diff options
Diffstat (limited to 'mm/slub.c')
-rw-r--r-- | mm/slub.c | 370 |
1 files changed, 306 insertions, 64 deletions
diff --git a/mm/slub.c b/mm/slub.c index e15aa7f193c9..f881874843a5 100644 --- a/mm/slub.c +++ b/mm/slub.c @@ -217,7 +217,7 @@ static inline void sysfs_slab_remove(struct kmem_cache *s) #endif -static inline void stat(struct kmem_cache *s, enum stat_item si) +static inline void stat(const struct kmem_cache *s, enum stat_item si) { #ifdef CONFIG_SLUB_STATS __this_cpu_inc(s->cpu_slab->stat[si]); @@ -281,11 +281,40 @@ static inline int slab_index(void *p, struct kmem_cache *s, void *addr) return (p - addr) / s->size; } +static inline size_t slab_ksize(const struct kmem_cache *s) +{ +#ifdef CONFIG_SLUB_DEBUG + /* + * Debugging requires use of the padding between object + * and whatever may come after it. + */ + if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) + return s->objsize; + +#endif + /* + * If we have the need to store the freelist pointer + * back there or track user information then we can + * only use the space before that information. + */ + if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) + return s->inuse; + /* + * Else we can use all the padding etc for the allocation + */ + return s->size; +} + +static inline int order_objects(int order, unsigned long size, int reserved) +{ + return ((PAGE_SIZE << order) - reserved) / size; +} + static inline struct kmem_cache_order_objects oo_make(int order, - unsigned long size) + unsigned long size, int reserved) { struct kmem_cache_order_objects x = { - (order << OO_SHIFT) + (PAGE_SIZE << order) / size + (order << OO_SHIFT) + order_objects(order, size, reserved) }; return x; @@ -617,7 +646,7 @@ static int slab_pad_check(struct kmem_cache *s, struct page *page) return 1; start = page_address(page); - length = (PAGE_SIZE << compound_order(page)); + length = (PAGE_SIZE << compound_order(page)) - s->reserved; end = start + length; remainder = length % s->size; if (!remainder) @@ -698,7 +727,7 @@ static int check_slab(struct kmem_cache *s, struct page *page) return 0; } - maxobj = (PAGE_SIZE << compound_order(page)) / s->size; + maxobj = order_objects(compound_order(page), s->size, s->reserved); if (page->objects > maxobj) { slab_err(s, page, "objects %u > max %u", s->name, page->objects, maxobj); @@ -748,7 +777,7 @@ static int on_freelist(struct kmem_cache *s, struct page *page, void *search) nr++; } - max_objects = (PAGE_SIZE << compound_order(page)) / s->size; + max_objects = order_objects(compound_order(page), s->size, s->reserved); if (max_objects > MAX_OBJS_PER_PAGE) max_objects = MAX_OBJS_PER_PAGE; @@ -800,21 +829,31 @@ static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags) static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object) { flags &= gfp_allowed_mask; - kmemcheck_slab_alloc(s, flags, object, s->objsize); + kmemcheck_slab_alloc(s, flags, object, slab_ksize(s)); kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags); } static inline void slab_free_hook(struct kmem_cache *s, void *x) { kmemleak_free_recursive(x, s->flags); -} -static inline void slab_free_hook_irq(struct kmem_cache *s, void *object) -{ - kmemcheck_slab_free(s, object, s->objsize); - debug_check_no_locks_freed(object, s->objsize); + /* + * Trouble is that we may no longer disable interupts in the fast path + * So in order to make the debug calls that expect irqs to be + * disabled we need to disable interrupts temporarily. + */ +#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) + { + unsigned long flags; + + local_irq_save(flags); + kmemcheck_slab_free(s, x, s->objsize); + debug_check_no_locks_freed(x, s->objsize); + local_irq_restore(flags); + } +#endif if (!(s->flags & SLAB_DEBUG_OBJECTS)) - debug_check_no_obj_freed(object, s->objsize); + debug_check_no_obj_freed(x, s->objsize); } /* @@ -1101,9 +1140,6 @@ static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, static inline void slab_free_hook(struct kmem_cache *s, void *x) {} -static inline void slab_free_hook_irq(struct kmem_cache *s, - void *object) {} - #endif /* CONFIG_SLUB_DEBUG */ /* @@ -1249,21 +1285,38 @@ static void __free_slab(struct kmem_cache *s, struct page *page) __free_pages(page, order); } +#define need_reserve_slab_rcu \ + (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) + static void rcu_free_slab(struct rcu_head *h) { struct page *page; - page = container_of((struct list_head *)h, struct page, lru); + if (need_reserve_slab_rcu) + page = virt_to_head_page(h); + else + page = container_of((struct list_head *)h, struct page, lru); + __free_slab(page->slab, page); } static void free_slab(struct kmem_cache *s, struct page *page) { if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { - /* - * RCU free overloads the RCU head over the LRU - */ - struct rcu_head *head = (void *)&page->lru; + struct rcu_head *head; + + if (need_reserve_slab_rcu) { + int order = compound_order(page); + int offset = (PAGE_SIZE << order) - s->reserved; + + VM_BUG_ON(s->reserved != sizeof(*head)); + head = page_address(page) + offset; + } else { + /* + * RCU free overloads the RCU head over the LRU + */ + head = (void *)&page->lru; + } call_rcu(head, rcu_free_slab); } else @@ -1487,6 +1540,78 @@ static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail) } } +#ifdef CONFIG_CMPXCHG_LOCAL +#ifdef CONFIG_PREEMPT +/* + * Calculate the next globally unique transaction for disambiguiation + * during cmpxchg. The transactions start with the cpu number and are then + * incremented by CONFIG_NR_CPUS. + */ +#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) +#else +/* + * No preemption supported therefore also no need to check for + * different cpus. + */ +#define TID_STEP 1 +#endif + +static inline unsigned long next_tid(unsigned long tid) +{ + return tid + TID_STEP; +} + +static inline unsigned int tid_to_cpu(unsigned long tid) +{ + return tid % TID_STEP; +} + +static inline unsigned long tid_to_event(unsigned long tid) +{ + return tid / TID_STEP; +} + +static inline unsigned int init_tid(int cpu) +{ + return cpu; +} + +static inline void note_cmpxchg_failure(const char *n, + const struct kmem_cache *s, unsigned long tid) +{ +#ifdef SLUB_DEBUG_CMPXCHG + unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); + + printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name); + +#ifdef CONFIG_PREEMPT + if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) + printk("due to cpu change %d -> %d\n", + tid_to_cpu(tid), tid_to_cpu(actual_tid)); + else +#endif + if (tid_to_event(tid) != tid_to_event(actual_tid)) + printk("due to cpu running other code. Event %ld->%ld\n", + tid_to_event(tid), tid_to_event(actual_tid)); + else + printk("for unknown reason: actual=%lx was=%lx target=%lx\n", + actual_tid, tid, next_tid(tid)); +#endif + stat(s, CMPXCHG_DOUBLE_CPU_FAIL); +} + +#endif + +void init_kmem_cache_cpus(struct kmem_cache *s) +{ +#ifdef CONFIG_CMPXCHG_LOCAL + int cpu; + + for_each_possible_cpu(cpu) + per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); +#endif + +} /* * Remove the cpu slab */ @@ -1518,6 +1643,9 @@ static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) page->inuse--; } c->page = NULL; +#ifdef CONFIG_CMPXCHG_LOCAL + c->tid = next_tid(c->tid); +#endif unfreeze_slab(s, page, tail); } @@ -1652,6 +1780,19 @@ static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, { void **object; struct page *new; +#ifdef CONFIG_CMPXCHG_LOCAL + unsigned long flags; + + local_irq_save(flags); +#ifdef CONFIG_PREEMPT + /* + * We may have been preempted and rescheduled on a different + * cpu before disabling interrupts. Need to reload cpu area + * pointer. + */ + c = this_cpu_ptr(s->cpu_slab); +#endif +#endif /* We handle __GFP_ZERO in the caller */ gfpflags &= ~__GFP_ZERO; @@ -1678,6 +1819,10 @@ load_freelist: c->node = page_to_nid(c->page); unlock_out: slab_unlock(c->page); +#ifdef CONFIG_CMPXCHG_LOCAL + c->tid = next_tid(c->tid); + local_irq_restore(flags); +#endif stat(s, ALLOC_SLOWPATH); return object; @@ -1713,6 +1858,9 @@ new_slab: } if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit()) slab_out_of_memory(s, gfpflags, node); +#ifdef CONFIG_CMPXCHG_LOCAL + local_irq_restore(flags); +#endif return NULL; debug: if (!alloc_debug_processing(s, c->page, object, addr)) @@ -1739,23 +1887,76 @@ static __always_inline void *slab_alloc(struct kmem_cache *s, { void **object; struct kmem_cache_cpu *c; +#ifdef CONFIG_CMPXCHG_LOCAL + unsigned long tid; +#else unsigned long flags; +#endif if (slab_pre_alloc_hook(s, gfpflags)) return NULL; +#ifndef CONFIG_CMPXCHG_LOCAL local_irq_save(flags); +#else +redo: +#endif + + /* + * Must read kmem_cache cpu data via this cpu ptr. Preemption is + * enabled. We may switch back and forth between cpus while + * reading from one cpu area. That does not matter as long + * as we end up on the original cpu again when doing the cmpxchg. + */ c = __this_cpu_ptr(s->cpu_slab); + +#ifdef CONFIG_CMPXCHG_LOCAL + /* + * The transaction ids are globally unique per cpu and per operation on + * a per cpu queue. Thus they can be guarantee that the cmpxchg_double + * occurs on the right processor and that there was no operation on the + * linked list in between. + */ + tid = c->tid; + barrier(); +#endif + object = c->freelist; if (unlikely(!object || !node_match(c, node))) object = __slab_alloc(s, gfpflags, node, addr, c); else { +#ifdef CONFIG_CMPXCHG_LOCAL + /* + * The cmpxchg will only match if there was no additonal + * operation and if we are on the right processor. + * + * The cmpxchg does the following atomically (without lock semantics!) + * 1. Relocate first pointer to the current per cpu area. + * 2. Verify that tid and freelist have not been changed + * 3. If they were not changed replace tid and freelist + * + * Since this is without lock semantics the protection is only against + * code executing on this cpu *not* from access by other cpus. + */ + if (unlikely(!this_cpu_cmpxchg_double( + s->cpu_slab->freelist, s->cpu_slab->tid, + object, tid, + get_freepointer(s, object), next_tid(tid)))) { + + note_cmpxchg_failure("slab_alloc", s, tid); + goto redo; + } +#else c->freelist = get_freepointer(s, object); +#endif stat(s, ALLOC_FASTPATH); } + +#ifndef CONFIG_CMPXCHG_LOCAL local_irq_restore(flags); +#endif if (unlikely(gfpflags & __GFP_ZERO) && object) memset(object, 0, s->objsize); @@ -1833,9 +2034,13 @@ static void __slab_free(struct kmem_cache *s, struct page *page, { void *prior; void **object = (void *)x; +#ifdef CONFIG_CMPXCHG_LOCAL + unsigned long flags; - stat(s, FREE_SLOWPATH); + local_irq_save(flags); +#endif slab_lock(page); + stat(s, FREE_SLOWPATH); if (kmem_cache_debug(s)) goto debug; @@ -1865,6 +2070,9 @@ checks_ok: out_unlock: slab_unlock(page); +#ifdef CONFIG_CMPXCHG_LOCAL + local_irq_restore(flags); +#endif return; slab_empty: @@ -1876,6 +2084,9 @@ slab_empty: stat(s, FREE_REMOVE_PARTIAL); } slab_unlock(page); +#ifdef CONFIG_CMPXCHG_LOCAL + local_irq_restore(flags); +#endif stat(s, FREE_SLAB); discard_slab(s, page); return; @@ -1902,23 +2113,56 @@ static __always_inline void slab_free(struct kmem_cache *s, { void **object = (void *)x; struct kmem_cache_cpu *c; +#ifdef CONFIG_CMPXCHG_LOCAL + unsigned long tid; +#else unsigned long flags; +#endif slab_free_hook(s, x); +#ifndef CONFIG_CMPXCHG_LOCAL local_irq_save(flags); + +#else +redo: +#endif + + /* + * Determine the currently cpus per cpu slab. + * The cpu may change afterward. However that does not matter since + * data is retrieved via this pointer. If we are on the same cpu + * during the cmpxchg then the free will succedd. + */ c = __this_cpu_ptr(s->cpu_slab); - slab_free_hook_irq(s, x); +#ifdef CONFIG_CMPXCHG_LOCAL + tid = c->tid; + barrier(); +#endif if (likely(page == c->page && c->node != NUMA_NO_NODE)) { set_freepointer(s, object, c->freelist); + +#ifdef CONFIG_CMPXCHG_LOCAL + if (unlikely(!this_cpu_cmpxchg_double( + s->cpu_slab->freelist, s->cpu_slab->tid, + c->freelist, tid, + object, next_tid(tid)))) { + + note_cmpxchg_failure("slab_free", s, tid); + goto redo; + } +#else c->freelist = object; +#endif stat(s, FREE_FASTPATH); } else __slab_free(s, page, x, addr); +#ifndef CONFIG_CMPXCHG_LOCAL local_irq_restore(flags); +#endif } void kmem_cache_free(struct kmem_cache *s, void *x) @@ -1988,13 +2232,13 @@ static int slub_nomerge; * the smallest order which will fit the object. */ static inline int slab_order(int size, int min_objects, - int max_order, int fract_leftover) + int max_order, int fract_leftover, int reserved) { int order; int rem; int min_order = slub_min_order; - if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE) + if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) return get_order(size * MAX_OBJS_PER_PAGE) - 1; for (order = max(min_order, @@ -2003,10 +2247,10 @@ static inline int slab_order(int size, int min_objects, unsigned long slab_size = PAGE_SIZE << order; - if (slab_size < min_objects * size) + if (slab_size < min_objects * size + reserved) continue; - rem = slab_size % size; + rem = (slab_size - reserved) % size; if (rem <= slab_size / fract_leftover) break; @@ -2016,7 +2260,7 @@ static inline int slab_order(int size, int min_objects, return order; } -static inline int calculate_order(int size) +static inline int calculate_order(int size, int reserved) { int order; int min_objects; @@ -2034,14 +2278,14 @@ static inline int calculate_order(int size) min_objects = slub_min_objects; if (!min_objects) min_objects = 4 * (fls(nr_cpu_ids) + 1); - max_objects = (PAGE_SIZE << slub_max_order)/size; + max_objects = order_objects(slub_max_order, size, reserved); min_objects = min(min_objects, max_objects); while (min_objects > 1) { fraction = 16; while (fraction >= 4) { order = slab_order(size, min_objects, - slub_max_order, fraction); + slub_max_order, fraction, reserved); if (order <= slub_max_order) return order; fraction /= 2; @@ -2053,14 +2297,14 @@ static inline int calculate_order(int size) * We were unable to place multiple objects in a slab. Now * lets see if we can place a single object there. */ - order = slab_order(size, 1, slub_max_order, 1); + order = slab_order(size, 1, slub_max_order, 1, reserved); if (order <= slub_max_order) return order; /* * Doh this slab cannot be placed using slub_max_order. */ - order = slab_order(size, 1, MAX_ORDER, 1); + order = slab_order(size, 1, MAX_ORDER, 1, reserved); if (order < MAX_ORDER) return order; return -ENOSYS; @@ -2110,9 +2354,23 @@ static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu)); +#ifdef CONFIG_CMPXCHG_LOCAL + /* + * Must align to double word boundary for the double cmpxchg instructions + * to work. + */ + s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2 * sizeof(void *)); +#else + /* Regular alignment is sufficient */ s->cpu_slab = alloc_percpu(struct kmem_cache_cpu); +#endif + + if (!s->cpu_slab) + return 0; - return s->cpu_slab != NULL; + init_kmem_cache_cpus(s); + + return 1; } static struct kmem_cache *kmem_cache_node; @@ -2311,7 +2569,7 @@ static int calculate_sizes(struct kmem_cache *s, int forced_order) if (forced_order >= 0) order = forced_order; else - order = calculate_order(size); + order = calculate_order(size, s->reserved); if (order < 0) return 0; @@ -2329,8 +2587,8 @@ static int calculate_sizes(struct kmem_cache *s, int forced_order) /* * Determine the number of objects per slab */ - s->oo = oo_make(order, size); - s->min = oo_make(get_order(size), size); + s->oo = oo_make(order, size, s->reserved); + s->min = oo_make(get_order(size), size, s->reserved); if (oo_objects(s->oo) > oo_objects(s->max)) s->max = s->oo; @@ -2349,6 +2607,10 @@ static int kmem_cache_open(struct kmem_cache *s, s->objsize = size; s->align = align; s->flags = kmem_cache_flags(size, flags, name, ctor); + s->reserved = 0; + + if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU)) + s->reserved = sizeof(struct rcu_head); if (!calculate_sizes(s, -1)) goto error; @@ -2399,12 +2661,6 @@ unsigned int kmem_cache_size(struct kmem_cache *s) } EXPORT_SYMBOL(kmem_cache_size); -const char *kmem_cache_name(struct kmem_cache *s) -{ - return s->name; -} -EXPORT_SYMBOL(kmem_cache_name); - static void list_slab_objects(struct kmem_cache *s, struct page *page, const char *text) { @@ -2696,7 +2952,6 @@ EXPORT_SYMBOL(__kmalloc_node); size_t ksize(const void *object) { struct page *page; - struct kmem_cache *s; if (unlikely(object == ZERO_SIZE_PTR)) return 0; @@ -2707,28 +2962,8 @@ size_t ksize(const void *object) WARN_ON(!PageCompound(page)); return PAGE_SIZE << compound_order(page); } - s = page->slab; - -#ifdef CONFIG_SLUB_DEBUG - /* - * Debugging requires use of the padding between object - * and whatever may come after it. - */ - if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) - return s->objsize; -#endif - /* - * If we have the need to store the freelist pointer - * back there or track user information then we can - * only use the space before that information. - */ - if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) - return s->inuse; - /* - * Else we can use all the padding etc for the allocation - */ - return s->size; + return slab_ksize(page->slab); } EXPORT_SYMBOL(ksize); @@ -4017,6 +4252,12 @@ static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) } SLAB_ATTR_RO(destroy_by_rcu); +static ssize_t reserved_show(struct kmem_cache *s, char *buf) +{ + return sprintf(buf, "%d\n", s->reserved); +} +SLAB_ATTR_RO(reserved); + #ifdef CONFIG_SLUB_DEBUG static ssize_t slabs_show(struct kmem_cache *s, char *buf) { @@ -4303,6 +4544,7 @@ static struct attribute *slab_attrs[] = { &reclaim_account_attr.attr, &destroy_by_rcu_attr.attr, &shrink_attr.attr, + &reserved_attr.attr, #ifdef CONFIG_SLUB_DEBUG &total_objects_attr.attr, &slabs_attr.attr, |