diff options
Diffstat (limited to 'mm/hugetlb.c')
-rw-r--r-- | mm/hugetlb.c | 91 |
1 files changed, 6 insertions, 85 deletions
diff --git a/mm/hugetlb.c b/mm/hugetlb.c index 5a620f690911..d029d938d26d 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c @@ -1216,6 +1216,7 @@ static void destroy_compound_gigantic_page(struct page *page, } set_compound_order(page, 0); + page[1].compound_nr = 0; __ClearPageHead(page); } @@ -1568,103 +1569,23 @@ int PageHeadHuge(struct page *page_head) } /* - * Find address_space associated with hugetlbfs page. - * Upon entry page is locked and page 'was' mapped although mapped state - * could change. If necessary, use anon_vma to find vma and associated - * address space. The returned mapping may be stale, but it can not be - * invalid as page lock (which is held) is required to destroy mapping. - */ -static struct address_space *_get_hugetlb_page_mapping(struct page *hpage) -{ - struct anon_vma *anon_vma; - pgoff_t pgoff_start, pgoff_end; - struct anon_vma_chain *avc; - struct address_space *mapping = page_mapping(hpage); - - /* Simple file based mapping */ - if (mapping) - return mapping; - - /* - * Even anonymous hugetlbfs mappings are associated with an - * underlying hugetlbfs file (see hugetlb_file_setup in mmap - * code). Find a vma associated with the anonymous vma, and - * use the file pointer to get address_space. - */ - anon_vma = page_lock_anon_vma_read(hpage); - if (!anon_vma) - return mapping; /* NULL */ - - /* Use first found vma */ - pgoff_start = page_to_pgoff(hpage); - pgoff_end = pgoff_start + pages_per_huge_page(page_hstate(hpage)) - 1; - anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, - pgoff_start, pgoff_end) { - struct vm_area_struct *vma = avc->vma; - - mapping = vma->vm_file->f_mapping; - break; - } - - anon_vma_unlock_read(anon_vma); - return mapping; -} - -/* * Find and lock address space (mapping) in write mode. * - * Upon entry, the page is locked which allows us to find the mapping - * even in the case of an anon page. However, locking order dictates - * the i_mmap_rwsem be acquired BEFORE the page lock. This is hugetlbfs - * specific. So, we first try to lock the sema while still holding the - * page lock. If this works, great! If not, then we need to drop the - * page lock and then acquire i_mmap_rwsem and reacquire page lock. Of - * course, need to revalidate state along the way. + * Upon entry, the page is locked which means that page_mapping() is + * stable. Due to locking order, we can only trylock_write. If we can + * not get the lock, simply return NULL to caller. */ struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage) { - struct address_space *mapping, *mapping2; + struct address_space *mapping = page_mapping(hpage); - mapping = _get_hugetlb_page_mapping(hpage); -retry: if (!mapping) return mapping; - /* - * If no contention, take lock and return - */ if (i_mmap_trylock_write(mapping)) return mapping; - /* - * Must drop page lock and wait on mapping sema. - * Note: Once page lock is dropped, mapping could become invalid. - * As a hack, increase map count until we lock page again. - */ - atomic_inc(&hpage->_mapcount); - unlock_page(hpage); - i_mmap_lock_write(mapping); - lock_page(hpage); - atomic_add_negative(-1, &hpage->_mapcount); - - /* verify page is still mapped */ - if (!page_mapped(hpage)) { - i_mmap_unlock_write(mapping); - return NULL; - } - - /* - * Get address space again and verify it is the same one - * we locked. If not, drop lock and retry. - */ - mapping2 = _get_hugetlb_page_mapping(hpage); - if (mapping2 != mapping) { - i_mmap_unlock_write(mapping); - mapping = mapping2; - goto retry; - } - - return mapping; + return NULL; } pgoff_t __basepage_index(struct page *page) |