summaryrefslogtreecommitdiff
path: root/mm/memcontrol.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/memcontrol.c')
-rw-r--r--mm/memcontrol.c35
1 files changed, 2 insertions, 33 deletions
diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index d9fab72da52e..11cbfde4dc6d 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -2673,37 +2673,6 @@ static void memcg_unregister_cache(struct kmem_cache *cachep)
css_put(&memcg->css);
}
-/*
- * During the creation a new cache, we need to disable our accounting mechanism
- * altogether. This is true even if we are not creating, but rather just
- * enqueing new caches to be created.
- *
- * This is because that process will trigger allocations; some visible, like
- * explicit kmallocs to auxiliary data structures, name strings and internal
- * cache structures; some well concealed, like INIT_WORK() that can allocate
- * objects during debug.
- *
- * If any allocation happens during memcg_kmem_get_cache, we will recurse back
- * to it. This may not be a bounded recursion: since the first cache creation
- * failed to complete (waiting on the allocation), we'll just try to create the
- * cache again, failing at the same point.
- *
- * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
- * memcg_kmem_skip_account. So we enclose anything that might allocate memory
- * inside the following two functions.
- */
-static inline void memcg_stop_kmem_account(void)
-{
- VM_BUG_ON(!current->mm);
- current->memcg_kmem_skip_account++;
-}
-
-static inline void memcg_resume_kmem_account(void)
-{
- VM_BUG_ON(!current->mm);
- current->memcg_kmem_skip_account--;
-}
-
int __memcg_cleanup_cache_params(struct kmem_cache *s)
{
struct kmem_cache *c;
@@ -2798,9 +2767,9 @@ static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
* this point we can't allow ourselves back into memcg_kmem_get_cache,
* the safest choice is to do it like this, wrapping the whole function.
*/
- memcg_stop_kmem_account();
+ current->memcg_kmem_skip_account = 1;
__memcg_schedule_register_cache(memcg, cachep);
- memcg_resume_kmem_account();
+ current->memcg_kmem_skip_account = 0;
}
int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)