diff options
Diffstat (limited to 'mm/memory.c')
-rw-r--r-- | mm/memory.c | 74 |
1 files changed, 67 insertions, 7 deletions
diff --git a/mm/memory.c b/mm/memory.c index 5823698c2b71..615be5127ce1 100644 --- a/mm/memory.c +++ b/mm/memory.c @@ -1410,6 +1410,55 @@ no_page_table: return page; } +/** + * __get_user_pages() - pin user pages in memory + * @tsk: task_struct of target task + * @mm: mm_struct of target mm + * @start: starting user address + * @nr_pages: number of pages from start to pin + * @gup_flags: flags modifying pin behaviour + * @pages: array that receives pointers to the pages pinned. + * Should be at least nr_pages long. Or NULL, if caller + * only intends to ensure the pages are faulted in. + * @vmas: array of pointers to vmas corresponding to each page. + * Or NULL if the caller does not require them. + * @nonblocking: whether waiting for disk IO or mmap_sem contention + * + * Returns number of pages pinned. This may be fewer than the number + * requested. If nr_pages is 0 or negative, returns 0. If no pages + * were pinned, returns -errno. Each page returned must be released + * with a put_page() call when it is finished with. vmas will only + * remain valid while mmap_sem is held. + * + * Must be called with mmap_sem held for read or write. + * + * __get_user_pages walks a process's page tables and takes a reference to + * each struct page that each user address corresponds to at a given + * instant. That is, it takes the page that would be accessed if a user + * thread accesses the given user virtual address at that instant. + * + * This does not guarantee that the page exists in the user mappings when + * __get_user_pages returns, and there may even be a completely different + * page there in some cases (eg. if mmapped pagecache has been invalidated + * and subsequently re faulted). However it does guarantee that the page + * won't be freed completely. And mostly callers simply care that the page + * contains data that was valid *at some point in time*. Typically, an IO + * or similar operation cannot guarantee anything stronger anyway because + * locks can't be held over the syscall boundary. + * + * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If + * the page is written to, set_page_dirty (or set_page_dirty_lock, as + * appropriate) must be called after the page is finished with, and + * before put_page is called. + * + * If @nonblocking != NULL, __get_user_pages will not wait for disk IO + * or mmap_sem contention, and if waiting is needed to pin all pages, + * *@nonblocking will be set to 0. + * + * In most cases, get_user_pages or get_user_pages_fast should be used + * instead of __get_user_pages. __get_user_pages should be used only if + * you need some special @gup_flags. + */ int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, int nr_pages, unsigned int gup_flags, struct page **pages, struct vm_area_struct **vmas, @@ -1520,6 +1569,8 @@ int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, fault_flags |= FAULT_FLAG_WRITE; if (nonblocking) fault_flags |= FAULT_FLAG_ALLOW_RETRY; + if (foll_flags & FOLL_NOWAIT) + fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT); ret = handle_mm_fault(mm, vma, start, fault_flags); @@ -1527,9 +1578,16 @@ int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, if (ret & VM_FAULT_ERROR) { if (ret & VM_FAULT_OOM) return i ? i : -ENOMEM; - if (ret & - (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE| - VM_FAULT_SIGBUS)) + if (ret & (VM_FAULT_HWPOISON | + VM_FAULT_HWPOISON_LARGE)) { + if (i) + return i; + else if (gup_flags & FOLL_HWPOISON) + return -EHWPOISON; + else + return -EFAULT; + } + if (ret & VM_FAULT_SIGBUS) return i ? i : -EFAULT; BUG(); } @@ -1539,7 +1597,8 @@ int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, tsk->min_flt++; if (ret & VM_FAULT_RETRY) { - *nonblocking = 0; + if (nonblocking) + *nonblocking = 0; return i; } @@ -1578,6 +1637,7 @@ int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, } while (nr_pages); return i; } +EXPORT_SYMBOL(__get_user_pages); /** * get_user_pages() - pin user pages in memory @@ -2115,10 +2175,10 @@ EXPORT_SYMBOL_GPL(apply_to_page_range); * handle_pte_fault chooses page fault handler according to an entry * which was read non-atomically. Before making any commitment, on * those architectures or configurations (e.g. i386 with PAE) which - * might give a mix of unmatched parts, do_swap_page and do_file_page + * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault * must check under lock before unmapping the pte and proceeding * (but do_wp_page is only called after already making such a check; - * and do_anonymous_page and do_no_page can safely check later on). + * and do_anonymous_page can safely check later on). */ static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, pte_t *page_table, pte_t orig_pte) @@ -2314,7 +2374,7 @@ reuse: * bit after it clear all dirty ptes, but before a racing * do_wp_page installs a dirty pte. * - * do_no_page is protected similarly. + * __do_fault is protected similarly. */ if (!page_mkwrite) { wait_on_page_locked(dirty_page); |