summaryrefslogtreecommitdiff
path: root/mm/zsmalloc.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/zsmalloc.c')
-rw-r--r--mm/zsmalloc.c1105
1 files changed, 1105 insertions, 0 deletions
diff --git a/mm/zsmalloc.c b/mm/zsmalloc.c
new file mode 100644
index 000000000000..5d42adfcb67b
--- /dev/null
+++ b/mm/zsmalloc.c
@@ -0,0 +1,1105 @@
+/*
+ * zsmalloc memory allocator
+ *
+ * Copyright (C) 2011 Nitin Gupta
+ *
+ * This code is released using a dual license strategy: BSD/GPL
+ * You can choose the license that better fits your requirements.
+ *
+ * Released under the terms of 3-clause BSD License
+ * Released under the terms of GNU General Public License Version 2.0
+ */
+
+/*
+ * This allocator is designed for use with zram. Thus, the allocator is
+ * supposed to work well under low memory conditions. In particular, it
+ * never attempts higher order page allocation which is very likely to
+ * fail under memory pressure. On the other hand, if we just use single
+ * (0-order) pages, it would suffer from very high fragmentation --
+ * any object of size PAGE_SIZE/2 or larger would occupy an entire page.
+ * This was one of the major issues with its predecessor (xvmalloc).
+ *
+ * To overcome these issues, zsmalloc allocates a bunch of 0-order pages
+ * and links them together using various 'struct page' fields. These linked
+ * pages act as a single higher-order page i.e. an object can span 0-order
+ * page boundaries. The code refers to these linked pages as a single entity
+ * called zspage.
+ *
+ * For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE
+ * since this satisfies the requirements of all its current users (in the
+ * worst case, page is incompressible and is thus stored "as-is" i.e. in
+ * uncompressed form). For allocation requests larger than this size, failure
+ * is returned (see zs_malloc).
+ *
+ * Additionally, zs_malloc() does not return a dereferenceable pointer.
+ * Instead, it returns an opaque handle (unsigned long) which encodes actual
+ * location of the allocated object. The reason for this indirection is that
+ * zsmalloc does not keep zspages permanently mapped since that would cause
+ * issues on 32-bit systems where the VA region for kernel space mappings
+ * is very small. So, before using the allocating memory, the object has to
+ * be mapped using zs_map_object() to get a usable pointer and subsequently
+ * unmapped using zs_unmap_object().
+ *
+ * Following is how we use various fields and flags of underlying
+ * struct page(s) to form a zspage.
+ *
+ * Usage of struct page fields:
+ * page->first_page: points to the first component (0-order) page
+ * page->index (union with page->freelist): offset of the first object
+ * starting in this page. For the first page, this is
+ * always 0, so we use this field (aka freelist) to point
+ * to the first free object in zspage.
+ * page->lru: links together all component pages (except the first page)
+ * of a zspage
+ *
+ * For _first_ page only:
+ *
+ * page->private (union with page->first_page): refers to the
+ * component page after the first page
+ * page->freelist: points to the first free object in zspage.
+ * Free objects are linked together using in-place
+ * metadata.
+ * page->objects: maximum number of objects we can store in this
+ * zspage (class->zspage_order * PAGE_SIZE / class->size)
+ * page->lru: links together first pages of various zspages.
+ * Basically forming list of zspages in a fullness group.
+ * page->mapping: class index and fullness group of the zspage
+ *
+ * Usage of struct page flags:
+ * PG_private: identifies the first component page
+ * PG_private2: identifies the last component page
+ *
+ */
+
+#ifdef CONFIG_ZSMALLOC_DEBUG
+#define DEBUG
+#endif
+
+#include <linux/module.h>
+#include <linux/kernel.h>
+#include <linux/bitops.h>
+#include <linux/errno.h>
+#include <linux/highmem.h>
+#include <linux/string.h>
+#include <linux/slab.h>
+#include <asm/tlbflush.h>
+#include <asm/pgtable.h>
+#include <linux/cpumask.h>
+#include <linux/cpu.h>
+#include <linux/vmalloc.h>
+#include <linux/hardirq.h>
+#include <linux/spinlock.h>
+#include <linux/types.h>
+#include <linux/zsmalloc.h>
+
+/*
+ * This must be power of 2 and greater than of equal to sizeof(link_free).
+ * These two conditions ensure that any 'struct link_free' itself doesn't
+ * span more than 1 page which avoids complex case of mapping 2 pages simply
+ * to restore link_free pointer values.
+ */
+#define ZS_ALIGN 8
+
+/*
+ * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
+ * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
+ */
+#define ZS_MAX_ZSPAGE_ORDER 2
+#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
+
+/*
+ * Object location (<PFN>, <obj_idx>) is encoded as
+ * as single (unsigned long) handle value.
+ *
+ * Note that object index <obj_idx> is relative to system
+ * page <PFN> it is stored in, so for each sub-page belonging
+ * to a zspage, obj_idx starts with 0.
+ *
+ * This is made more complicated by various memory models and PAE.
+ */
+
+#ifndef MAX_PHYSMEM_BITS
+#ifdef CONFIG_HIGHMEM64G
+#define MAX_PHYSMEM_BITS 36
+#else /* !CONFIG_HIGHMEM64G */
+/*
+ * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
+ * be PAGE_SHIFT
+ */
+#define MAX_PHYSMEM_BITS BITS_PER_LONG
+#endif
+#endif
+#define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
+#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS)
+#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
+
+#define MAX(a, b) ((a) >= (b) ? (a) : (b))
+/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
+#define ZS_MIN_ALLOC_SIZE \
+ MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
+#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
+
+/*
+ * On systems with 4K page size, this gives 254 size classes! There is a
+ * trader-off here:
+ * - Large number of size classes is potentially wasteful as free page are
+ * spread across these classes
+ * - Small number of size classes causes large internal fragmentation
+ * - Probably its better to use specific size classes (empirically
+ * determined). NOTE: all those class sizes must be set as multiple of
+ * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
+ *
+ * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
+ * (reason above)
+ */
+#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
+#define ZS_SIZE_CLASSES ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / \
+ ZS_SIZE_CLASS_DELTA + 1)
+
+/*
+ * We do not maintain any list for completely empty or full pages
+ */
+enum fullness_group {
+ ZS_ALMOST_FULL,
+ ZS_ALMOST_EMPTY,
+ _ZS_NR_FULLNESS_GROUPS,
+
+ ZS_EMPTY,
+ ZS_FULL
+};
+
+/*
+ * We assign a page to ZS_ALMOST_EMPTY fullness group when:
+ * n <= N / f, where
+ * n = number of allocated objects
+ * N = total number of objects zspage can store
+ * f = 1/fullness_threshold_frac
+ *
+ * Similarly, we assign zspage to:
+ * ZS_ALMOST_FULL when n > N / f
+ * ZS_EMPTY when n == 0
+ * ZS_FULL when n == N
+ *
+ * (see: fix_fullness_group())
+ */
+static const int fullness_threshold_frac = 4;
+
+struct size_class {
+ /*
+ * Size of objects stored in this class. Must be multiple
+ * of ZS_ALIGN.
+ */
+ int size;
+ unsigned int index;
+
+ /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
+ int pages_per_zspage;
+
+ spinlock_t lock;
+
+ /* stats */
+ u64 pages_allocated;
+
+ struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
+};
+
+/*
+ * Placed within free objects to form a singly linked list.
+ * For every zspage, first_page->freelist gives head of this list.
+ *
+ * This must be power of 2 and less than or equal to ZS_ALIGN
+ */
+struct link_free {
+ /* Handle of next free chunk (encodes <PFN, obj_idx>) */
+ void *next;
+};
+
+struct zs_pool {
+ struct size_class size_class[ZS_SIZE_CLASSES];
+
+ gfp_t flags; /* allocation flags used when growing pool */
+};
+
+/*
+ * A zspage's class index and fullness group
+ * are encoded in its (first)page->mapping
+ */
+#define CLASS_IDX_BITS 28
+#define FULLNESS_BITS 4
+#define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
+#define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
+
+struct mapping_area {
+#ifdef CONFIG_PGTABLE_MAPPING
+ struct vm_struct *vm; /* vm area for mapping object that span pages */
+#else
+ char *vm_buf; /* copy buffer for objects that span pages */
+#endif
+ char *vm_addr; /* address of kmap_atomic()'ed pages */
+ enum zs_mapmode vm_mm; /* mapping mode */
+};
+
+
+/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
+static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
+
+static int is_first_page(struct page *page)
+{
+ return PagePrivate(page);
+}
+
+static int is_last_page(struct page *page)
+{
+ return PagePrivate2(page);
+}
+
+static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
+ enum fullness_group *fullness)
+{
+ unsigned long m;
+ BUG_ON(!is_first_page(page));
+
+ m = (unsigned long)page->mapping;
+ *fullness = m & FULLNESS_MASK;
+ *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
+}
+
+static void set_zspage_mapping(struct page *page, unsigned int class_idx,
+ enum fullness_group fullness)
+{
+ unsigned long m;
+ BUG_ON(!is_first_page(page));
+
+ m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
+ (fullness & FULLNESS_MASK);
+ page->mapping = (struct address_space *)m;
+}
+
+/*
+ * zsmalloc divides the pool into various size classes where each
+ * class maintains a list of zspages where each zspage is divided
+ * into equal sized chunks. Each allocation falls into one of these
+ * classes depending on its size. This function returns index of the
+ * size class which has chunk size big enough to hold the give size.
+ */
+static int get_size_class_index(int size)
+{
+ int idx = 0;
+
+ if (likely(size > ZS_MIN_ALLOC_SIZE))
+ idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
+ ZS_SIZE_CLASS_DELTA);
+
+ return idx;
+}
+
+/*
+ * For each size class, zspages are divided into different groups
+ * depending on how "full" they are. This was done so that we could
+ * easily find empty or nearly empty zspages when we try to shrink
+ * the pool (not yet implemented). This function returns fullness
+ * status of the given page.
+ */
+static enum fullness_group get_fullness_group(struct page *page)
+{
+ int inuse, max_objects;
+ enum fullness_group fg;
+ BUG_ON(!is_first_page(page));
+
+ inuse = page->inuse;
+ max_objects = page->objects;
+
+ if (inuse == 0)
+ fg = ZS_EMPTY;
+ else if (inuse == max_objects)
+ fg = ZS_FULL;
+ else if (inuse <= max_objects / fullness_threshold_frac)
+ fg = ZS_ALMOST_EMPTY;
+ else
+ fg = ZS_ALMOST_FULL;
+
+ return fg;
+}
+
+/*
+ * Each size class maintains various freelists and zspages are assigned
+ * to one of these freelists based on the number of live objects they
+ * have. This functions inserts the given zspage into the freelist
+ * identified by <class, fullness_group>.
+ */
+static void insert_zspage(struct page *page, struct size_class *class,
+ enum fullness_group fullness)
+{
+ struct page **head;
+
+ BUG_ON(!is_first_page(page));
+
+ if (fullness >= _ZS_NR_FULLNESS_GROUPS)
+ return;
+
+ head = &class->fullness_list[fullness];
+ if (*head)
+ list_add_tail(&page->lru, &(*head)->lru);
+
+ *head = page;
+}
+
+/*
+ * This function removes the given zspage from the freelist identified
+ * by <class, fullness_group>.
+ */
+static void remove_zspage(struct page *page, struct size_class *class,
+ enum fullness_group fullness)
+{
+ struct page **head;
+
+ BUG_ON(!is_first_page(page));
+
+ if (fullness >= _ZS_NR_FULLNESS_GROUPS)
+ return;
+
+ head = &class->fullness_list[fullness];
+ BUG_ON(!*head);
+ if (list_empty(&(*head)->lru))
+ *head = NULL;
+ else if (*head == page)
+ *head = (struct page *)list_entry((*head)->lru.next,
+ struct page, lru);
+
+ list_del_init(&page->lru);
+}
+
+/*
+ * Each size class maintains zspages in different fullness groups depending
+ * on the number of live objects they contain. When allocating or freeing
+ * objects, the fullness status of the page can change, say, from ALMOST_FULL
+ * to ALMOST_EMPTY when freeing an object. This function checks if such
+ * a status change has occurred for the given page and accordingly moves the
+ * page from the freelist of the old fullness group to that of the new
+ * fullness group.
+ */
+static enum fullness_group fix_fullness_group(struct zs_pool *pool,
+ struct page *page)
+{
+ int class_idx;
+ struct size_class *class;
+ enum fullness_group currfg, newfg;
+
+ BUG_ON(!is_first_page(page));
+
+ get_zspage_mapping(page, &class_idx, &currfg);
+ newfg = get_fullness_group(page);
+ if (newfg == currfg)
+ goto out;
+
+ class = &pool->size_class[class_idx];
+ remove_zspage(page, class, currfg);
+ insert_zspage(page, class, newfg);
+ set_zspage_mapping(page, class_idx, newfg);
+
+out:
+ return newfg;
+}
+
+/*
+ * We have to decide on how many pages to link together
+ * to form a zspage for each size class. This is important
+ * to reduce wastage due to unusable space left at end of
+ * each zspage which is given as:
+ * wastage = Zp - Zp % size_class
+ * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
+ *
+ * For example, for size class of 3/8 * PAGE_SIZE, we should
+ * link together 3 PAGE_SIZE sized pages to form a zspage
+ * since then we can perfectly fit in 8 such objects.
+ */
+static int get_pages_per_zspage(int class_size)
+{
+ int i, max_usedpc = 0;
+ /* zspage order which gives maximum used size per KB */
+ int max_usedpc_order = 1;
+
+ for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
+ int zspage_size;
+ int waste, usedpc;
+
+ zspage_size = i * PAGE_SIZE;
+ waste = zspage_size % class_size;
+ usedpc = (zspage_size - waste) * 100 / zspage_size;
+
+ if (usedpc > max_usedpc) {
+ max_usedpc = usedpc;
+ max_usedpc_order = i;
+ }
+ }
+
+ return max_usedpc_order;
+}
+
+/*
+ * A single 'zspage' is composed of many system pages which are
+ * linked together using fields in struct page. This function finds
+ * the first/head page, given any component page of a zspage.
+ */
+static struct page *get_first_page(struct page *page)
+{
+ if (is_first_page(page))
+ return page;
+ else
+ return page->first_page;
+}
+
+static struct page *get_next_page(struct page *page)
+{
+ struct page *next;
+
+ if (is_last_page(page))
+ next = NULL;
+ else if (is_first_page(page))
+ next = (struct page *)page_private(page);
+ else
+ next = list_entry(page->lru.next, struct page, lru);
+
+ return next;
+}
+
+/*
+ * Encode <page, obj_idx> as a single handle value.
+ * On hardware platforms with physical memory starting at 0x0 the pfn
+ * could be 0 so we ensure that the handle will never be 0 by adjusting the
+ * encoded obj_idx value before encoding.
+ */
+static void *obj_location_to_handle(struct page *page, unsigned long obj_idx)
+{
+ unsigned long handle;
+
+ if (!page) {
+ BUG_ON(obj_idx);
+ return NULL;
+ }
+
+ handle = page_to_pfn(page) << OBJ_INDEX_BITS;
+ handle |= ((obj_idx + 1) & OBJ_INDEX_MASK);
+
+ return (void *)handle;
+}
+
+/*
+ * Decode <page, obj_idx> pair from the given object handle. We adjust the
+ * decoded obj_idx back to its original value since it was adjusted in
+ * obj_location_to_handle().
+ */
+static void obj_handle_to_location(unsigned long handle, struct page **page,
+ unsigned long *obj_idx)
+{
+ *page = pfn_to_page(handle >> OBJ_INDEX_BITS);
+ *obj_idx = (handle & OBJ_INDEX_MASK) - 1;
+}
+
+static unsigned long obj_idx_to_offset(struct page *page,
+ unsigned long obj_idx, int class_size)
+{
+ unsigned long off = 0;
+
+ if (!is_first_page(page))
+ off = page->index;
+
+ return off + obj_idx * class_size;
+}
+
+static void reset_page(struct page *page)
+{
+ clear_bit(PG_private, &page->flags);
+ clear_bit(PG_private_2, &page->flags);
+ set_page_private(page, 0);
+ page->mapping = NULL;
+ page->freelist = NULL;
+ page_mapcount_reset(page);
+}
+
+static void free_zspage(struct page *first_page)
+{
+ struct page *nextp, *tmp, *head_extra;
+
+ BUG_ON(!is_first_page(first_page));
+ BUG_ON(first_page->inuse);
+
+ head_extra = (struct page *)page_private(first_page);
+
+ reset_page(first_page);
+ __free_page(first_page);
+
+ /* zspage with only 1 system page */
+ if (!head_extra)
+ return;
+
+ list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
+ list_del(&nextp->lru);
+ reset_page(nextp);
+ __free_page(nextp);
+ }
+ reset_page(head_extra);
+ __free_page(head_extra);
+}
+
+/* Initialize a newly allocated zspage */
+static void init_zspage(struct page *first_page, struct size_class *class)
+{
+ unsigned long off = 0;
+ struct page *page = first_page;
+
+ BUG_ON(!is_first_page(first_page));
+ while (page) {
+ struct page *next_page;
+ struct link_free *link;
+ unsigned int i, objs_on_page;
+
+ /*
+ * page->index stores offset of first object starting
+ * in the page. For the first page, this is always 0,
+ * so we use first_page->index (aka ->freelist) to store
+ * head of corresponding zspage's freelist.
+ */
+ if (page != first_page)
+ page->index = off;
+
+ link = (struct link_free *)kmap_atomic(page) +
+ off / sizeof(*link);
+ objs_on_page = (PAGE_SIZE - off) / class->size;
+
+ for (i = 1; i <= objs_on_page; i++) {
+ off += class->size;
+ if (off < PAGE_SIZE) {
+ link->next = obj_location_to_handle(page, i);
+ link += class->size / sizeof(*link);
+ }
+ }
+
+ /*
+ * We now come to the last (full or partial) object on this
+ * page, which must point to the first object on the next
+ * page (if present)
+ */
+ next_page = get_next_page(page);
+ link->next = obj_location_to_handle(next_page, 0);
+ kunmap_atomic(link);
+ page = next_page;
+ off = (off + class->size) % PAGE_SIZE;
+ }
+}
+
+/*
+ * Allocate a zspage for the given size class
+ */
+static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
+{
+ int i, error;
+ struct page *first_page = NULL, *uninitialized_var(prev_page);
+
+ /*
+ * Allocate individual pages and link them together as:
+ * 1. first page->private = first sub-page
+ * 2. all sub-pages are linked together using page->lru
+ * 3. each sub-page is linked to the first page using page->first_page
+ *
+ * For each size class, First/Head pages are linked together using
+ * page->lru. Also, we set PG_private to identify the first page
+ * (i.e. no other sub-page has this flag set) and PG_private_2 to
+ * identify the last page.
+ */
+ error = -ENOMEM;
+ for (i = 0; i < class->pages_per_zspage; i++) {
+ struct page *page;
+
+ page = alloc_page(flags);
+ if (!page)
+ goto cleanup;
+
+ INIT_LIST_HEAD(&page->lru);
+ if (i == 0) { /* first page */
+ SetPagePrivate(page);
+ set_page_private(page, 0);
+ first_page = page;
+ first_page->inuse = 0;
+ }
+ if (i == 1)
+ set_page_private(first_page, (unsigned long)page);
+ if (i >= 1)
+ page->first_page = first_page;
+ if (i >= 2)
+ list_add(&page->lru, &prev_page->lru);
+ if (i == class->pages_per_zspage - 1) /* last page */
+ SetPagePrivate2(page);
+ prev_page = page;
+ }
+
+ init_zspage(first_page, class);
+
+ first_page->freelist = obj_location_to_handle(first_page, 0);
+ /* Maximum number of objects we can store in this zspage */
+ first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
+
+ error = 0; /* Success */
+
+cleanup:
+ if (unlikely(error) && first_page) {
+ free_zspage(first_page);
+ first_page = NULL;
+ }
+
+ return first_page;
+}
+
+static struct page *find_get_zspage(struct size_class *class)
+{
+ int i;
+ struct page *page;
+
+ for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
+ page = class->fullness_list[i];
+ if (page)
+ break;
+ }
+
+ return page;
+}
+
+#ifdef CONFIG_PGTABLE_MAPPING
+static inline int __zs_cpu_up(struct mapping_area *area)
+{
+ /*
+ * Make sure we don't leak memory if a cpu UP notification
+ * and zs_init() race and both call zs_cpu_up() on the same cpu
+ */
+ if (area->vm)
+ return 0;
+ area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
+ if (!area->vm)
+ return -ENOMEM;
+ return 0;
+}
+
+static inline void __zs_cpu_down(struct mapping_area *area)
+{
+ if (area->vm)
+ free_vm_area(area->vm);
+ area->vm = NULL;
+}
+
+static inline void *__zs_map_object(struct mapping_area *area,
+ struct page *pages[2], int off, int size)
+{
+ BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, &pages));
+ area->vm_addr = area->vm->addr;
+ return area->vm_addr + off;
+}
+
+static inline void __zs_unmap_object(struct mapping_area *area,
+ struct page *pages[2], int off, int size)
+{
+ unsigned long addr = (unsigned long)area->vm_addr;
+
+ unmap_kernel_range(addr, PAGE_SIZE * 2);
+}
+
+#else /* CONFIG_PGTABLE_MAPPING */
+
+static inline int __zs_cpu_up(struct mapping_area *area)
+{
+ /*
+ * Make sure we don't leak memory if a cpu UP notification
+ * and zs_init() race and both call zs_cpu_up() on the same cpu
+ */
+ if (area->vm_buf)
+ return 0;
+ area->vm_buf = (char *)__get_free_page(GFP_KERNEL);
+ if (!area->vm_buf)
+ return -ENOMEM;
+ return 0;
+}
+
+static inline void __zs_cpu_down(struct mapping_area *area)
+{
+ if (area->vm_buf)
+ free_page((unsigned long)area->vm_buf);
+ area->vm_buf = NULL;
+}
+
+static void *__zs_map_object(struct mapping_area *area,
+ struct page *pages[2], int off, int size)
+{
+ int sizes[2];
+ void *addr;
+ char *buf = area->vm_buf;
+
+ /* disable page faults to match kmap_atomic() return conditions */
+ pagefault_disable();
+
+ /* no read fastpath */
+ if (area->vm_mm == ZS_MM_WO)
+ goto out;
+
+ sizes[0] = PAGE_SIZE - off;
+ sizes[1] = size - sizes[0];
+
+ /* copy object to per-cpu buffer */
+ addr = kmap_atomic(pages[0]);
+ memcpy(buf, addr + off, sizes[0]);
+ kunmap_atomic(addr);
+ addr = kmap_atomic(pages[1]);
+ memcpy(buf + sizes[0], addr, sizes[1]);
+ kunmap_atomic(addr);
+out:
+ return area->vm_buf;
+}
+
+static void __zs_unmap_object(struct mapping_area *area,
+ struct page *pages[2], int off, int size)
+{
+ int sizes[2];
+ void *addr;
+ char *buf = area->vm_buf;
+
+ /* no write fastpath */
+ if (area->vm_mm == ZS_MM_RO)
+ goto out;
+
+ sizes[0] = PAGE_SIZE - off;
+ sizes[1] = size - sizes[0];
+
+ /* copy per-cpu buffer to object */
+ addr = kmap_atomic(pages[0]);
+ memcpy(addr + off, buf, sizes[0]);
+ kunmap_atomic(addr);
+ addr = kmap_atomic(pages[1]);
+ memcpy(addr, buf + sizes[0], sizes[1]);
+ kunmap_atomic(addr);
+
+out:
+ /* enable page faults to match kunmap_atomic() return conditions */
+ pagefault_enable();
+}
+
+#endif /* CONFIG_PGTABLE_MAPPING */
+
+static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
+ void *pcpu)
+{
+ int ret, cpu = (long)pcpu;
+ struct mapping_area *area;
+
+ switch (action) {
+ case CPU_UP_PREPARE:
+ area = &per_cpu(zs_map_area, cpu);
+ ret = __zs_cpu_up(area);
+ if (ret)
+ return notifier_from_errno(ret);
+ break;
+ case CPU_DEAD:
+ case CPU_UP_CANCELED:
+ area = &per_cpu(zs_map_area, cpu);
+ __zs_cpu_down(area);
+ break;
+ }
+
+ return NOTIFY_OK;
+}
+
+static struct notifier_block zs_cpu_nb = {
+ .notifier_call = zs_cpu_notifier
+};
+
+static void zs_exit(void)
+{
+ int cpu;
+
+ for_each_online_cpu(cpu)
+ zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
+ unregister_cpu_notifier(&zs_cpu_nb);
+}
+
+static int zs_init(void)
+{
+ int cpu, ret;
+
+ register_cpu_notifier(&zs_cpu_nb);
+ for_each_online_cpu(cpu) {
+ ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
+ if (notifier_to_errno(ret))
+ goto fail;
+ }
+ return 0;
+fail:
+ zs_exit();
+ return notifier_to_errno(ret);
+}
+
+/**
+ * zs_create_pool - Creates an allocation pool to work from.
+ * @flags: allocation flags used to allocate pool metadata
+ *
+ * This function must be called before anything when using
+ * the zsmalloc allocator.
+ *
+ * On success, a pointer to the newly created pool is returned,
+ * otherwise NULL.
+ */
+struct zs_pool *zs_create_pool(gfp_t flags)
+{
+ int i, ovhd_size;
+ struct zs_pool *pool;
+
+ ovhd_size = roundup(sizeof(*pool), PAGE_SIZE);
+ pool = kzalloc(ovhd_size, GFP_KERNEL);
+ if (!pool)
+ return NULL;
+
+ for (i = 0; i < ZS_SIZE_CLASSES; i++) {
+ int size;
+ struct size_class *class;
+
+ size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
+ if (size > ZS_MAX_ALLOC_SIZE)
+ size = ZS_MAX_ALLOC_SIZE;
+
+ class = &pool->size_class[i];
+ class->size = size;
+ class->index = i;
+ spin_lock_init(&class->lock);
+ class->pages_per_zspage = get_pages_per_zspage(size);
+
+ }
+
+ pool->flags = flags;
+
+ return pool;
+}
+EXPORT_SYMBOL_GPL(zs_create_pool);
+
+void zs_destroy_pool(struct zs_pool *pool)
+{
+ int i;
+
+ for (i = 0; i < ZS_SIZE_CLASSES; i++) {
+ int fg;
+ struct size_class *class = &pool->size_class[i];
+
+ for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
+ if (class->fullness_list[fg]) {
+ pr_info("Freeing non-empty class with size %db, fullness group %d\n",
+ class->size, fg);
+ }
+ }
+ }
+ kfree(pool);
+}
+EXPORT_SYMBOL_GPL(zs_destroy_pool);
+
+/**
+ * zs_malloc - Allocate block of given size from pool.
+ * @pool: pool to allocate from
+ * @size: size of block to allocate
+ *
+ * On success, handle to the allocated object is returned,
+ * otherwise 0.
+ * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
+ */
+unsigned long zs_malloc(struct zs_pool *pool, size_t size)
+{
+ unsigned long obj;
+ struct link_free *link;
+ int class_idx;
+ struct size_class *class;
+
+ struct page *first_page, *m_page;
+ unsigned long m_objidx, m_offset;
+
+ if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
+ return 0;
+
+ class_idx = get_size_class_index(size);
+ class = &pool->size_class[class_idx];
+ BUG_ON(class_idx != class->index);
+
+ spin_lock(&class->lock);
+ first_page = find_get_zspage(class);
+
+ if (!first_page) {
+ spin_unlock(&class->lock);
+ first_page = alloc_zspage(class, pool->flags);
+ if (unlikely(!first_page))
+ return 0;
+
+ set_zspage_mapping(first_page, class->index, ZS_EMPTY);
+ spin_lock(&class->lock);
+ class->pages_allocated += class->pages_per_zspage;
+ }
+
+ obj = (unsigned long)first_page->freelist;
+ obj_handle_to_location(obj, &m_page, &m_objidx);
+ m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
+
+ link = (struct link_free *)kmap_atomic(m_page) +
+ m_offset / sizeof(*link);
+ first_page->freelist = link->next;
+ memset(link, POISON_INUSE, sizeof(*link));
+ kunmap_atomic(link);
+
+ first_page->inuse++;
+ /* Now move the zspage to another fullness group, if required */
+ fix_fullness_group(pool, first_page);
+ spin_unlock(&class->lock);
+
+ return obj;
+}
+EXPORT_SYMBOL_GPL(zs_malloc);
+
+void zs_free(struct zs_pool *pool, unsigned long obj)
+{
+ struct link_free *link;
+ struct page *first_page, *f_page;
+ unsigned long f_objidx, f_offset;
+
+ int class_idx;
+ struct size_class *class;
+ enum fullness_group fullness;
+
+ if (unlikely(!obj))
+ return;
+
+ obj_handle_to_location(obj, &f_page, &f_objidx);
+ first_page = get_first_page(f_page);
+
+ get_zspage_mapping(first_page, &class_idx, &fullness);
+ class = &pool->size_class[class_idx];
+ f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
+
+ spin_lock(&class->lock);
+
+ /* Insert this object in containing zspage's freelist */
+ link = (struct link_free *)((unsigned char *)kmap_atomic(f_page)
+ + f_offset);
+ link->next = first_page->freelist;
+ kunmap_atomic(link);
+ first_page->freelist = (void *)obj;
+
+ first_page->inuse--;
+ fullness = fix_fullness_group(pool, first_page);
+
+ if (fullness == ZS_EMPTY)
+ class->pages_allocated -= class->pages_per_zspage;
+
+ spin_unlock(&class->lock);
+
+ if (fullness == ZS_EMPTY)
+ free_zspage(first_page);
+}
+EXPORT_SYMBOL_GPL(zs_free);
+
+/**
+ * zs_map_object - get address of allocated object from handle.
+ * @pool: pool from which the object was allocated
+ * @handle: handle returned from zs_malloc
+ *
+ * Before using an object allocated from zs_malloc, it must be mapped using
+ * this function. When done with the object, it must be unmapped using
+ * zs_unmap_object.
+ *
+ * Only one object can be mapped per cpu at a time. There is no protection
+ * against nested mappings.
+ *
+ * This function returns with preemption and page faults disabled.
+ */
+void *zs_map_object(struct zs_pool *pool, unsigned long handle,
+ enum zs_mapmode mm)
+{
+ struct page *page;
+ unsigned long obj_idx, off;
+
+ unsigned int class_idx;
+ enum fullness_group fg;
+ struct size_class *class;
+ struct mapping_area *area;
+ struct page *pages[2];
+
+ BUG_ON(!handle);
+
+ /*
+ * Because we use per-cpu mapping areas shared among the
+ * pools/users, we can't allow mapping in interrupt context
+ * because it can corrupt another users mappings.
+ */
+ BUG_ON(in_interrupt());
+
+ obj_handle_to_location(handle, &page, &obj_idx);
+ get_zspage_mapping(get_first_page(page), &class_idx, &fg);
+ class = &pool->size_class[class_idx];
+ off = obj_idx_to_offset(page, obj_idx, class->size);
+
+ area = &get_cpu_var(zs_map_area);
+ area->vm_mm = mm;
+ if (off + class->size <= PAGE_SIZE) {
+ /* this object is contained entirely within a page */
+ area->vm_addr = kmap_atomic(page);
+ return area->vm_addr + off;
+ }
+
+ /* this object spans two pages */
+ pages[0] = page;
+ pages[1] = get_next_page(page);
+ BUG_ON(!pages[1]);
+
+ return __zs_map_object(area, pages, off, class->size);
+}
+EXPORT_SYMBOL_GPL(zs_map_object);
+
+void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
+{
+ struct page *page;
+ unsigned long obj_idx, off;
+
+ unsigned int class_idx;
+ enum fullness_group fg;
+ struct size_class *class;
+ struct mapping_area *area;
+
+ BUG_ON(!handle);
+
+ obj_handle_to_location(handle, &page, &obj_idx);
+ get_zspage_mapping(get_first_page(page), &class_idx, &fg);
+ class = &pool->size_class[class_idx];
+ off = obj_idx_to_offset(page, obj_idx, class->size);
+
+ area = &__get_cpu_var(zs_map_area);
+ if (off + class->size <= PAGE_SIZE)
+ kunmap_atomic(area->vm_addr);
+ else {
+ struct page *pages[2];
+
+ pages[0] = page;
+ pages[1] = get_next_page(page);
+ BUG_ON(!pages[1]);
+
+ __zs_unmap_object(area, pages, off, class->size);
+ }
+ put_cpu_var(zs_map_area);
+}
+EXPORT_SYMBOL_GPL(zs_unmap_object);
+
+u64 zs_get_total_size_bytes(struct zs_pool *pool)
+{
+ int i;
+ u64 npages = 0;
+
+ for (i = 0; i < ZS_SIZE_CLASSES; i++)
+ npages += pool->size_class[i].pages_allocated;
+
+ return npages << PAGE_SHIFT;
+}
+EXPORT_SYMBOL_GPL(zs_get_total_size_bytes);
+
+module_init(zs_init);
+module_exit(zs_exit);
+
+MODULE_LICENSE("Dual BSD/GPL");
+MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");