
+ int class_idx;
+ struct size_class *class;
+ enum fullness_group fullness;
+
+ if (unlikely(!handle))
+ return;
+
+ pin_tag(handle);
+ obj = handle_to_obj(handle);
+ obj_to_location(obj, &f_page, &f_objidx);
+ first_page = get_first_page(f_page);
+
+ get_zspage_mapping(first_page, &class_idx, &fullness);
+ class = pool->size_class[class_idx];
+
+ spin_lock(&class->lock);
+ obj_free(pool, class, obj);
+ fullness = fix_fullness_group(class, first_page);
+ if (fullness == ZS_EMPTY) {
zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
class->size, class->pages_per_zspage));
-
+ atomic_long_sub(class->pages_per_zspage,
+ &pool->pages_allocated);
+ free_zspage(first_page);
+ }
spin_unlock(&class->lock);
+ unpin_tag(handle);
+
+ free_handle(pool, handle);
+}
+EXPORT_SYMBOL_GPL(zs_free);
+
+static void zs_object_copy(unsigned long src, unsigned long dst,
+ struct size_class *class)
+{
+ struct page *s_page, *d_page;
+ unsigned long s_objidx, d_objidx;
+ unsigned long s_off, d_off;
+ void *s_addr, *d_addr;
+ int s_size, d_size, size;
+ int written = 0;
+
+ s_size = d_size = class->size;
+
+ obj_to_location(src, &s_page, &s_objidx);
+ obj_to_location(dst, &d_page, &d_objidx);
+
+ s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
+ d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
+
+ if (s_off + class->size > PAGE_SIZE)
+ s_size = PAGE_SIZE - s_off;
+
+ if (d_off + class->size > PAGE_SIZE)
+ d_size = PAGE_SIZE - d_off;
+
+ s_addr = kmap_atomic(s_page);
+ d_addr = kmap_atomic(d_page);
+
+ while (1) {
+ size = min(s_size, d_size);
+ memcpy(d_addr + d_off, s_addr + s_off, size);
+ written += size;
+
+ if (written == class->size)
+ break;
+
+ s_off += size;
+ s_size -= size;
+ d_off += size;
+ d_size -= size;
+
+ if (s_off >= PAGE_SIZE) {
+ kunmap_atomic(d_addr);
+ kunmap_atomic(s_addr);
+ s_page = get_next_page(s_page);
+ BUG_ON(!s_page);
+ s_addr = kmap_atomic(s_page);
+ d_addr = kmap_atomic(d_page);
+ s_size = class->size - written;
+ s_off = 0;
+ }
+
+ if (d_off >= PAGE_SIZE) {
+ kunmap_atomic(d_addr);
+ d_page = get_next_page(d_page);
+ BUG_ON(!d_page);
+ d_addr = kmap_atomic(d_page);
+ d_size = class->size - written;
+ d_off = 0;
+ }
+ }
+
+ kunmap_atomic(d_addr);
+ kunmap_atomic(s_addr);
+}
+
+/*
+ * Find alloced object in zspage from index object and
+ * return handle.
+ */
+static unsigned long find_alloced_obj(struct page *page, int index,
+ struct size_class *class)
+{
+ unsigned long head;
+ int offset = 0;
+ unsigned long handle = 0;
+ void *addr = kmap_atomic(page);
+
+ if (!is_first_page(page))
+ offset = page->index;
+ offset += class->size * index;
+
+ while (offset < PAGE_SIZE) {
+ head = obj_to_head(class, page, addr + offset);
+ if (head & OBJ_ALLOCATED_TAG) {
+ handle = head & ~OBJ_ALLOCATED_TAG;
+ if (trypin_tag(handle))
+ break;
+ handle = 0;
+ }
+
+ offset += class->size;
+ index++;
+ }
+
+ kunmap_atomic(addr);
+ return handle;
+}
+
+struct zs_compact_control {
+ /* Source page for migration which could be a subpage of zspage. */
+ struct page *s_page;
+ /* Destination page for migration which should be a first page
+ * of zspage. */
+ struct page *d_page;
+ /* Starting object index within @s_page which used for live object
+ * in the subpage. */
+ int index;
+ /* how many of objects are migrated */
+ int nr_migrated;
+};
+
+static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
+ struct zs_compact_control *cc)
+{
+ unsigned long used_obj, free_obj;
+ unsigned long handle;
+ struct page *s_page = cc->s_page;
+ struct page *d_page = cc->d_page;
+ unsigned long index = cc->index;
+ int nr_migrated = 0;
+ int ret = 0;
+
+ while (1) {
+ handle = find_alloced_obj(s_page, index, class);
+ if (!handle) {
+ s_page = get_next_page(s_page);
+ if (!s_page)
+ break;
+ index = 0;
+ continue;
+ }
+
+ /* Stop if there is no more space */
+ if (zspage_full(d_page)) {
+ unpin_tag(handle);
+ ret = -ENOMEM;
+ break;
+ }
+
+ used_obj = handle_to_obj(handle);
+ free_obj = obj_malloc(d_page, class, handle);
+ zs_object_copy(used_obj, free_obj, class);
+ index++;
+ record_obj(handle, free_obj);
+ unpin_tag(handle);
+ obj_free(pool, class, used_obj);
+ nr_migrated++;
+ }
+
+ /* Remember last position in this iteration */
+ cc->s_page = s_page;
+ cc->index = index;
+ cc->nr_migrated = nr_migrated;
+
+ return ret;
+}
+
+static struct page *alloc_target_page(struct size_class *class)
+{
+ int i;
+ struct page *page;
+
+ for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
+ page = class->fullness_list[i];
+ if (page) {
+ remove_zspage(page, class, i);
+ break;
+ }
+ }
+
+ return page;
+}
+
+static void putback_zspage(struct zs_pool *pool, struct size_class *class,
+ struct page *first_page)
+{
+ enum fullness_group fullness;
+
+ BUG_ON(!is_first_page(first_page));
+
+ fullness = get_fullness_group(first_page);
+ insert_zspage(first_page, class, fullness);
+ set_zspage_mapping(first_page, class->index, fullness);
if (fullness == ZS_EMPTY) {
+ zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
+ class->size, class->pages_per_zspage));
atomic_long_sub(class->pages_per_zspage,
&pool->pages_allocated);
+
free_zspage(first_page);
}
}
-EXPORT_SYMBOL_GPL(zs_free);
+
+static struct page *isolate_source_page(struct size_class *class)
+{
+ struct page *page;
+
+ page = class->fullness_list[ZS_ALMOST_EMPTY];
+ if (page)
+ remove_zspage(page, class, ZS_ALMOST_EMPTY);
+
+ return page;
+}
+
+static unsigned long __zs_compact(struct zs_pool *pool,
+ struct size_class *class)
+{
+ int nr_to_migrate;
+ struct zs_compact_control cc;
+ struct page *src_page;
+ struct page *dst_page = NULL;
+ unsigned long nr_total_migrated = 0;
+
+ spin_lock(&class->lock);
+ while ((src_page = isolate_source_page(class))) {
+
+ BUG_ON(!is_first_page(src_page));
+
+ /* The goal is to migrate all live objects in source page */
+ nr_to_migrate = src_page->inuse;
+ cc.index = 0;
+ cc.s_page = src_page;
+
+ while ((dst_page = alloc_target_page(class))) {
+ cc.d_page = dst_page;
+ /*
+ * If there is no more space in dst_page, try to
+ * allocate another zspage.
+ */
+ if (!migrate_zspage(pool, class, &cc))
+ break;
+
+ putback_zspage(pool, class, dst_page);
+ nr_total_migrated += cc.nr_migrated;
+ nr_to_migrate -= cc.nr_migrated;
+ }
+
+ /* Stop if we couldn't find slot */
+ if (dst_page == NULL)
+ break;
+
+ putback_zspage(pool, class, dst_page);
+ putback_zspage(pool, class, src_page);
+ spin_unlock(&class->lock);
+ nr_total_migrated += cc.nr_migrated;
+ cond_resched();
+ spin_lock(&class->lock);
+ }
+
+ if (src_page)
+ putback_zspage(pool, class, src_page);
+
+ spin_unlock(&class->lock);
+
+ return nr_total_migrated;
+}
+
+unsigned long zs_compact(struct zs_pool *pool)
+{
+ int i;
+ unsigned long nr_migrated = 0;
+ struct size_class *class;
+
+ for (i = zs_size_classes - 1; i >= 0; i--) {
+ class = pool->size_class[i];
+ if (!class)
+ continue;
+ if (class->index != i)
+ continue;
+ nr_migrated += __zs_compact(pool, class);
+ }
+
+ return nr_migrated;
+}
+EXPORT_SYMBOL_GPL(zs_compact);
/**
* zs_create_pool - Creates an allocation pool to work from.
@@ -1355,20 +1794,20 @@ struct zs_pool *zs_create_pool(char *name, gfp_t flags)
if (!pool)
return NULL;
- pool->name = kstrdup(name, GFP_KERNEL);
- if (!pool->name) {
- kfree(pool);
- return NULL;
- }
-
pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
GFP_KERNEL);
if (!pool->size_class) {
- kfree(pool->name);
kfree(pool);
return NULL;
}
+ pool->name = kstrdup(name, GFP_KERNEL);
+ if (!pool->name)
+ goto err;
+
+ if (create_handle_cache(pool))
+ goto err;
+
/*
* Iterate reversly, because, size of size_class that we want to use
* for merging should be larger or equal to current size.
@@ -1406,6 +1845,9 @@ struct zs_pool *zs_create_pool(char *name, gfp_t flags)
class->size = size;
class->index = i;
class->pages_per_zspage = pages_per_zspage;
+ if (pages_per_zspage == 1 &&
+ get_maxobj_per_zspage(size, pages_per_zspage) == 1)
+ class->huge = true;
spin_lock_init(&class->lock);
pool->size_class[i] = class;
@@ -1450,6 +1892,7 @@ void zs_destroy_pool(struct zs_pool *pool)
kfree(class);
}
+ destroy_handle_cache(pool);
kfree(pool->size_class);
kfree(pool->name);
kfree(pool);